Building Auto-Encoder Intrusion Detection System based on random forest feature selection

Machine learning techniques have been widely used in intrusion detection for many years. However, these techniques are still suffer from lack of labeled dataset, heavy overhead and low accuracy. To improve classification accuracy and reduce training time, this paper proposes an effective deep learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & security Jg. 95; S. 101851 - 15
Hauptverfasser: Li, XuKui, Chen, Wei, Zhang, Qianru, Wu, Lifa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Ltd 01.08.2020
Elsevier Sequoia S.A
Schlagworte:
ISSN:0167-4048, 1872-6208
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine learning techniques have been widely used in intrusion detection for many years. However, these techniques are still suffer from lack of labeled dataset, heavy overhead and low accuracy. To improve classification accuracy and reduce training time, this paper proposes an effective deep learning method, namely AE-IDS (Auto-Encoder Intrusion Detection System) based on random forest algorithm. This method constructs the training set with feature selection and feature grouping. After training, the model can predict the results with auto-encoder, which greatly reduces the detection time and effectively improves the prediction accuracy. The experimental results show that the proposed method is superior to traditional machine learning based intrusion detection methods in terms of easy training, strong adaptability, and high detection accuracy.
AbstractList Machine learning techniques have been widely used in intrusion detection for many years. However, these techniques are still suffer from lack of labeled dataset, heavy overhead and low accuracy. To improve classification accuracy and reduce training time, this paper proposes an effective deep learning method, namely AE-IDS (Auto-Encoder Intrusion Detection System) based on random forest algorithm. This method constructs the training set with feature selection and feature grouping. After training, the model can predict the results with auto-encoder, which greatly reduces the detection time and effectively improves the prediction accuracy. The experimental results show that the proposed method is superior to traditional machine learning based intrusion detection methods in terms of easy training, strong adaptability, and high detection accuracy.
ArticleNumber 101851
Author Chen, Wei
Wu, Lifa
Li, XuKui
Zhang, Qianru
Author_xml – sequence: 1
  givenname: XuKui
  surname: Li
  fullname: Li, XuKui
  organization: Nanjing University of Posts and Telecommunications, No.9,Wenyuan Road, Nanjing, Jiangsu, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-6248-1298
  surname: Chen
  fullname: Chen, Wei
  email: chenwei@njupt.edu.cn
  organization: Nanjing University of Posts and Telecommunications, No.9,Wenyuan Road, Nanjing, Jiangsu, China
– sequence: 3
  givenname: Qianru
  surname: Zhang
  fullname: Zhang, Qianru
  organization: University of Hong Kong, Pokfulam Road, Central and Western District, Hong Kong, China
– sequence: 4
  givenname: Lifa
  surname: Wu
  fullname: Wu, Lifa
  organization: Nanjing University of Posts and Telecommunications, No.9,Wenyuan Road, Nanjing, Jiangsu, China
BookMark eNp9kEFPwyAUx4mZidv0C3hq4rkTKCs08TLn1CVLPKgHT4TSV8OywQRqsm8vtZ487AS8_P68934TNLLOAkLXBM8IJuXtdqZdgBnF9Lcg5uQMjYngNC8pFiM0ThDPGWbiAk1C2GJMeCnEGH3cd2bXGPuZLbro8pXVrgGfrW30XTDOZg8QQcf-9noMEfZZrQI0WXp7ZRu3z1rnIcSsBRU7D1mA3cBfovNW7QJc_Z1T9P64els-55uXp_Vyscl1UbGYF3XFBVdNLQhUnBe1BsKZmLeMCtqWwDChTakBEkdqXnHWEqxbhXlBqppAMUU3w78H7766NIrcus7b1FJSxkpOBWc0UWKgtHcheGilNlH1c0avzE4SLHuRcit7kbIXKQeRKUr_RQ_e7JU_ng7dDSFIq38b8DJoA1ZDY3zyIxtnTsV_ALgljsE
CitedBy_id crossref_primary_10_1002_int_22397
crossref_primary_10_1007_s12293_024_00434_2
crossref_primary_10_1016_j_jnca_2025_104182
crossref_primary_10_3390_info14010029
crossref_primary_10_1016_j_cose_2023_103581
crossref_primary_10_1016_j_ipm_2022_103132
crossref_primary_10_3390_computers11100142
crossref_primary_10_1155_2023_8555423
crossref_primary_10_1016_j_bspc_2023_104671
crossref_primary_10_3390_app131911067
crossref_primary_10_1016_j_compeleceng_2023_108949
crossref_primary_10_1080_0954898X_2025_2483342
crossref_primary_10_3390_photonics8120555
crossref_primary_10_1016_j_procs_2024_03_285
crossref_primary_10_1016_j_buildenv_2022_109243
crossref_primary_10_3390_s24072123
crossref_primary_10_1007_s11063_022_10854_1
crossref_primary_10_1007_s12652_022_04350_6
crossref_primary_10_3390_s24072122
crossref_primary_10_1007_s12652_021_03077_0
crossref_primary_10_1007_s10207_023_00682_2
crossref_primary_10_1016_j_procs_2024_09_193
crossref_primary_10_1016_j_ress_2022_108674
crossref_primary_10_3390_electronics12081788
crossref_primary_10_32604_cmc_2022_026477
crossref_primary_10_1007_s10489_023_04642_0
crossref_primary_10_1049_wss2_12100
crossref_primary_10_32604_cmc_2023_044506
crossref_primary_10_3390_electronics11213541
crossref_primary_10_1186_s40537_020_00382_x
crossref_primary_10_1016_j_cose_2023_103210
crossref_primary_10_1002_cpe_8024
crossref_primary_10_1080_00036846_2023_2276093
crossref_primary_10_1007_s10207_024_00855_7
crossref_primary_10_1016_j_dajour_2023_100238
crossref_primary_10_4018_IJAEC_302014
crossref_primary_10_3389_fncom_2022_1083649
crossref_primary_10_1186_s40537_021_00448_4
crossref_primary_10_1155_2022_2693948
crossref_primary_10_1186_s40537_021_00426_w
crossref_primary_10_1109_JIOT_2023_3344842
crossref_primary_10_32604_cmc_2022_026749
crossref_primary_10_1016_j_future_2021_03_024
crossref_primary_10_1049_2024_3948341
crossref_primary_10_1155_2022_9068724
crossref_primary_10_3390_app12157701
crossref_primary_10_4018_IJACI_293098
crossref_primary_10_32604_cmes_2024_046473
crossref_primary_10_1007_s11277_021_08975_2
crossref_primary_10_1007_s10489_022_04076_0
crossref_primary_10_1109_JIOT_2025_3542845
crossref_primary_10_1080_21642583_2025_2518963
crossref_primary_10_1109_ACCESS_2023_3335600
crossref_primary_10_1016_j_future_2023_09_019
crossref_primary_10_3390_forecast6040056
crossref_primary_10_1016_j_cherd_2023_10_052
crossref_primary_10_3390_biomimetics9100613
crossref_primary_10_1007_s40747_022_00676_y
crossref_primary_10_1007_s11227_024_06737_y
crossref_primary_10_3390_app15020732
crossref_primary_10_1080_23744731_2021_1993454
crossref_primary_10_1109_ACCESS_2025_3564706
crossref_primary_10_32604_cmc_2023_039463
crossref_primary_10_1016_j_compeleceng_2023_108600
crossref_primary_10_1016_j_asoc_2023_110335
crossref_primary_10_1155_2022_3317048
crossref_primary_10_1007_s13369_021_05871_6
crossref_primary_10_3390_sym13112192
crossref_primary_10_1007_s11030_023_10714_7
crossref_primary_10_1080_09540091_2023_2195595
crossref_primary_10_3390_app12052571
crossref_primary_10_1016_j_future_2023_07_039
crossref_primary_10_1016_j_cose_2022_103054
crossref_primary_10_1371_journal_pone_0290694
crossref_primary_10_1109_JIOT_2024_3368072
crossref_primary_10_1016_j_iswa_2023_200298
crossref_primary_10_1080_10298436_2021_1969019
crossref_primary_10_3390_jcp3030026
crossref_primary_10_33889_IJMEMS_2024_9_1_010
crossref_primary_10_1038_s41598_023_46719_3
crossref_primary_10_1155_2020_4608647
crossref_primary_10_1016_j_asoc_2022_109858
crossref_primary_10_1177_09287329241296246
crossref_primary_10_1109_ACCESS_2024_3472907
crossref_primary_10_1002_cpe_7197
crossref_primary_10_1016_j_procs_2024_01_161
crossref_primary_10_70395_cunas_1515477
crossref_primary_10_4316_AECE_2022_01001
crossref_primary_10_1016_j_scitotenv_2025_178597
crossref_primary_10_1109_ACCESS_2025_3549679
crossref_primary_10_1186_s40537_021_00462_6
crossref_primary_10_1007_s42979_024_03376_1
crossref_primary_10_7717_peerj_cs_2176
crossref_primary_10_1007_s11227_023_05474_y
crossref_primary_10_1002_ett_4522
crossref_primary_10_1007_s00521_020_05500_7
crossref_primary_10_1155_2022_8614903
crossref_primary_10_1007_s11276_023_03495_2
crossref_primary_10_1007_s00521_021_06011_9
crossref_primary_10_1007_s10207_022_00632_4
crossref_primary_10_1016_j_cose_2023_103144
crossref_primary_10_1016_j_eswa_2024_123533
crossref_primary_10_1080_24751839_2023_2215135
crossref_primary_10_1007_s11219_023_09636_2
crossref_primary_10_1155_2022_3131153
crossref_primary_10_1016_j_measurement_2024_116606
crossref_primary_10_1177_0926227X251330216
crossref_primary_10_1109_ACCESS_2023_3347619
crossref_primary_10_1016_j_eswa_2023_121912
crossref_primary_10_3390_s23156672
crossref_primary_10_1007_s11600_023_01247_6
crossref_primary_10_1109_ACCESS_2021_3126535
crossref_primary_10_1109_ACCESS_2021_3073408
crossref_primary_10_1007_s10922_024_09817_9
crossref_primary_10_1016_j_knosys_2024_112366
crossref_primary_10_1016_j_asoc_2022_109375
crossref_primary_10_1016_j_procs_2024_04_211
crossref_primary_10_1016_j_enbuild_2023_113707
crossref_primary_10_1109_ACCESS_2022_3205618
crossref_primary_10_3390_s23010040
crossref_primary_10_3390_electronics12153304
crossref_primary_10_1016_j_iot_2022_100615
crossref_primary_10_1155_2022_8799429
crossref_primary_10_1109_TNSE_2021_3109644
crossref_primary_10_3390_e25050820
crossref_primary_10_3390_s24061782
crossref_primary_10_1007_s10489_022_04160_5
crossref_primary_10_3390_healthcare9091172
crossref_primary_10_1016_j_eswa_2022_117363
crossref_primary_10_1016_j_jobe_2023_107150
crossref_primary_10_1016_j_asoc_2024_112098
crossref_primary_10_1007_s10586_024_04995_2
crossref_primary_10_1016_j_enconman_2021_114367
crossref_primary_10_3390_computers12100209
crossref_primary_10_3390_inventions8050126
crossref_primary_10_1016_j_comnet_2021_108613
crossref_primary_10_1038_s41598_024_80021_0
crossref_primary_10_1002_cpe_8377
crossref_primary_10_32604_cmc_2024_053721
crossref_primary_10_3390_computers13010025
crossref_primary_10_1016_j_future_2025_108059
crossref_primary_10_1016_j_eswa_2024_123439
crossref_primary_10_1108_ECAM_07_2021_0606
crossref_primary_10_32604_cmc_2021_017665
crossref_primary_10_1007_s00521_021_06826_6
crossref_primary_10_1016_j_ins_2021_03_060
crossref_primary_10_1002_spy2_429
crossref_primary_10_1016_j_neucom_2024_127948
crossref_primary_10_1016_j_cose_2024_103961
crossref_primary_10_1016_j_jisa_2023_103625
crossref_primary_10_1109_ACCESS_2024_3380480
crossref_primary_10_1109_TNSM_2023_3258901
crossref_primary_10_1109_JAS_2021_1004344
crossref_primary_10_32604_cmc_2023_037486
crossref_primary_10_1016_j_jnca_2021_103111
crossref_primary_10_1007_s11227_022_05025_x
crossref_primary_10_1016_j_aap_2024_107528
crossref_primary_10_1109_TIFS_2024_3442530
crossref_primary_10_1109_OJCOMS_2025_3573194
crossref_primary_10_1002_spy2_70081
crossref_primary_10_1109_JIOT_2023_3248259
crossref_primary_10_1002_cpe_7552
crossref_primary_10_1016_j_rser_2025_115407
crossref_primary_10_1016_j_measurement_2023_113401
crossref_primary_10_1007_s11227_025_07271_1
crossref_primary_10_1016_j_inffus_2022_09_026
crossref_primary_10_1109_ACCESS_2025_3595058
crossref_primary_10_1016_j_jnca_2022_103513
crossref_primary_10_1186_s40537_021_00460_8
crossref_primary_10_1016_j_apenergy_2025_125569
crossref_primary_10_1016_j_comnet_2025_111164
crossref_primary_10_3390_s21175930
crossref_primary_10_7240_jeps_1664346
crossref_primary_10_3389_fendo_2025_1610884
crossref_primary_10_1016_j_comnet_2025_111606
crossref_primary_10_3390_sym15061251
crossref_primary_10_3390_app15084432
crossref_primary_10_1016_j_adhoc_2025_103818
crossref_primary_10_1063_5_0186731
crossref_primary_10_1016_j_adhoc_2025_103937
Cites_doi 10.1016/j.patcog.2014.11.003
10.1109/COMST.2015.2494502
10.1016/j.ins.2016.02.009
10.1007/s10994-006-6226-1
10.1007/s11222-016-9646-1
10.1016/j.eswa.2016.09.041
10.1016/j.neucom.2015.05.109
10.1007/s10107-016-1042-2
10.1016/j.knosys.2018.02.015
10.1016/j.neucom.2012.11.050
10.1126/science.1136800
10.1016/j.jfranklin.2017.06.006
10.5194/gmd-7-1247-2014
10.1016/j.jocs.2017.03.006
10.1016/j.artint.2018.03.003
10.1016/j.neucom.2014.09.083
10.1023/A:1010933404324
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Sequoia S.A. Aug 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Sequoia S.A. Aug 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
K7.
L7M
L~C
L~D
DOI 10.1016/j.cose.2020.101851
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Criminal Justice (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ProQuest Criminal Justice (Alumni)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
ProQuest Criminal Justice (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6208
EndPage 15
ExternalDocumentID 10_1016_j_cose_2020_101851
S0167404820301231
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG8
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SBM
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
XJE
XPP
XSW
YK3
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
K7.
L7M
L~C
L~D
ID FETCH-LOGICAL-c394t-3b9787adb81e9773bce17485f4282f6e4012d6ceeb971b7974f10cfa07319b1e3
ISICitedReferencesCount 227
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000536765700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4048
IngestDate Thu Nov 20 01:00:48 EST 2025
Sat Nov 29 07:25:43 EST 2025
Tue Nov 18 21:05:09 EST 2025
Fri Feb 23 02:47:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Network security
Network Intrusion Detection System
Auto-Encoder
Unsupervised clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-3b9787adb81e9773bce17485f4282f6e4012d6ceeb971b7974f10cfa07319b1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6248-1298
PQID 2446728742
PQPubID 46289
PageCount 15
ParticipantIDs proquest_journals_2446728742
crossref_citationtrail_10_1016_j_cose_2020_101851
crossref_primary_10_1016_j_cose_2020_101851
elsevier_sciencedirect_doi_10_1016_j_cose_2020_101851
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & security
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Sequoia S.A
References Gan, Ng (bib0013) 2015; 48
Ergen, Kozat (bib0010) 2017; 29
Han, Wang, Zhang, Li, Xu (bib0017) 2018
Wang, Xu, Lee, Lee (bib0035) 2018; 147
Roshan, Miche, Akusok, Lendasse (bib0029) 2018; 355
Hoz, Hoz, Ortiz, Ortega, Prieto (bib0020) 2015; 164
Zou, Yao, Zhang, Guan (bib0039) 2018
Frey, Dueck (bib0012) 2007; 315
Javaid, Niyaz, Sun, Alam (bib0022) 2016
Fiore, Palmieri, Castiglione, De Santis (bib0011) 2013; 122
Lv, Ma, Tang, Cao, Tian, Al-Dhelaan, Al-Rodhaan (bib0024) 2016; 171
Breiman (bib0005) 2001; 45
Al-Yaseen, Othman, Nazri (bib0001) 2017; 67
Mirsky, Doitshman, Elovici, Shabtai (bib0025) 2018
Bugdary, S., Maymon, S., 2019. Online clustering by penalized weighted GMM. arXiv preprint
Chai, Draxler (bib0008) 2014; 7
Gregorutti, Michel, Saint-Pierre (bib0016) 2017; 27
University of New Brunswick. CSE-CIC-IDS2018 on AWS dataset.
Baldi, Sadowski, Lu (bib0003) 2018; 260
Chundi, Rao (bib0009) 2013; 6
Wang, Ding, Fu (bib0036) 2017
Zhou, Paffenroth (bib0038) 2017
Reddy, Vinzamuri (bib0028) 2018
Nakatsukasa, Soma, Uschmajew (bib0026) 2017; 162
Yousefi-Azar, Varadharajan, Hamey, Tupakula (bib0037) 2017
Hang, Chung, Wang (bib0018) 2016; 348
.
Wang, Zheng, Li (bib0034) 2017
Geurts, Ernst, Wehenkel (bib0014) 2006; 63
Gil, Martins, Januário (bib0015) 2018
Buczak, Guven (bib0006) 2015; 18
Bottou (bib0004) 2012
Sakurada, Yairi (bib0030) 2014
Javaid, Niyaz, Sun, Alam (bib0021) 2016
Hodo, Bellekens, Hamilton, Dubouilh, Iorkyase, Tachtatzis, Atkinson (bib0019) 2016
Aljawarneh, Aldwairi, Yassein (bib0002) 2018; 25
Sandhu, Tripathy, Jagga (bib0031) 2019
Sharafaldin, Habibi Lashkari, Ghorbani (bib0032) 2018
Kong, Huang, Wu (bib0023) 2017
Hang (10.1016/j.cose.2020.101851_bib0018) 2016; 348
Nakatsukasa (10.1016/j.cose.2020.101851_bib0026) 2017; 162
Hoz (10.1016/j.cose.2020.101851_bib0020) 2015; 164
Buczak (10.1016/j.cose.2020.101851_bib0006) 2015; 18
Breiman (10.1016/j.cose.2020.101851_bib0005) 2001; 45
Zou (10.1016/j.cose.2020.101851_bib0039) 2018
Ergen (10.1016/j.cose.2020.101851_bib0010) 2017; 29
Sandhu (10.1016/j.cose.2020.101851_bib0031) 2019
Kong (10.1016/j.cose.2020.101851_bib0023) 2017
Chai (10.1016/j.cose.2020.101851_bib0008) 2014; 7
Zhou (10.1016/j.cose.2020.101851_bib0038) 2017
Al-Yaseen (10.1016/j.cose.2020.101851_bib0001) 2017; 67
Han (10.1016/j.cose.2020.101851_bib0017) 2018
Javaid (10.1016/j.cose.2020.101851_bib0021) 2016
Reddy (10.1016/j.cose.2020.101851_bib0028) 2018
Roshan (10.1016/j.cose.2020.101851_bib0029) 2018; 355
Lv (10.1016/j.cose.2020.101851_bib0024) 2016; 171
Chundi (10.1016/j.cose.2020.101851_bib0009) 2013; 6
Sharafaldin (10.1016/j.cose.2020.101851_bib0032) 2018
Wang (10.1016/j.cose.2020.101851_bib0035) 2018; 147
Frey (10.1016/j.cose.2020.101851_bib0012) 2007; 315
Hodo (10.1016/j.cose.2020.101851_bib0019) 2016
Wang (10.1016/j.cose.2020.101851_bib0034) 2017
Yousefi-Azar (10.1016/j.cose.2020.101851_bib0037) 2017
Bottou (10.1016/j.cose.2020.101851_bib0004) 2012
Gan (10.1016/j.cose.2020.101851_bib0013) 2015; 48
Geurts (10.1016/j.cose.2020.101851_bib0014) 2006; 63
Gil (10.1016/j.cose.2020.101851_bib0015) 2018
Sakurada (10.1016/j.cose.2020.101851_bib0030) 2014
Fiore (10.1016/j.cose.2020.101851_bib0011) 2013; 122
10.1016/j.cose.2020.101851_bib0007
Javaid (10.1016/j.cose.2020.101851_bib0022) 2016
10.1016/j.cose.2020.101851_bib0027
Gregorutti (10.1016/j.cose.2020.101851_bib0016) 2017; 27
Aljawarneh (10.1016/j.cose.2020.101851_bib0002) 2018; 25
Wang (10.1016/j.cose.2020.101851_bib0036) 2017
Baldi (10.1016/j.cose.2020.101851_bib0003) 2018; 260
Mirsky (10.1016/j.cose.2020.101851_othref0002) 2018
References_xml – volume: 348
  start-page: 337
  year: 2016
  end-page: 356
  ident: bib0018
  article-title: Transfer affinity propagation-based clustering
  publication-title: Inf. Sci. (Ny)
– volume: 122
  start-page: 13
  year: 2013
  end-page: 23
  ident: bib0011
  article-title: Network anomaly detection with the restricted Boltzmann machine
  publication-title: Neurocomputing
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: bib0012
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 147
  start-page: 68
  year: 2018
  end-page: 80
  ident: bib0035
  article-title: Network intrusion detection using equality constrained-optimization-based extreme learning machines
  publication-title: Knowl. Based Syst.
– year: 2018
  ident: bib0025
  article-title: Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection
  publication-title: Proceedings of NDSS
– start-page: 259
  year: 2018
  end-page: 272
  ident: bib0039
  article-title: Back propagation convex extreme learning machine
  publication-title: Proceedings of ELM-2016
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  ident: bib0008
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
– start-page: 21
  year: 2016
  end-page: 26
  ident: bib0021
  article-title: A deep learning approach for network intrusion detection system
  publication-title: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS)
– volume: 27
  start-page: 659
  year: 2017
  end-page: 678
  ident: bib0016
  article-title: Correlation and variable importance in random forests
  publication-title: Stat. Comput.
– reference: University of New Brunswick. CSE-CIC-IDS2018 on AWS dataset.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0005
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: Bugdary, S., Maymon, S., 2019. Online clustering by penalized weighted GMM. arXiv preprint:
– volume: 25
  start-page: 152
  year: 2018
  end-page: 160
  ident: bib0002
  article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model
  publication-title: J. Comput. Sci.
– volume: 6
  start-page: 241
  year: 2013
  end-page: 246
  ident: bib0009
  article-title: Role of feature reduction in intrusion detection systems for wireless attacks
  publication-title: Int. J. Eng. Trends Technol.
– volume: 162
  start-page: 325
  year: 2017
  end-page: 361
  ident: bib0026
  article-title: Finding a low-rank basis in a matrix subspace
  publication-title: Math. Program
– volume: 29
  start-page: 3772
  year: 2017
  end-page: 3783
  ident: bib0010
  article-title: Efficient online learning algorithms based on LSTM neural networks
  publication-title: IEEE Trans Neural Netw. Learn. Syst.
– start-page: 4
  year: 2014
  ident: bib0030
  article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction
  publication-title: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib0014
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
– volume: 18
  start-page: 1153
  year: 2015
  end-page: 1176
  ident: bib0006
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 1
  year: 2018
  end-page: 26
  ident: bib0015
  article-title: Outliers detection methods in wireless sensor networks
  publication-title: Artif. Intell. Rev.
– start-page: 2941
  year: 2018
  end-page: 2945
  ident: bib0017
  article-title: Autoencoder inspired unsupervised feature selection
  publication-title: Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 421
  year: 2012
  end-page: 436
  ident: bib0004
  article-title: Stochastic gradient descent tricks
  publication-title: Neural networks: Tricks of the trade
– start-page: 665
  year: 2017
  end-page: 674
  ident: bib0038
  article-title: Anomaly detection with robust deep autoencoders
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 171
  start-page: 9
  year: 2016
  end-page: 22
  ident: bib0024
  article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures
  publication-title: Neurocomputing
– volume: 355
  start-page: 1752
  year: 2018
  end-page: 1779
  ident: bib0029
  article-title: Adaptive and online network intrusion detection system using clustering and extreme learning machines
  publication-title: J. Frankl. Inst.
– start-page: 108
  year: 2018
  end-page: 116
  ident: bib0032
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: The International Conference on Information Systems Security and Privacy (ICISSP)
– reference: .
– start-page: 87
  year: 2018
  end-page: 110
  ident: bib0028
  article-title: A survey of partitional and hierarchical clustering algorithms
  publication-title: Data Clustering
– start-page: 113
  year: 2019
  end-page: 127
  ident: bib0031
  article-title: KMST+: a k-means++-based minimum spanning tree algorithm
  publication-title: Smart Innovations in Communication and Computational Sciences
– start-page: 161
  year: 2017
  end-page: 165
  ident: bib0034
  article-title: Research on DDOS attacks detection based on RDF-SVM
  publication-title: Proceedings of the 2017 10th International Conference on Intelligent Computation Technology and Automation (ICICTA)
– start-page: 288
  year: 2017
  end-page: 292
  ident: bib0023
  article-title: Identification of abnormal network traffic using support vector machine
  publication-title: Proceedings of the 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0019
  article-title: Threat analysis of IOT networks using artificial neural network intrusion detection system
  publication-title: Proceedings of the 2016 International Symposium on Networks, Computers and Communications (ISNCC)
– volume: 260
  start-page: 1
  year: 2018
  end-page: 35
  ident: bib0003
  article-title: Learning in the machine: random backpropagation and the deep learning channel
  publication-title: Artif. Intell.
– start-page: 21
  year: 2016
  end-page: 26
  ident: bib0022
  article-title: A deep learning approach for network intrusion detection system
  publication-title: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS)
– volume: 48
  start-page: 1455
  year: 2015
  end-page: 1464
  ident: bib0013
  article-title: Subspace clustering using affinity propagation
  publication-title: Pattern Recognit.
– year: 2017
  ident: bib0036
  article-title: Feature selection guided auto-encoder
  publication-title: Proceedings of the 31st AAAI Conference on Artificial Intelligence
– volume: 164
  start-page: 71
  year: 2015
  end-page: 81
  ident: bib0020
  article-title: PCA filtering and probabilistic SOM for network intrusion detection
  publication-title: Neurocomputing
– volume: 67
  start-page: 296
  year: 2017
  end-page: 303
  ident: bib0001
  article-title: Multi-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection system
  publication-title: Expert Syst. Appl.
– start-page: 3854
  year: 2017
  end-page: 3861
  ident: bib0037
  article-title: Autoencoder-based feature learning for cyber security applications
  publication-title: Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN)
– volume: 48
  start-page: 1455
  issue: 4
  year: 2015
  ident: 10.1016/j.cose.2020.101851_bib0013
  article-title: Subspace clustering using affinity propagation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.11.003
– year: 2018
  ident: 10.1016/j.cose.2020.101851_othref0002
  article-title: Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection
– start-page: 3854
  year: 2017
  ident: 10.1016/j.cose.2020.101851_bib0037
  article-title: Autoencoder-based feature learning for cyber security applications
– start-page: 1
  year: 2018
  ident: 10.1016/j.cose.2020.101851_bib0015
  article-title: Outliers detection methods in wireless sensor networks
  publication-title: Artif. Intell. Rev.
– start-page: 161
  year: 2017
  ident: 10.1016/j.cose.2020.101851_bib0034
  article-title: Research on DDOS attacks detection based on RDF-SVM
– start-page: 108
  year: 2018
  ident: 10.1016/j.cose.2020.101851_bib0032
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
– start-page: 421
  year: 2012
  ident: 10.1016/j.cose.2020.101851_bib0004
  article-title: Stochastic gradient descent tricks
– start-page: 113
  year: 2019
  ident: 10.1016/j.cose.2020.101851_bib0031
  article-title: KMST+: a k-means++-based minimum spanning tree algorithm
– volume: 18
  start-page: 1153
  issue: 2
  year: 2015
  ident: 10.1016/j.cose.2020.101851_bib0006
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2494502
– volume: 348
  start-page: 337
  year: 2016
  ident: 10.1016/j.cose.2020.101851_bib0018
  article-title: Transfer affinity propagation-based clustering
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2016.02.009
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.cose.2020.101851_bib0014
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– start-page: 259
  year: 2018
  ident: 10.1016/j.cose.2020.101851_bib0039
  article-title: Back propagation convex extreme learning machine
– start-page: 288
  year: 2017
  ident: 10.1016/j.cose.2020.101851_bib0023
  article-title: Identification of abnormal network traffic using support vector machine
– start-page: 2941
  year: 2018
  ident: 10.1016/j.cose.2020.101851_bib0017
  article-title: Autoencoder inspired unsupervised feature selection
– start-page: 1
  year: 2016
  ident: 10.1016/j.cose.2020.101851_bib0019
  article-title: Threat analysis of IOT networks using artificial neural network intrusion detection system
– start-page: 87
  year: 2018
  ident: 10.1016/j.cose.2020.101851_bib0028
  article-title: A survey of partitional and hierarchical clustering algorithms
– volume: 27
  start-page: 659
  issue: 3
  year: 2017
  ident: 10.1016/j.cose.2020.101851_bib0016
  article-title: Correlation and variable importance in random forests
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-016-9646-1
– ident: 10.1016/j.cose.2020.101851_bib0007
– start-page: 665
  year: 2017
  ident: 10.1016/j.cose.2020.101851_bib0038
  article-title: Anomaly detection with robust deep autoencoders
– volume: 67
  start-page: 296
  year: 2017
  ident: 10.1016/j.cose.2020.101851_bib0001
  article-title: Multi-level hybrid support vector machine and extreme learning machine based on modified k-means for intrusion detection system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.041
– volume: 171
  start-page: 9
  year: 2016
  ident: 10.1016/j.cose.2020.101851_bib0024
  article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.109
– volume: 162
  start-page: 325
  issue: 1–2
  year: 2017
  ident: 10.1016/j.cose.2020.101851_bib0026
  article-title: Finding a low-rank basis in a matrix subspace
  publication-title: Math. Program
  doi: 10.1007/s10107-016-1042-2
– volume: 147
  start-page: 68
  year: 2018
  ident: 10.1016/j.cose.2020.101851_bib0035
  article-title: Network intrusion detection using equality constrained-optimization-based extreme learning machines
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.02.015
– volume: 122
  start-page: 13
  year: 2013
  ident: 10.1016/j.cose.2020.101851_bib0011
  article-title: Network anomaly detection with the restricted Boltzmann machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.050
– start-page: 21
  year: 2016
  ident: 10.1016/j.cose.2020.101851_bib0021
  article-title: A deep learning approach for network intrusion detection system
– start-page: 21
  year: 2016
  ident: 10.1016/j.cose.2020.101851_bib0022
  article-title: A deep learning approach for network intrusion detection system
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 10.1016/j.cose.2020.101851_bib0012
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 29
  start-page: 3772
  issue: 8
  year: 2017
  ident: 10.1016/j.cose.2020.101851_bib0010
  article-title: Efficient online learning algorithms based on LSTM neural networks
  publication-title: IEEE Trans Neural Netw. Learn. Syst.
– volume: 6
  start-page: 241
  issue: 5
  year: 2013
  ident: 10.1016/j.cose.2020.101851_bib0009
  article-title: Role of feature reduction in intrusion detection systems for wireless attacks
  publication-title: Int. J. Eng. Trends Technol.
– ident: 10.1016/j.cose.2020.101851_bib0027
– volume: 355
  start-page: 1752
  issue: 4
  year: 2018
  ident: 10.1016/j.cose.2020.101851_bib0029
  article-title: Adaptive and online network intrusion detection system using clustering and extreme learning machines
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2017.06.006
– volume: 7
  start-page: 1247
  issue: 3
  year: 2014
  ident: 10.1016/j.cose.2020.101851_bib0008
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– volume: 25
  start-page: 152
  year: 2018
  ident: 10.1016/j.cose.2020.101851_bib0002
  article-title: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.03.006
– volume: 260
  start-page: 1
  year: 2018
  ident: 10.1016/j.cose.2020.101851_bib0003
  article-title: Learning in the machine: random backpropagation and the deep learning channel
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2018.03.003
– year: 2017
  ident: 10.1016/j.cose.2020.101851_bib0036
  article-title: Feature selection guided auto-encoder
– volume: 164
  start-page: 71
  issue: Complete
  year: 2015
  ident: 10.1016/j.cose.2020.101851_bib0020
  article-title: PCA filtering and probabilistic SOM for network intrusion detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.083
– start-page: 4
  year: 2014
  ident: 10.1016/j.cose.2020.101851_bib0030
  article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.cose.2020.101851_bib0005
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
SSID ssj0017688
Score 2.6630197
Snippet Machine learning techniques have been widely used in intrusion detection for many years. However, these techniques are still suffer from lack of labeled...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101851
SubjectTerms Accuracy
Algorithms
Auto-Encoder
Classification
Coders
Deep learning
Feature selection
Intrusion
Intrusion detection systems
Machine learning
Network Intrusion Detection System
Network security
Training
Unsupervised clustering
Title Building Auto-Encoder Intrusion Detection System based on random forest feature selection
URI https://dx.doi.org/10.1016/j.cose.2020.101851
https://www.proquest.com/docview/2446728742
Volume 95
WOSCitedRecordID wos000536765700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMXyipKC5oDPVmOMjNejwESsVQB1FSY08jLjJSqOGkcV_0X_GXeeJaYIiI4cLGSie0k8z6_bd58D6FXMiwFeEPwfDMZ-UFYVX46koEvZclooQjwqrxrNhHPZkmWpZ8Hgx92L8z1ZVzXyc1NuvqvooYxELbaOvsP4nY3hQF4DUKHI4gdjn8l-Nem0bU3bjdLf1KrTetrlflbtyozBhpmI3R_cM1W7ilDVqlFAzBb1fK7KjwEU-FJ0XF-ek3XKceKz5IamGYQTQedxjTBc9U9XYlA1n5sF9vyAa3fvgo35HLVXxTpUOvMQ6tzBTLvZyToth7OpMnsVpkzcdUuF7l3Nhz3M5iKaH2k6TWHQmvdJKZ-REdJXy2nYU-vkp6B1ts_f1P9OgtxMVR1_kP1s9RQYthsf-HZnn3i0_PTUz6fZPMTNl1d-aoJmVqsP2FvNSDuoH0ahymoyf3x-0n2wS1MQXSWOLp4-BdmH5YuGbz91X_ydW5Z_c6VmT9A900MgscaOw_RQNSP0IEVKTbq_jH6ZqGE-1DCDkrYQQlrKOEOShjeayhhDSVsoIQdlJ6g8-lk_uadb1px-CVLg43PihQ0e14VCREQMbCiFBDKJqGE6JXKSECUTqsIHC44jxQxBKmSjEqZgwEhaUEEe4r26mUtniGcpxEpw0iwnKjgvshLGlEiWZBLEYQjcoiInTReGp561S7lktuCxAuuJpqrieZ6og-R565ZaZaWnWeHVhbc-Jnaf-SApZ3XHVvBcfPANxzc4yhWTSPo890fH6F724flGO2BqMQLdLe83iya9UuDs59jr6X_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Auto-Encoder+Intrusion+Detection+System+based+on+random+forest+feature+selection&rft.jtitle=Computers+%26+security&rft.au=Li%2C+XuKui&rft.au=Chen%2C+Wei&rft.au=Zhang%2C+Qianru&rft.au=Wu%2C+Lifa&rft.date=2020-08-01&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0167-4048&rft.eissn=1872-6208&rft.volume=95&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.cose.2020.101851&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon