Mitigation of Fiber Nonlinearity Using a Digital Coherent Receiver
Coherent detection with receiver-based DSP has recently enabled the mitigation of fiber nonlinear effects. We investigate the performance benefits available from the backpropagation algorithm for polarization division multiplexed quadrature amplitude phase-shift keying (PDM-QPSK) and 16-state quadra...
Saved in:
| Published in: | IEEE journal of selected topics in quantum electronics Vol. 16; no. 5; pp. 1217 - 1226 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.09.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1077-260X, 1558-4542 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Coherent detection with receiver-based DSP has recently enabled the mitigation of fiber nonlinear effects. We investigate the performance benefits available from the backpropagation algorithm for polarization division multiplexed quadrature amplitude phase-shift keying (PDM-QPSK) and 16-state quadrature amplitude modulation (PDM-QAM16). The performance of the receiver using a digital backpropagation algorithm with varying nonlinear step size is characterized to determine an upper bound on the suppression of intrachannel nonlinearities in a single-channel system. The results show that for the system under investigation PDM-QPSK and PDM-QAM16 have maximum step sizes for optimal performance of 160 and 80 km, respectively. Whilst the optimal launch power is increased by 2 and 2.5 dB for PDM-QPSK and PDM-QAM16, respectively, the Q-factor is correspondingly increased by 1.6 and 1 dB, highlighting the importance of studying nonlinear compensation for higher level modulation formats. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1077-260X 1558-4542 |
| DOI: | 10.1109/JSTQE.2010.2047247 |