Building Auto-Encoder Intrusion Detection System based on random forest feature selection
Machine learning techniques have been widely used in intrusion detection for many years. However, these techniques are still suffer from lack of labeled dataset, heavy overhead and low accuracy. To improve classification accuracy and reduce training time, this paper proposes an effective deep learni...
Saved in:
| Published in: | Computers & security Vol. 95; pp. 101851 - 15 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier Ltd
01.08.2020
Elsevier Sequoia S.A |
| Subjects: | |
| ISSN: | 0167-4048, 1872-6208 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Machine learning techniques have been widely used in intrusion detection for many years. However, these techniques are still suffer from lack of labeled dataset, heavy overhead and low accuracy. To improve classification accuracy and reduce training time, this paper proposes an effective deep learning method, namely AE-IDS (Auto-Encoder Intrusion Detection System) based on random forest algorithm. This method constructs the training set with feature selection and feature grouping. After training, the model can predict the results with auto-encoder, which greatly reduces the detection time and effectively improves the prediction accuracy. The experimental results show that the proposed method is superior to traditional machine learning based intrusion detection methods in terms of easy training, strong adaptability, and high detection accuracy. |
|---|---|
| AbstractList | Machine learning techniques have been widely used in intrusion detection for many years. However, these techniques are still suffer from lack of labeled dataset, heavy overhead and low accuracy. To improve classification accuracy and reduce training time, this paper proposes an effective deep learning method, namely AE-IDS (Auto-Encoder Intrusion Detection System) based on random forest algorithm. This method constructs the training set with feature selection and feature grouping. After training, the model can predict the results with auto-encoder, which greatly reduces the detection time and effectively improves the prediction accuracy. The experimental results show that the proposed method is superior to traditional machine learning based intrusion detection methods in terms of easy training, strong adaptability, and high detection accuracy. |
| ArticleNumber | 101851 |
| Author | Chen, Wei Wu, Lifa Li, XuKui Zhang, Qianru |
| Author_xml | – sequence: 1 givenname: XuKui surname: Li fullname: Li, XuKui organization: Nanjing University of Posts and Telecommunications, No.9,Wenyuan Road, Nanjing, Jiangsu, China – sequence: 2 givenname: Wei orcidid: 0000-0002-6248-1298 surname: Chen fullname: Chen, Wei email: chenwei@njupt.edu.cn organization: Nanjing University of Posts and Telecommunications, No.9,Wenyuan Road, Nanjing, Jiangsu, China – sequence: 3 givenname: Qianru surname: Zhang fullname: Zhang, Qianru organization: University of Hong Kong, Pokfulam Road, Central and Western District, Hong Kong, China – sequence: 4 givenname: Lifa surname: Wu fullname: Wu, Lifa organization: Nanjing University of Posts and Telecommunications, No.9,Wenyuan Road, Nanjing, Jiangsu, China |
| BookMark | eNp9kEFPwyAUx4mZidv0C3hq4rkTKCs08TLn1CVLPKgHT4TSV8OywQRqsm8vtZ487AS8_P68934TNLLOAkLXBM8IJuXtdqZdgBnF9Lcg5uQMjYngNC8pFiM0ThDPGWbiAk1C2GJMeCnEGH3cd2bXGPuZLbro8pXVrgGfrW30XTDOZg8QQcf-9noMEfZZrQI0WXp7ZRu3z1rnIcSsBRU7D1mA3cBfovNW7QJc_Z1T9P64els-55uXp_Vyscl1UbGYF3XFBVdNLQhUnBe1BsKZmLeMCtqWwDChTakBEkdqXnHWEqxbhXlBqppAMUU3w78H7766NIrcus7b1FJSxkpOBWc0UWKgtHcheGilNlH1c0avzE4SLHuRcit7kbIXKQeRKUr_RQ_e7JU_ng7dDSFIq38b8DJoA1ZDY3zyIxtnTsV_ALgljsE |
| CitedBy_id | crossref_primary_10_1002_int_22397 crossref_primary_10_1007_s12293_024_00434_2 crossref_primary_10_1016_j_jnca_2025_104182 crossref_primary_10_3390_info14010029 crossref_primary_10_1016_j_cose_2023_103581 crossref_primary_10_1016_j_ipm_2022_103132 crossref_primary_10_3390_computers11100142 crossref_primary_10_1155_2023_8555423 crossref_primary_10_1016_j_bspc_2023_104671 crossref_primary_10_3390_app131911067 crossref_primary_10_1016_j_compeleceng_2023_108949 crossref_primary_10_1080_0954898X_2025_2483342 crossref_primary_10_3390_photonics8120555 crossref_primary_10_1016_j_procs_2024_03_285 crossref_primary_10_1016_j_buildenv_2022_109243 crossref_primary_10_3390_s24072123 crossref_primary_10_1007_s11063_022_10854_1 crossref_primary_10_1007_s12652_022_04350_6 crossref_primary_10_3390_s24072122 crossref_primary_10_1007_s12652_021_03077_0 crossref_primary_10_1007_s10207_023_00682_2 crossref_primary_10_1016_j_procs_2024_09_193 crossref_primary_10_1016_j_ress_2022_108674 crossref_primary_10_3390_electronics12081788 crossref_primary_10_32604_cmc_2022_026477 crossref_primary_10_1007_s10489_023_04642_0 crossref_primary_10_1049_wss2_12100 crossref_primary_10_32604_cmc_2023_044506 crossref_primary_10_3390_electronics11213541 crossref_primary_10_1186_s40537_020_00382_x crossref_primary_10_1016_j_cose_2023_103210 crossref_primary_10_1002_cpe_8024 crossref_primary_10_1080_00036846_2023_2276093 crossref_primary_10_1007_s10207_024_00855_7 crossref_primary_10_1016_j_dajour_2023_100238 crossref_primary_10_4018_IJAEC_302014 crossref_primary_10_3389_fncom_2022_1083649 crossref_primary_10_1186_s40537_021_00448_4 crossref_primary_10_1155_2022_2693948 crossref_primary_10_1186_s40537_021_00426_w crossref_primary_10_1109_JIOT_2023_3344842 crossref_primary_10_32604_cmc_2022_026749 crossref_primary_10_1016_j_future_2021_03_024 crossref_primary_10_1049_2024_3948341 crossref_primary_10_1155_2022_9068724 crossref_primary_10_3390_app12157701 crossref_primary_10_4018_IJACI_293098 crossref_primary_10_32604_cmes_2024_046473 crossref_primary_10_1007_s11277_021_08975_2 crossref_primary_10_1007_s10489_022_04076_0 crossref_primary_10_1109_JIOT_2025_3542845 crossref_primary_10_1080_21642583_2025_2518963 crossref_primary_10_1109_ACCESS_2023_3335600 crossref_primary_10_1016_j_future_2023_09_019 crossref_primary_10_3390_forecast6040056 crossref_primary_10_1016_j_cherd_2023_10_052 crossref_primary_10_3390_biomimetics9100613 crossref_primary_10_1007_s40747_022_00676_y crossref_primary_10_1007_s11227_024_06737_y crossref_primary_10_3390_app15020732 crossref_primary_10_1080_23744731_2021_1993454 crossref_primary_10_1109_ACCESS_2025_3564706 crossref_primary_10_32604_cmc_2023_039463 crossref_primary_10_1016_j_compeleceng_2023_108600 crossref_primary_10_1016_j_asoc_2023_110335 crossref_primary_10_1155_2022_3317048 crossref_primary_10_1007_s13369_021_05871_6 crossref_primary_10_3390_sym13112192 crossref_primary_10_1007_s11030_023_10714_7 crossref_primary_10_1080_09540091_2023_2195595 crossref_primary_10_3390_app12052571 crossref_primary_10_1016_j_future_2023_07_039 crossref_primary_10_1016_j_cose_2022_103054 crossref_primary_10_1371_journal_pone_0290694 crossref_primary_10_1109_JIOT_2024_3368072 crossref_primary_10_1016_j_iswa_2023_200298 crossref_primary_10_1080_10298436_2021_1969019 crossref_primary_10_3390_jcp3030026 crossref_primary_10_33889_IJMEMS_2024_9_1_010 crossref_primary_10_1038_s41598_023_46719_3 crossref_primary_10_1155_2020_4608647 crossref_primary_10_1016_j_asoc_2022_109858 crossref_primary_10_1177_09287329241296246 crossref_primary_10_1109_ACCESS_2024_3472907 crossref_primary_10_1002_cpe_7197 crossref_primary_10_1016_j_procs_2024_01_161 crossref_primary_10_70395_cunas_1515477 crossref_primary_10_4316_AECE_2022_01001 crossref_primary_10_1016_j_scitotenv_2025_178597 crossref_primary_10_1109_ACCESS_2025_3549679 crossref_primary_10_1186_s40537_021_00462_6 crossref_primary_10_1007_s42979_024_03376_1 crossref_primary_10_7717_peerj_cs_2176 crossref_primary_10_1007_s11227_023_05474_y crossref_primary_10_1002_ett_4522 crossref_primary_10_1007_s00521_020_05500_7 crossref_primary_10_1155_2022_8614903 crossref_primary_10_1007_s11276_023_03495_2 crossref_primary_10_1007_s00521_021_06011_9 crossref_primary_10_1007_s10207_022_00632_4 crossref_primary_10_1016_j_cose_2023_103144 crossref_primary_10_1016_j_eswa_2024_123533 crossref_primary_10_1080_24751839_2023_2215135 crossref_primary_10_1007_s11219_023_09636_2 crossref_primary_10_1155_2022_3131153 crossref_primary_10_1016_j_measurement_2024_116606 crossref_primary_10_1177_0926227X251330216 crossref_primary_10_1109_ACCESS_2023_3347619 crossref_primary_10_1016_j_eswa_2023_121912 crossref_primary_10_3390_s23156672 crossref_primary_10_1007_s11600_023_01247_6 crossref_primary_10_1109_ACCESS_2021_3126535 crossref_primary_10_1109_ACCESS_2021_3073408 crossref_primary_10_1007_s10922_024_09817_9 crossref_primary_10_1016_j_knosys_2024_112366 crossref_primary_10_1016_j_asoc_2022_109375 crossref_primary_10_1016_j_procs_2024_04_211 crossref_primary_10_1016_j_enbuild_2023_113707 crossref_primary_10_1109_ACCESS_2022_3205618 crossref_primary_10_3390_s23010040 crossref_primary_10_3390_electronics12153304 crossref_primary_10_1016_j_iot_2022_100615 crossref_primary_10_1155_2022_8799429 crossref_primary_10_1109_TNSE_2021_3109644 crossref_primary_10_3390_e25050820 crossref_primary_10_3390_s24061782 crossref_primary_10_1007_s10489_022_04160_5 crossref_primary_10_3390_healthcare9091172 crossref_primary_10_1016_j_eswa_2022_117363 crossref_primary_10_1016_j_jobe_2023_107150 crossref_primary_10_1016_j_asoc_2024_112098 crossref_primary_10_1007_s10586_024_04995_2 crossref_primary_10_1016_j_enconman_2021_114367 crossref_primary_10_3390_computers12100209 crossref_primary_10_3390_inventions8050126 crossref_primary_10_1016_j_comnet_2021_108613 crossref_primary_10_1038_s41598_024_80021_0 crossref_primary_10_1002_cpe_8377 crossref_primary_10_32604_cmc_2024_053721 crossref_primary_10_3390_computers13010025 crossref_primary_10_1016_j_future_2025_108059 crossref_primary_10_1016_j_eswa_2024_123439 crossref_primary_10_1108_ECAM_07_2021_0606 crossref_primary_10_32604_cmc_2021_017665 crossref_primary_10_1007_s00521_021_06826_6 crossref_primary_10_1016_j_ins_2021_03_060 crossref_primary_10_1002_spy2_429 crossref_primary_10_1016_j_neucom_2024_127948 crossref_primary_10_1016_j_cose_2024_103961 crossref_primary_10_1016_j_jisa_2023_103625 crossref_primary_10_1109_ACCESS_2024_3380480 crossref_primary_10_1109_TNSM_2023_3258901 crossref_primary_10_1109_JAS_2021_1004344 crossref_primary_10_32604_cmc_2023_037486 crossref_primary_10_1016_j_jnca_2021_103111 crossref_primary_10_1007_s11227_022_05025_x crossref_primary_10_1016_j_aap_2024_107528 crossref_primary_10_1109_TIFS_2024_3442530 crossref_primary_10_1109_OJCOMS_2025_3573194 crossref_primary_10_1002_spy2_70081 crossref_primary_10_1109_JIOT_2023_3248259 crossref_primary_10_1002_cpe_7552 crossref_primary_10_1016_j_rser_2025_115407 crossref_primary_10_1016_j_measurement_2023_113401 crossref_primary_10_1007_s11227_025_07271_1 crossref_primary_10_1016_j_inffus_2022_09_026 crossref_primary_10_1109_ACCESS_2025_3595058 crossref_primary_10_1016_j_jnca_2022_103513 crossref_primary_10_1186_s40537_021_00460_8 crossref_primary_10_1016_j_apenergy_2025_125569 crossref_primary_10_1016_j_comnet_2025_111164 crossref_primary_10_3390_s21175930 crossref_primary_10_7240_jeps_1664346 crossref_primary_10_3389_fendo_2025_1610884 crossref_primary_10_1016_j_comnet_2025_111606 crossref_primary_10_3390_sym15061251 crossref_primary_10_3390_app15084432 crossref_primary_10_1016_j_adhoc_2025_103818 crossref_primary_10_1063_5_0186731 crossref_primary_10_1016_j_adhoc_2025_103937 |
| Cites_doi | 10.1016/j.patcog.2014.11.003 10.1109/COMST.2015.2494502 10.1016/j.ins.2016.02.009 10.1007/s10994-006-6226-1 10.1007/s11222-016-9646-1 10.1016/j.eswa.2016.09.041 10.1016/j.neucom.2015.05.109 10.1007/s10107-016-1042-2 10.1016/j.knosys.2018.02.015 10.1016/j.neucom.2012.11.050 10.1126/science.1136800 10.1016/j.jfranklin.2017.06.006 10.5194/gmd-7-1247-2014 10.1016/j.jocs.2017.03.006 10.1016/j.artint.2018.03.003 10.1016/j.neucom.2014.09.083 10.1023/A:1010933404324 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Sequoia S.A. Aug 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Sequoia S.A. Aug 2020 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 K7. L7M L~C L~D |
| DOI | 10.1016/j.cose.2020.101851 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Criminal Justice (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef ProQuest Criminal Justice (Alumni) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | ProQuest Criminal Justice (Alumni) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-6208 |
| EndPage | 15 |
| ExternalDocumentID | 10_1016_j_cose_2020_101851 S0167404820301231 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLX HLZ HVGLF HZ~ IHE J1W KOM LG8 LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SBM SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TAE TN5 TWZ WH7 WUQ XJE XPP XSW YK3 ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 K7. L7M L~C L~D |
| ID | FETCH-LOGICAL-c394t-3b9787adb81e9773bce17485f4282f6e4012d6ceeb971b7974f10cfa07319b1e3 |
| ISICitedReferencesCount | 227 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000536765700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-4048 |
| IngestDate | Thu Nov 20 01:00:48 EST 2025 Sat Nov 29 07:25:43 EST 2025 Tue Nov 18 21:05:09 EST 2025 Fri Feb 23 02:47:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Network security Network Intrusion Detection System Auto-Encoder Unsupervised clustering |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c394t-3b9787adb81e9773bce17485f4282f6e4012d6ceeb971b7974f10cfa07319b1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6248-1298 |
| PQID | 2446728742 |
| PQPubID | 46289 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2446728742 crossref_citationtrail_10_1016_j_cose_2020_101851 crossref_primary_10_1016_j_cose_2020_101851 elsevier_sciencedirect_doi_10_1016_j_cose_2020_101851 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 20200801 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers & security |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Sequoia S.A |
| References | Gan, Ng (bib0013) 2015; 48 Ergen, Kozat (bib0010) 2017; 29 Han, Wang, Zhang, Li, Xu (bib0017) 2018 Wang, Xu, Lee, Lee (bib0035) 2018; 147 Roshan, Miche, Akusok, Lendasse (bib0029) 2018; 355 Hoz, Hoz, Ortiz, Ortega, Prieto (bib0020) 2015; 164 Zou, Yao, Zhang, Guan (bib0039) 2018 Frey, Dueck (bib0012) 2007; 315 Javaid, Niyaz, Sun, Alam (bib0022) 2016 Fiore, Palmieri, Castiglione, De Santis (bib0011) 2013; 122 Lv, Ma, Tang, Cao, Tian, Al-Dhelaan, Al-Rodhaan (bib0024) 2016; 171 Breiman (bib0005) 2001; 45 Al-Yaseen, Othman, Nazri (bib0001) 2017; 67 Mirsky, Doitshman, Elovici, Shabtai (bib0025) 2018 Bugdary, S., Maymon, S., 2019. Online clustering by penalized weighted GMM. arXiv preprint Chai, Draxler (bib0008) 2014; 7 Gregorutti, Michel, Saint-Pierre (bib0016) 2017; 27 University of New Brunswick. CSE-CIC-IDS2018 on AWS dataset. Baldi, Sadowski, Lu (bib0003) 2018; 260 Chundi, Rao (bib0009) 2013; 6 Wang, Ding, Fu (bib0036) 2017 Zhou, Paffenroth (bib0038) 2017 Reddy, Vinzamuri (bib0028) 2018 Nakatsukasa, Soma, Uschmajew (bib0026) 2017; 162 Yousefi-Azar, Varadharajan, Hamey, Tupakula (bib0037) 2017 Hang, Chung, Wang (bib0018) 2016; 348 . Wang, Zheng, Li (bib0034) 2017 Geurts, Ernst, Wehenkel (bib0014) 2006; 63 Gil, Martins, Januário (bib0015) 2018 Buczak, Guven (bib0006) 2015; 18 Bottou (bib0004) 2012 Sakurada, Yairi (bib0030) 2014 Javaid, Niyaz, Sun, Alam (bib0021) 2016 Hodo, Bellekens, Hamilton, Dubouilh, Iorkyase, Tachtatzis, Atkinson (bib0019) 2016 Aljawarneh, Aldwairi, Yassein (bib0002) 2018; 25 Sandhu, Tripathy, Jagga (bib0031) 2019 Sharafaldin, Habibi Lashkari, Ghorbani (bib0032) 2018 Kong, Huang, Wu (bib0023) 2017 Hang (10.1016/j.cose.2020.101851_bib0018) 2016; 348 Nakatsukasa (10.1016/j.cose.2020.101851_bib0026) 2017; 162 Hoz (10.1016/j.cose.2020.101851_bib0020) 2015; 164 Buczak (10.1016/j.cose.2020.101851_bib0006) 2015; 18 Breiman (10.1016/j.cose.2020.101851_bib0005) 2001; 45 Zou (10.1016/j.cose.2020.101851_bib0039) 2018 Ergen (10.1016/j.cose.2020.101851_bib0010) 2017; 29 Sandhu (10.1016/j.cose.2020.101851_bib0031) 2019 Kong (10.1016/j.cose.2020.101851_bib0023) 2017 Chai (10.1016/j.cose.2020.101851_bib0008) 2014; 7 Zhou (10.1016/j.cose.2020.101851_bib0038) 2017 Al-Yaseen (10.1016/j.cose.2020.101851_bib0001) 2017; 67 Han (10.1016/j.cose.2020.101851_bib0017) 2018 Javaid (10.1016/j.cose.2020.101851_bib0021) 2016 Reddy (10.1016/j.cose.2020.101851_bib0028) 2018 Roshan (10.1016/j.cose.2020.101851_bib0029) 2018; 355 Lv (10.1016/j.cose.2020.101851_bib0024) 2016; 171 Chundi (10.1016/j.cose.2020.101851_bib0009) 2013; 6 Sharafaldin (10.1016/j.cose.2020.101851_bib0032) 2018 Wang (10.1016/j.cose.2020.101851_bib0035) 2018; 147 Frey (10.1016/j.cose.2020.101851_bib0012) 2007; 315 Hodo (10.1016/j.cose.2020.101851_bib0019) 2016 Wang (10.1016/j.cose.2020.101851_bib0034) 2017 Yousefi-Azar (10.1016/j.cose.2020.101851_bib0037) 2017 Bottou (10.1016/j.cose.2020.101851_bib0004) 2012 Gan (10.1016/j.cose.2020.101851_bib0013) 2015; 48 Geurts (10.1016/j.cose.2020.101851_bib0014) 2006; 63 Gil (10.1016/j.cose.2020.101851_bib0015) 2018 Sakurada (10.1016/j.cose.2020.101851_bib0030) 2014 Fiore (10.1016/j.cose.2020.101851_bib0011) 2013; 122 10.1016/j.cose.2020.101851_bib0007 Javaid (10.1016/j.cose.2020.101851_bib0022) 2016 10.1016/j.cose.2020.101851_bib0027 Gregorutti (10.1016/j.cose.2020.101851_bib0016) 2017; 27 Aljawarneh (10.1016/j.cose.2020.101851_bib0002) 2018; 25 Wang (10.1016/j.cose.2020.101851_bib0036) 2017 Baldi (10.1016/j.cose.2020.101851_bib0003) 2018; 260 Mirsky (10.1016/j.cose.2020.101851_othref0002) 2018 |
| References_xml | – volume: 348 start-page: 337 year: 2016 end-page: 356 ident: bib0018 article-title: Transfer affinity propagation-based clustering publication-title: Inf. Sci. (Ny) – volume: 122 start-page: 13 year: 2013 end-page: 23 ident: bib0011 article-title: Network anomaly detection with the restricted Boltzmann machine publication-title: Neurocomputing – volume: 315 start-page: 972 year: 2007 end-page: 976 ident: bib0012 article-title: Clustering by passing messages between data points publication-title: Science – volume: 147 start-page: 68 year: 2018 end-page: 80 ident: bib0035 article-title: Network intrusion detection using equality constrained-optimization-based extreme learning machines publication-title: Knowl. Based Syst. – year: 2018 ident: bib0025 article-title: Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection publication-title: Proceedings of NDSS – start-page: 259 year: 2018 end-page: 272 ident: bib0039 article-title: Back propagation convex extreme learning machine publication-title: Proceedings of ELM-2016 – volume: 7 start-page: 1247 year: 2014 end-page: 1250 ident: bib0008 article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. – start-page: 21 year: 2016 end-page: 26 ident: bib0021 article-title: A deep learning approach for network intrusion detection system publication-title: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) – volume: 27 start-page: 659 year: 2017 end-page: 678 ident: bib0016 article-title: Correlation and variable importance in random forests publication-title: Stat. Comput. – reference: University of New Brunswick. CSE-CIC-IDS2018 on AWS dataset. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0005 article-title: Random forests publication-title: Mach. Learn. – reference: Bugdary, S., Maymon, S., 2019. Online clustering by penalized weighted GMM. arXiv preprint: – volume: 25 start-page: 152 year: 2018 end-page: 160 ident: bib0002 article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model publication-title: J. Comput. Sci. – volume: 6 start-page: 241 year: 2013 end-page: 246 ident: bib0009 article-title: Role of feature reduction in intrusion detection systems for wireless attacks publication-title: Int. J. Eng. Trends Technol. – volume: 162 start-page: 325 year: 2017 end-page: 361 ident: bib0026 article-title: Finding a low-rank basis in a matrix subspace publication-title: Math. Program – volume: 29 start-page: 3772 year: 2017 end-page: 3783 ident: bib0010 article-title: Efficient online learning algorithms based on LSTM neural networks publication-title: IEEE Trans Neural Netw. Learn. Syst. – start-page: 4 year: 2014 ident: bib0030 article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction publication-title: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bib0014 article-title: Extremely randomized trees publication-title: Mach. Learn. – volume: 18 start-page: 1153 year: 2015 end-page: 1176 ident: bib0006 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surv. Tutor. – start-page: 1 year: 2018 end-page: 26 ident: bib0015 article-title: Outliers detection methods in wireless sensor networks publication-title: Artif. Intell. Rev. – start-page: 2941 year: 2018 end-page: 2945 ident: bib0017 article-title: Autoencoder inspired unsupervised feature selection publication-title: Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 421 year: 2012 end-page: 436 ident: bib0004 article-title: Stochastic gradient descent tricks publication-title: Neural networks: Tricks of the trade – start-page: 665 year: 2017 end-page: 674 ident: bib0038 article-title: Anomaly detection with robust deep autoencoders publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 171 start-page: 9 year: 2016 end-page: 22 ident: bib0024 article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures publication-title: Neurocomputing – volume: 355 start-page: 1752 year: 2018 end-page: 1779 ident: bib0029 article-title: Adaptive and online network intrusion detection system using clustering and extreme learning machines publication-title: J. Frankl. Inst. – start-page: 108 year: 2018 end-page: 116 ident: bib0032 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization publication-title: The International Conference on Information Systems Security and Privacy (ICISSP) – reference: . – start-page: 87 year: 2018 end-page: 110 ident: bib0028 article-title: A survey of partitional and hierarchical clustering algorithms publication-title: Data Clustering – start-page: 113 year: 2019 end-page: 127 ident: bib0031 article-title: KMST+: a k-means++-based minimum spanning tree algorithm publication-title: Smart Innovations in Communication and Computational Sciences – start-page: 161 year: 2017 end-page: 165 ident: bib0034 article-title: Research on DDOS attacks detection based on RDF-SVM publication-title: Proceedings of the 2017 10th International Conference on Intelligent Computation Technology and Automation (ICICTA) – start-page: 288 year: 2017 end-page: 292 ident: bib0023 article-title: Identification of abnormal network traffic using support vector machine publication-title: Proceedings of the 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT) – start-page: 1 year: 2016 end-page: 6 ident: bib0019 article-title: Threat analysis of IOT networks using artificial neural network intrusion detection system publication-title: Proceedings of the 2016 International Symposium on Networks, Computers and Communications (ISNCC) – volume: 260 start-page: 1 year: 2018 end-page: 35 ident: bib0003 article-title: Learning in the machine: random backpropagation and the deep learning channel publication-title: Artif. Intell. – start-page: 21 year: 2016 end-page: 26 ident: bib0022 article-title: A deep learning approach for network intrusion detection system publication-title: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) – volume: 48 start-page: 1455 year: 2015 end-page: 1464 ident: bib0013 article-title: Subspace clustering using affinity propagation publication-title: Pattern Recognit. – year: 2017 ident: bib0036 article-title: Feature selection guided auto-encoder publication-title: Proceedings of the 31st AAAI Conference on Artificial Intelligence – volume: 164 start-page: 71 year: 2015 end-page: 81 ident: bib0020 article-title: PCA filtering and probabilistic SOM for network intrusion detection publication-title: Neurocomputing – volume: 67 start-page: 296 year: 2017 end-page: 303 ident: bib0001 article-title: Multi-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection system publication-title: Expert Syst. Appl. – start-page: 3854 year: 2017 end-page: 3861 ident: bib0037 article-title: Autoencoder-based feature learning for cyber security applications publication-title: Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN) – volume: 48 start-page: 1455 issue: 4 year: 2015 ident: 10.1016/j.cose.2020.101851_bib0013 article-title: Subspace clustering using affinity propagation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.11.003 – year: 2018 ident: 10.1016/j.cose.2020.101851_othref0002 article-title: Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection – start-page: 3854 year: 2017 ident: 10.1016/j.cose.2020.101851_bib0037 article-title: Autoencoder-based feature learning for cyber security applications – start-page: 1 year: 2018 ident: 10.1016/j.cose.2020.101851_bib0015 article-title: Outliers detection methods in wireless sensor networks publication-title: Artif. Intell. Rev. – start-page: 161 year: 2017 ident: 10.1016/j.cose.2020.101851_bib0034 article-title: Research on DDOS attacks detection based on RDF-SVM – start-page: 108 year: 2018 ident: 10.1016/j.cose.2020.101851_bib0032 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization – start-page: 421 year: 2012 ident: 10.1016/j.cose.2020.101851_bib0004 article-title: Stochastic gradient descent tricks – start-page: 113 year: 2019 ident: 10.1016/j.cose.2020.101851_bib0031 article-title: KMST+: a k-means++-based minimum spanning tree algorithm – volume: 18 start-page: 1153 issue: 2 year: 2015 ident: 10.1016/j.cose.2020.101851_bib0006 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2015.2494502 – volume: 348 start-page: 337 year: 2016 ident: 10.1016/j.cose.2020.101851_bib0018 article-title: Transfer affinity propagation-based clustering publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2016.02.009 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.cose.2020.101851_bib0014 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – start-page: 259 year: 2018 ident: 10.1016/j.cose.2020.101851_bib0039 article-title: Back propagation convex extreme learning machine – start-page: 288 year: 2017 ident: 10.1016/j.cose.2020.101851_bib0023 article-title: Identification of abnormal network traffic using support vector machine – start-page: 2941 year: 2018 ident: 10.1016/j.cose.2020.101851_bib0017 article-title: Autoencoder inspired unsupervised feature selection – start-page: 1 year: 2016 ident: 10.1016/j.cose.2020.101851_bib0019 article-title: Threat analysis of IOT networks using artificial neural network intrusion detection system – start-page: 87 year: 2018 ident: 10.1016/j.cose.2020.101851_bib0028 article-title: A survey of partitional and hierarchical clustering algorithms – volume: 27 start-page: 659 issue: 3 year: 2017 ident: 10.1016/j.cose.2020.101851_bib0016 article-title: Correlation and variable importance in random forests publication-title: Stat. Comput. doi: 10.1007/s11222-016-9646-1 – ident: 10.1016/j.cose.2020.101851_bib0007 – start-page: 665 year: 2017 ident: 10.1016/j.cose.2020.101851_bib0038 article-title: Anomaly detection with robust deep autoencoders – volume: 67 start-page: 296 year: 2017 ident: 10.1016/j.cose.2020.101851_bib0001 article-title: Multi-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.041 – volume: 171 start-page: 9 year: 2016 ident: 10.1016/j.cose.2020.101851_bib0024 article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.109 – volume: 162 start-page: 325 issue: 1–2 year: 2017 ident: 10.1016/j.cose.2020.101851_bib0026 article-title: Finding a low-rank basis in a matrix subspace publication-title: Math. Program doi: 10.1007/s10107-016-1042-2 – volume: 147 start-page: 68 year: 2018 ident: 10.1016/j.cose.2020.101851_bib0035 article-title: Network intrusion detection using equality constrained-optimization-based extreme learning machines publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.02.015 – volume: 122 start-page: 13 year: 2013 ident: 10.1016/j.cose.2020.101851_bib0011 article-title: Network anomaly detection with the restricted Boltzmann machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.050 – start-page: 21 year: 2016 ident: 10.1016/j.cose.2020.101851_bib0021 article-title: A deep learning approach for network intrusion detection system – start-page: 21 year: 2016 ident: 10.1016/j.cose.2020.101851_bib0022 article-title: A deep learning approach for network intrusion detection system – volume: 315 start-page: 972 issue: 5814 year: 2007 ident: 10.1016/j.cose.2020.101851_bib0012 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – volume: 29 start-page: 3772 issue: 8 year: 2017 ident: 10.1016/j.cose.2020.101851_bib0010 article-title: Efficient online learning algorithms based on LSTM neural networks publication-title: IEEE Trans Neural Netw. Learn. Syst. – volume: 6 start-page: 241 issue: 5 year: 2013 ident: 10.1016/j.cose.2020.101851_bib0009 article-title: Role of feature reduction in intrusion detection systems for wireless attacks publication-title: Int. J. Eng. Trends Technol. – ident: 10.1016/j.cose.2020.101851_bib0027 – volume: 355 start-page: 1752 issue: 4 year: 2018 ident: 10.1016/j.cose.2020.101851_bib0029 article-title: Adaptive and online network intrusion detection system using clustering and extreme learning machines publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2017.06.006 – volume: 7 start-page: 1247 issue: 3 year: 2014 ident: 10.1016/j.cose.2020.101851_bib0008 article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1247-2014 – volume: 25 start-page: 152 year: 2018 ident: 10.1016/j.cose.2020.101851_bib0002 article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.03.006 – volume: 260 start-page: 1 year: 2018 ident: 10.1016/j.cose.2020.101851_bib0003 article-title: Learning in the machine: random backpropagation and the deep learning channel publication-title: Artif. Intell. doi: 10.1016/j.artint.2018.03.003 – year: 2017 ident: 10.1016/j.cose.2020.101851_bib0036 article-title: Feature selection guided auto-encoder – volume: 164 start-page: 71 issue: Complete year: 2015 ident: 10.1016/j.cose.2020.101851_bib0020 article-title: PCA filtering and probabilistic SOM for network intrusion detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.083 – start-page: 4 year: 2014 ident: 10.1016/j.cose.2020.101851_bib0030 article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.cose.2020.101851_bib0005 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 |
| SSID | ssj0017688 |
| Score | 2.6630197 |
| Snippet | Machine learning techniques have been widely used in intrusion detection for many years. However, these techniques are still suffer from lack of labeled... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 101851 |
| SubjectTerms | Accuracy Algorithms Auto-Encoder Classification Coders Deep learning Feature selection Intrusion Intrusion detection systems Machine learning Network Intrusion Detection System Network security Training Unsupervised clustering |
| Title | Building Auto-Encoder Intrusion Detection System based on random forest feature selection |
| URI | https://dx.doi.org/10.1016/j.cose.2020.101851 https://www.proquest.com/docview/2446728742 |
| Volume | 95 |
| WOSCitedRecordID | wos000536765700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLf42IHLNtimwWDygVuUqkmaxD4WVMSGhEBiojtZcWJLIEirpkH8-bwXf7R0Ao0Dl6i1HMvK75f3lef3CDnMwbmJEt0PiyJj4UDKJCwA91BqKcs-bD3nsms2kZ-fs_GYX9hc1aZrJ5DXNXt85NN3hRrGAGw8OvsGuP2iMAC_AXS4Auxw_S_gj2yj62DYzifhqMZD6zOM_M1ajIyBhJkr0x_cVCsPUJFV-NEA1FY1ucfEQ1AVgVZdzc-g6TrlOPhcUQPbDKLpqNPYJng-u6dLERi3Z-3NIn3AyLdr5Yd8rPoSiw61Xj20Jlagi-WIRLzIh_NBSqyl3jcVNJ2U5emSmMQyYabO7D8S3AQTbnuYrt_D1XuLyc_LZa-oMZ9c6PLWbgWuIXANYdZYJ5txnnIQfpvDX6Pxb_-5CXwu5ovAw8bt6SqTCLi6k5csmBVd3hkoV5_JR-tZ0KFhxDZZU_UO-eSAolaIfyF_HUHoMkGoJwj1BKGGILQjCIX_hiDUEIRaglBPkK_kz8no6vg0tA02wjLhg3mYSA7yuqgkixT4AYksFTioLNXgk8Y6U-B7x1UGZhTMi2QOrqeO-qUuQC1EXEYq-UY26kmtvhMa5Qx7mVUs5mxQpppVSqesyrJBhV5BvEsi99BEaavPYxOUO_EyXLsk8PdMTe2VV2enDgthrUdjFQqg1qv37TvghH2NGwFGb5ZjK4h4702b-EG2Fm_EPtkA5NQB-VA-zG-a2U9LuychHpny |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Auto-Encoder+Intrusion+Detection+System+based+on+random+forest+feature+selection&rft.jtitle=Computers+%26+security&rft.au=Li%2C+XuKui&rft.au=Chen%2C+Wei&rft.au=Zhang%2C+Qianru&rft.au=Wu%2C+Lifa&rft.date=2020-08-01&rft.issn=0167-4048&rft.volume=95&rft.spage=101851&rft_id=info:doi/10.1016%2Fj.cose.2020.101851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2020_101851 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon |