Characterization of immiscible phase displacement in heterogeneous pore structures: Parallel multicomponent lattice Boltzmann simulation and experimental validation using three-dimensional printing technology
•Immiscible oil-water displacement in heterogeneous pore structures is investigated.•A multicomponent lattice Boltzmann model with high-resolution meshes is proposed.•A realistic pore model is built using three-dimensional printing (3DP) technology.•The simulation is validated by the experimental da...
Uloženo v:
| Vydáno v: | International journal of multiphase flow Ročník 114; s. 50 - 65 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2019
|
| Témata: | |
| ISSN: | 0301-9322, 1879-3533 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Immiscible oil-water displacement in heterogeneous pore structures is investigated.•A multicomponent lattice Boltzmann model with high-resolution meshes is proposed.•A realistic pore model is built using three-dimensional printing (3DP) technology.•The simulation is validated by the experimental data.•The effect of interface distributions on the displacement is characterized.
Understanding and characterization of immiscible-fluid displacement mechanisms in pore structures are required for enhanced hydrocarbon resource recovery in unconventional tight reservoirs. The displacement process of immiscible fluids in a porous structure on the pore scale has been widely simulated and characterized via lattice Boltzmann (LB) methods. However, owing to the heterogeneity and tortuosity of rock pore structures, it is difficult to numerically represent the real irregular geometry and accurately describe the varied immiscible interfaces in experiments using LB simulation. A low mesh resolution is usually applied, which causes simulation inaccuracy compared to realistic displacement behaviors. In this study, we introduce a multicomponent LB model with high-resolution meshes to investigate immiscible oil-water displacement in heterogeneous pore structures. The pore-scale LB model is established using information extracted from a realistic reservoir rock. A parallel computing algorithm is integrated into the model to accelerate the LB simulation. To verify the LB simulation, an oil-water displacement experiment is conducted using a transparent pore model replicated using three-dimensional printing (3DP) technology and information on the real porous rock. Owing to the sensitivity of the interfacial condition at the inlet, the inlet buffer was designed to relieve injecting perturbations in experiments, and an artificial velocity profile was applied in the simulation to approximate this relieved interface. Comparison of the LB simulation and experiment data indicates that the suggested parallel multicomponent LB method can simulate the oil-water displacement process in heterogeneous pore structures well. This study provides a method for characterizing the immiscible fluid displacement mechanism in a porous structure and forecasting the preferential flow path in a heterogeneous structure with a certain water wettability. |
|---|---|
| AbstractList | •Immiscible oil-water displacement in heterogeneous pore structures is investigated.•A multicomponent lattice Boltzmann model with high-resolution meshes is proposed.•A realistic pore model is built using three-dimensional printing (3DP) technology.•The simulation is validated by the experimental data.•The effect of interface distributions on the displacement is characterized.
Understanding and characterization of immiscible-fluid displacement mechanisms in pore structures are required for enhanced hydrocarbon resource recovery in unconventional tight reservoirs. The displacement process of immiscible fluids in a porous structure on the pore scale has been widely simulated and characterized via lattice Boltzmann (LB) methods. However, owing to the heterogeneity and tortuosity of rock pore structures, it is difficult to numerically represent the real irregular geometry and accurately describe the varied immiscible interfaces in experiments using LB simulation. A low mesh resolution is usually applied, which causes simulation inaccuracy compared to realistic displacement behaviors. In this study, we introduce a multicomponent LB model with high-resolution meshes to investigate immiscible oil-water displacement in heterogeneous pore structures. The pore-scale LB model is established using information extracted from a realistic reservoir rock. A parallel computing algorithm is integrated into the model to accelerate the LB simulation. To verify the LB simulation, an oil-water displacement experiment is conducted using a transparent pore model replicated using three-dimensional printing (3DP) technology and information on the real porous rock. Owing to the sensitivity of the interfacial condition at the inlet, the inlet buffer was designed to relieve injecting perturbations in experiments, and an artificial velocity profile was applied in the simulation to approximate this relieved interface. Comparison of the LB simulation and experiment data indicates that the suggested parallel multicomponent LB method can simulate the oil-water displacement process in heterogeneous pore structures well. This study provides a method for characterizing the immiscible fluid displacement mechanism in a porous structure and forecasting the preferential flow path in a heterogeneous structure with a certain water wettability. |
| Author | Zheng, Jiangtao Gong, Wenbo Ju, Yang |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0003-4297-4455 surname: Ju fullname: Ju, Yang email: juy@cumtb.edu.cn organization: State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology at Beijing, Beijing 100083, China – sequence: 2 givenname: Wenbo surname: Gong fullname: Gong, Wenbo organization: School of Mechanics and Civil Engineering, China University of Mining and Technology at Beijing, Beijing 100083, China – sequence: 3 givenname: Jiangtao surname: Zheng fullname: Zheng, Jiangtao organization: State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology at Beijing, Beijing 100083, China |
| BookMark | eNqNkcFu1DAQhi1UJLaFd_CJW4Id72YdDkiwQItUCQ5wtpzxZOOVY0e2U9o-JY-Ed7ennnqyxv_MN__ovyQXPngk5D1nNWe8_XCo7WFaXLbzqBMOLvytG8a7mjU1Y-0rsuJy21ViI8QFWTHBeNWJpnlDLlM6MMY227VYkX-7UUcNGaN91NkGT8NA7TTZBLZ3SE9samyanQac0GdqPR2xDIQ9egxLonOISFOOC-QlYvpIfxWkc-joyR6EaS7Oy6TTuZRIvwSXHyftPU22tJz3am8o3s_FyHGLdvROO2vO2pKs39M8RsTKHPVUfkvLHK3PJwlh9MGF_cNb8nrQLuG7p_eK_Pn-7ffuprr9ef1j9_m2AtGtcyV0KzSXArWUMEgx9MLIHk0_gBRyM_Ae2mEtYQ0dayRAtwEjRWs63m-BwVZcka9nLsSQUsRBgc0ntzlq6xRn6piSOqjnKaljSoo1qqRUMJ-eYcpNk44PLwfcnAFYjr2zGFVJDj2gsREhKxPsS1H_AZ_eyQs |
| CitedBy_id | crossref_primary_10_1007_s12613_020_2119_8 crossref_primary_10_1016_j_icheatmasstransfer_2023_106810 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105035 crossref_primary_10_1016_j_petrol_2019_106575 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104085 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104274 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104532 crossref_primary_10_1016_j_ces_2024_120289 crossref_primary_10_1016_j_fuel_2023_129567 crossref_primary_10_1016_j_energy_2022_125226 crossref_primary_10_1016_j_apenergy_2024_123621 crossref_primary_10_1016_j_jhydrol_2025_134065 crossref_primary_10_1016_j_rineng_2025_105077 crossref_primary_10_2118_223938_PA crossref_primary_10_1016_j_ijengsci_2021_103615 crossref_primary_10_1016_j_petrol_2021_110008 crossref_primary_10_1016_j_cis_2025_103523 crossref_primary_10_1134_S1995080221010297 crossref_primary_10_1140_epjp_s13360_023_03977_4 crossref_primary_10_2118_225413_PA crossref_primary_10_1016_j_jcis_2022_07_122 crossref_primary_10_1016_j_ijengsci_2020_103343 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125749 |
| Cites_doi | 10.1209/0295-5075/18/2/012 10.1002/hyp.11393 10.1007/s11242-014-0311-x 10.1016/S0010-4655(00)00112-0 10.1016/j.advwatres.2016.12.003 10.1002/2014WR016384 10.1023/A:1006589611884 10.1016/j.advwatres.2016.03.005 10.1016/j.advwatres.2017.04.005 10.1002/2014WR015970 10.1016/j.jngse.2016.08.071 10.1016/j.advwatres.2016.03.015 10.1016/j.camwa.2010.06.034 10.1103/PhysRevE.69.032602 10.1016/j.jngse.2017.10.004 10.1046/j.1365-2389.2000.00275.x 10.1103/PhysRevA.43.4320 10.1142/S0129183117500851 10.1063/1.4979514 10.1038/nmeth.2019 10.1016/j.advwatres.2003.10.002 10.1016/j.fuel.2015.06.092 10.1016/j.advwatres.2012.05.009 10.1103/PhysRevE.84.016316 10.1016/S0010-4655(00)00205-8 10.1038/s41598-017-04545-4 10.1016/j.compfluid.2011.07.012 10.1103/PhysRevE.47.1815 10.1016/j.compfluid.2014.06.002 10.1016/j.advwatres.2014.07.010 10.1146/annurev.fluid.35.101101.161105 10.1016/j.advwatres.2012.11.004 10.1103/PhysRevE.88.043010 10.1016/j.compfluid.2009.09.011 10.1016/j.advwatres.2015.01.008 10.1016/j.camwa.2012.11.022 10.1016/j.jcis.2012.03.070 10.1007/s11434-014-0579-9 10.1016/j.jcp.2008.01.013 10.1103/PhysRevE.56.6811 10.2110/jsr.2009.092 10.1007/s10596-015-9542-3 10.1111/j.1551-2916.2008.02736.x 10.1007/BF02179985 10.1021/ef101732k 10.1016/j.cpc.2008.02.013 10.1006/jcph.1998.6057 10.1115/1.4024998 10.1016/j.euromechflu.2012.01.006 10.1021/es504510y 10.1016/j.advwatres.2016.03.013 10.1007/BF01049965 10.1073/pnas.1221373110 10.1016/j.cpc.2014.04.018 10.1016/j.ijggc.2017.03.011 10.1103/PhysRevE.95.033306 10.1209/0295-5075/17/6/001 10.1103/PhysRevE.53.743 10.1016/j.cpc.2003.12.003 10.1016/j.cpc.2009.04.001 10.1016/j.advwatres.2017.09.004 10.1016/j.advwatres.2018.04.009 10.1103/PhysRevE.54.5041 10.1016/j.jngse.2016.09.011 10.1016/j.advwatres.2018.02.005 10.1016/j.advwatres.2013.09.014 10.1063/1.4760257 10.1016/j.advwatres.2009.08.009 10.1103/PhysRevLett.75.830 10.1016/S1361-8415(02)00058-0 10.1007/s00603-017-1171-9 10.1017/S0022112088000953 10.1016/j.jngse.2017.07.015 10.1103/PhysRevE.72.016706 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijmultiphaseflow.2019.02.006 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-3533 |
| EndPage | 65 |
| ExternalDocumentID | 10_1016_j_ijmultiphaseflow_2019_02_006 S0301932218306724 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c394t-3a63a183ea88cf83fb3d8bedbfc8385f1bc6f48c4c9028cc95cd836d91b7c0c73 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467888200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-9322 |
| IngestDate | Sat Nov 29 07:20:35 EST 2025 Tue Nov 18 22:03:04 EST 2025 Fri Feb 23 02:50:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Experimental validation Heterogeneous pore structure 3DP technology Multicomponent lattice Boltzmann model Parallel computing algorithm Immiscible oil-water displacement |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c394t-3a63a183ea88cf83fb3d8bedbfc8385f1bc6f48c4c9028cc95cd836d91b7c0c73 |
| ORCID | 0000-0003-4297-4455 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijmultiphaseflow_2019_02_006 crossref_primary_10_1016_j_ijmultiphaseflow_2019_02_006 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2019_02_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of multiphase flow |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Oostrom, Wietsma, Grate, Warner (bib0080) 2011; 25 Ferrari, Jimenez-Martinez, Le Borgne, Meheust, Lunati (bib0019) 2015; 51 Sethian, Smereka (bib0063) 2003; 35 Swift, Osborn, Yeomans (bib0069) 1995; 75 Liu, Valocchi, Werth, Kang, Oostrom (bib0047) 2014; 73 Armstrong, Porter, Wildenschild (bib0004) 2012; 46 Wang, Zhang, Bengough, Crawford (bib0074) 2005; 72 Leclaire, Parmigiani, Chopard, Latt (bib0041) 2017; 28 Huang, Wang, Lu (bib0031) 2011; 61 Hu, Wan, Kim, Tokunaga (bib0029) 2017; 60 Ferer, Crandall, Ahmadi, Smith (bib0018) 2011; 84 Redapangu, Sahu, Vanka (bib0059) 2013; 135 Redapangu, Vanka, Sahu (bib0060) 2012; 34 Blaak, Sloot (bib0010) 2000; 129 Zhang, Li, Kwok (bib0081) 2004; 69 Berg, Ott, Klapp, Schwing, Neiteler, Brussee, Makurat, Leu, Enzmann, Schwarz, Kersten, Irvine, Stampanoni (bib0008) 2013; 110 Liu, Ju, Ranjith, Zheng, Chen (bib0048) 2016; 35 Kang, Zhang, Chen (bib0038) 2004; 27 Loucks, Reed, Ruppel, Jarvie (bib0049) 2009; 79 Zacharoudiou, Boek (bib0079) 2016; 92 Chang, Zhou, Kneafsey, Oostrom, Wietsma, Yu (bib0012) 2016; 92 Ghanizadeh, Clarkson, Aquino, Ardakani, Sanei (bib0020) 2015; 153 Munch, Holzer (bib0053) 2008; 91 Axner, Bernsdorf, Zeiser, Lammers, Linxweiler, Hoekstra (bib0005) 2008; 227 Huang, Sukop, Lu (bib0030) 2015 Heuvellne, Latt (bib0028) 2007; 18 Ziegler (bib0083) 1993; 71 Rabbani, Joekar-Niasar, Pak, Shokri (bib0057) 2017; 7 Yang, Boek (bib0076) 2013; 65 Yamabe, Tsuji, Liang, Matsuoka (bib0075) 2015; 49 Ju, Gong, Chang, Xie, Xie, Liu (bib0034) 2017; 46 Leclaire, Parmigiani, Malaspinas, Chopard, Latt (bib0042) 2017; 95 Brusseau (bib0011) 2018; 613 Ye, Li, Wang, Deng (bib0077) 2015; 110 Succi (bib0066) 2016 Tsuji, Jiang, Christensen (bib0070) 2016; 95 Desplat, Pagonabarraga, Bladon (bib0015) 2001; 134 Landry, Karpyn, Ayala (bib0040) 2014; 103 He, Chen, Doolen (bib0025) 1998; 146 Yu, Lashgari, Wu, Sepehrnoori (bib0078) 2015; 159 Español, Warren (bib0016) 2017; 146 Gunstensen, Rothman (bib0021) 1992; 18 Mazzeo, Coveney (bib0051) 2008; 178 Armstrong, Berg (bib0002) 2013; 88 Sukop, Thorne (bib0067) 2006 Lenormand, Touboul, Zarcone (bib0043) 1988; 189 Vidal, Roy, Bertrand (bib0072) 2010; 39 Li, Galindo-Torres, Yan, Scheuermann, Li (bib0044) 2018; 116 Moebius, Or (bib0052) 2012; 377 Zuo, Zhang, Falta, Benson (bib0084) 2013; 53 Pan, Prins, Miller (bib0054) 2004; 158 Ju, Xie, Zheng, Lu, Mao, Gao, Peng (bib0037) 2014; 59 Chang, Zhou, Oostrom, Kneafsey, Mehta (bib0013) 2017; 100 Ju, Liu, Chen, Yang, Ranjith (bib0035) 2016; 35 Januszewski, Kostur (bib0032) 2014; 185 Basirat, Yang, Niemi (bib0007) 2017; 109 Ju, Wang, Xie, Ma, Zheng, Mao (bib0036) 2017; 50 Porter, Schaap, Wildenschild (bib0055) 2009; 32 Qian, d'Humières, Lallemand (bib0056) 1992; 17 Andrew, Bijeljic, Blunt (bib0001) 2014; 50 Armstrong, Evseev, Koroteev, Berg (bib0003) 2015; 77 Chen, Li, Valocchi, Christensen (bib0014) 2017; 212 Swift, Orlandini, Osborn, Yeomans (bib0068) 1996; 54 Fakhari, Li, Bolster, Christensen (bib0017) 2018; 114 Heneghan, Flynn, O'Keefe, Cahill (bib0027) 2002; 6 Shan, Doolen (bib0065) 1995; 81 Guo, Zheng, Shi (bib0024) 2002; 11 Sahu, Vanka (bib0061) 2011; 50 Liu, Kang, Leonardi, Schmieschek, Narváez, Jones, Williams, Valocchi, Harting (bib0046) 2016; 20 He, Luo (bib0026) 1997; 56 Ling, Bao, Oostrom, Battiato, Tartakovsky (bib0045) 2017; 105 Vanka, Shinn, Sahu (bib0071) 2011 Bandara, Tartakovsky, Oostrom, Palmer, Grate, Zhang (bib0006) 2013; 62 Zheng, Wang, Gong, Ju, Wang (bib0082) 2017; 47 Guo, Brusseau (bib0023) 2017; 31 Keller, Blunt, Roberts (bib0039) 1997; 26 Shan, Chen (bib0064) 1993; 47 Bernaschi, Melchionna, Succi, Fyta, Kaxiras, Sircar (bib0009) 2009; 180 Gunstensen, Rothman, Zaleski, Zanetti (bib0022) 1991; 43 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid, Tinevez, White, Hartenstein, Eliceiri, Tomancak, Cardona (bib0062) 2012; 9 Vogel (bib0073) 2000; 51 Redapangu, Sahu, Vanka (bib0058) 2012; 24 Jia, Zou, Li, Li, Zheng (bib0033) 2012; 33 Martys, Chen (bib0050) 1996; 53 Succi (10.1016/j.ijmultiphaseflow.2019.02.006_bib0066) 2016 Ju (10.1016/j.ijmultiphaseflow.2019.02.006_bib0035) 2016; 35 Shan (10.1016/j.ijmultiphaseflow.2019.02.006_bib0065) 1995; 81 Sukop (10.1016/j.ijmultiphaseflow.2019.02.006_bib0067) 2006 Vanka (10.1016/j.ijmultiphaseflow.2019.02.006_bib0071) 2011 Kang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0038) 2004; 27 Armstrong (10.1016/j.ijmultiphaseflow.2019.02.006_bib0004) 2012; 46 Zuo (10.1016/j.ijmultiphaseflow.2019.02.006_bib0084) 2013; 53 Chang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0012) 2016; 92 Schindelin (10.1016/j.ijmultiphaseflow.2019.02.006_bib0062) 2012; 9 Axner (10.1016/j.ijmultiphaseflow.2019.02.006_bib0005) 2008; 227 Munch (10.1016/j.ijmultiphaseflow.2019.02.006_bib0053) 2008; 91 Ferrari (10.1016/j.ijmultiphaseflow.2019.02.006_bib0019) 2015; 51 Vogel (10.1016/j.ijmultiphaseflow.2019.02.006_bib0073) 2000; 51 Redapangu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0059) 2013; 135 Andrew (10.1016/j.ijmultiphaseflow.2019.02.006_bib0001) 2014; 50 Leclaire (10.1016/j.ijmultiphaseflow.2019.02.006_bib0042) 2017; 95 Sahu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0061) 2011; 50 Liu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0047) 2014; 73 Zacharoudiou (10.1016/j.ijmultiphaseflow.2019.02.006_bib0079) 2016; 92 Chang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0013) 2017; 100 Rabbani (10.1016/j.ijmultiphaseflow.2019.02.006_bib0057) 2017; 7 Vidal (10.1016/j.ijmultiphaseflow.2019.02.006_bib0072) 2010; 39 Lenormand (10.1016/j.ijmultiphaseflow.2019.02.006_bib0043) 1988; 189 Yang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0076) 2013; 65 Ziegler (10.1016/j.ijmultiphaseflow.2019.02.006_bib0083) 1993; 71 Leclaire (10.1016/j.ijmultiphaseflow.2019.02.006_bib0041) 2017; 28 Ling (10.1016/j.ijmultiphaseflow.2019.02.006_bib0045) 2017; 105 Bernaschi (10.1016/j.ijmultiphaseflow.2019.02.006_bib0009) 2009; 180 Jia (10.1016/j.ijmultiphaseflow.2019.02.006_bib0033) 2012; 33 Qian (10.1016/j.ijmultiphaseflow.2019.02.006_bib0056) 1992; 17 Swift (10.1016/j.ijmultiphaseflow.2019.02.006_bib0069) 1995; 75 Mazzeo (10.1016/j.ijmultiphaseflow.2019.02.006_bib0051) 2008; 178 Ju (10.1016/j.ijmultiphaseflow.2019.02.006_bib0036) 2017; 50 Huang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0030) 2015 Ju (10.1016/j.ijmultiphaseflow.2019.02.006_bib0037) 2014; 59 He (10.1016/j.ijmultiphaseflow.2019.02.006_bib0026) 1997; 56 Porter (10.1016/j.ijmultiphaseflow.2019.02.006_bib0055) 2009; 32 Armstrong (10.1016/j.ijmultiphaseflow.2019.02.006_bib0002) 2013; 88 Chen (10.1016/j.ijmultiphaseflow.2019.02.006_bib0014) 2017; 212 Guo (10.1016/j.ijmultiphaseflow.2019.02.006_bib0023) 2017; 31 Huang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0031) 2011; 61 Ferer (10.1016/j.ijmultiphaseflow.2019.02.006_bib0018) 2011; 84 Yamabe (10.1016/j.ijmultiphaseflow.2019.02.006_bib0075) 2015; 49 Heuvellne (10.1016/j.ijmultiphaseflow.2019.02.006_bib0028) 2007; 18 Keller (10.1016/j.ijmultiphaseflow.2019.02.006_bib0039) 1997; 26 Ju (10.1016/j.ijmultiphaseflow.2019.02.006_bib0034) 2017; 46 Zheng (10.1016/j.ijmultiphaseflow.2019.02.006_bib0082) 2017; 47 Sethian (10.1016/j.ijmultiphaseflow.2019.02.006_bib0063) 2003; 35 Fakhari (10.1016/j.ijmultiphaseflow.2019.02.006_bib0017) 2018; 114 Pan (10.1016/j.ijmultiphaseflow.2019.02.006_bib0054) 2004; 158 Basirat (10.1016/j.ijmultiphaseflow.2019.02.006_bib0007) 2017; 109 Berg (10.1016/j.ijmultiphaseflow.2019.02.006_bib0008) 2013; 110 Desplat (10.1016/j.ijmultiphaseflow.2019.02.006_bib0015) 2001; 134 He (10.1016/j.ijmultiphaseflow.2019.02.006_bib0025) 1998; 146 Blaak (10.1016/j.ijmultiphaseflow.2019.02.006_bib0010) 2000; 129 Shan (10.1016/j.ijmultiphaseflow.2019.02.006_bib0064) 1993; 47 Brusseau (10.1016/j.ijmultiphaseflow.2019.02.006_bib0011) 2018; 613 Li (10.1016/j.ijmultiphaseflow.2019.02.006_bib0044) 2018; 116 Moebius (10.1016/j.ijmultiphaseflow.2019.02.006_bib0052) 2012; 377 Wang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0074) 2005; 72 Ghanizadeh (10.1016/j.ijmultiphaseflow.2019.02.006_bib0020) 2015; 153 Januszewski (10.1016/j.ijmultiphaseflow.2019.02.006_bib0032) 2014; 185 Heneghan (10.1016/j.ijmultiphaseflow.2019.02.006_bib0027) 2002; 6 Ye (10.1016/j.ijmultiphaseflow.2019.02.006_bib0077) 2015; 110 Yu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0078) 2015; 159 Armstrong (10.1016/j.ijmultiphaseflow.2019.02.006_bib0003) 2015; 77 Zhang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0080) 2011; 25 Loucks (10.1016/j.ijmultiphaseflow.2019.02.006_bib0049) 2009; 79 Redapangu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0058) 2012; 24 Swift (10.1016/j.ijmultiphaseflow.2019.02.006_bib0068) 1996; 54 Hu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0029) 2017; 60 Zhang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0081) 2004; 69 Tsuji (10.1016/j.ijmultiphaseflow.2019.02.006_bib0070) 2016; 95 Liu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0046) 2016; 20 Gunstensen (10.1016/j.ijmultiphaseflow.2019.02.006_bib0022) 1991; 43 Liu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0048) 2016; 35 Redapangu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0060) 2012; 34 Guo (10.1016/j.ijmultiphaseflow.2019.02.006_bib0024) 2002; 11 Landry (10.1016/j.ijmultiphaseflow.2019.02.006_bib0040) 2014; 103 Bandara (10.1016/j.ijmultiphaseflow.2019.02.006_bib0006) 2013; 62 Gunstensen (10.1016/j.ijmultiphaseflow.2019.02.006_bib0021) 1992; 18 Martys (10.1016/j.ijmultiphaseflow.2019.02.006_bib0050) 1996; 53 Español (10.1016/j.ijmultiphaseflow.2019.02.006_bib0016) 2017; 146 |
| References_xml | – volume: 159 start-page: 354−363 year: 2015 ident: bib0078 article-title: CO publication-title: Fuel – volume: 95 year: 2017 ident: bib0042 article-title: Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media publication-title: Phys. Rev. E – volume: 146 year: 2017 ident: bib0016 article-title: Perspective: dissipative particle dynamics publication-title: J. Chem. Phys. – volume: 9 start-page: 676−682 year: 2012 ident: bib0062 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 18 start-page: 627−634 year: 2007 ident: bib0028 article-title: The OpenLB project: an open source and object oriented implementation of lattice Boltzmann methods publication-title: Int. J. Mod. Phys. C – volume: 84 year: 2011 ident: bib0018 article-title: Two-phase flow in a rough fracture: experiment and modeling publication-title: Phys. Rev. E – volume: 26 start-page: 277−297 year: 1997 ident: bib0039 article-title: Micromodel observation of the role of oil layers in three-phase flow publication-title: Transp. Porous Media – volume: 17 start-page: 479 year: 1992 ident: bib0056 article-title: Lattice BGK models for Navier-Stokes equation publication-title: EPL – volume: 11 start-page: 366−374 year: 2002 ident: bib0024 article-title: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method publication-title: Chin. Phys. – volume: 69 year: 2004 ident: bib0081 article-title: Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces publication-title: Phys. Rev. E – volume: 47 start-page: 83−90 year: 2017 ident: bib0082 article-title: Characterization of nanopore morphology of shale and its effects on gas permeability publication-title: J. Nat. Gas Sci. Eng. – volume: 79 start-page: 848−861 year: 2009 ident: bib0049 article-title: Morphology, genesis, and distribution of nanometer-sale pores in Siliceous Mudstones of the Mississippian Barnett Shale publication-title: J. Sediment Res. – volume: 18 start-page: 157 year: 1992 ident: bib0021 article-title: Microscopic modeling of immiscible fluids in three dimensions by a lattice Boltzmann method publication-title: EPL – volume: 134 start-page: 273−290 year: 2001 ident: bib0015 article-title: LUDWIG: a parallel lattice-Boltzmann code for complex fluids publication-title: Comput. Phys. Commun. – volume: 35 start-page: 341−372 year: 2003 ident: bib0063 article-title: Level set methods for fluid interfaces publication-title: Annu. Rev. Fluid Mech. – year: 2006 ident: bib0067 article-title: Lattice Boltzmann Modeling: An Introduction For Geoscientists and Engineers – volume: 77 start-page: 57−68 year: 2015 ident: bib0003 article-title: Modeling the velocity field during Haines jumps in porous media publication-title: Adv. Water Resour. – volume: 613 start-page: 176−185 year: 2018 ident: bib0011 article-title: Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface publication-title: Sci. Total Environ. – volume: 46 start-page: 55−62 year: 2012 ident: bib0004 article-title: Linking pore-scale interfacial curvature to column-scale capillary pressure publication-title: Adv. Water Resour. – volume: 47 start-page: 1815−1819 year: 1993 ident: bib0064 article-title: Lattice Boltzmann model for simulating flows with multiple phases and components publication-title: Phys. Rev. E – start-page: 429−437 year: 2011 ident: bib0071 article-title: Computational fluid dynamics using graphics processing units: challenges and opportunities – volume: 28 year: 2017 ident: bib0041 article-title: Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models publication-title: Int. J. Mod. Phys. C – volume: 25 start-page: 3493−3505 year: 2011 ident: bib0080 article-title: Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering publication-title: Energy Fuels – volume: 56 start-page: 6811−6817 year: 1997 ident: bib0026 article-title: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation publication-title: Phys. Rev. E. – volume: 50 start-page: 199−215 year: 2011 ident: bib0061 article-title: A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel publication-title: Comput. Fluids – volume: 39 start-page: 324−337 year: 2010 ident: bib0072 article-title: On improving the performance of large parallel lattice Boltzmann flow simulations in heterogeneous porous media publication-title: Comput. Fluids – volume: 20 start-page: 777−805 year: 2016 ident: bib0046 article-title: Multiphase lattice Boltzmann simulations for porous media applications publication-title: Comput. Geosci. – volume: 75 start-page: 830−833 year: 1995 ident: bib0069 article-title: Lattice Boltzmann simulation of nonideal fluids publication-title: Phys. Rev. Lett. – volume: 180 start-page: 1495−1502 year: 2009 ident: bib0009 article-title: MUPHY: a parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations publication-title: Comput. Phys. Commun. – volume: 92 start-page: 43−56 year: 2016 ident: bib0079 article-title: Capillary filling and Haines jump dynamics using free energy lattice Boltzmann simulations publication-title: Adv. Water Resour. – volume: 153 start-page: 664−681 year: 2015 ident: bib0020 article-title: Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization publication-title: Fuel – volume: 33 start-page: 343−350 year: 2012 ident: bib0033 article-title: Assessment criteria, main types, basic features and resource prospects of the tight oil in China publication-title: Acta Pet. Sin. – volume: 60 start-page: 129−139 year: 2017 ident: bib0029 article-title: Wettability effects on supercritical CO publication-title: Int. J. Greenh. Gas Con. – volume: 189 start-page: 165−187 year: 1988 ident: bib0043 article-title: Numerical models and experiments on immiscible displacements in porous media publication-title: J. Fluid Mech. – volume: 105 start-page: 29−38 year: 2017 ident: bib0045 article-title: Modeling variability in porescale multiphase flow experiments publication-title: Adv. Water Resour. – volume: 73 start-page: 144−158 year: 2014 ident: bib0047 article-title: Pore-scale simulation of liquid CO publication-title: Adv. Water Resour. – volume: 92 start-page: 142−158 year: 2016 ident: bib0012 article-title: Pore-scale supercritical CO publication-title: Adv. Water Resour. – volume: 100 start-page: 14−25 year: 2017 ident: bib0013 article-title: Pore-scale supercritical CO publication-title: Adv. Water Resour. – volume: 31 start-page: 4748−4756 year: 2017 ident: bib0023 article-title: The impact of well-field configuration on contaminant mass removal and plume persistence for homogeneous versus layered systems publication-title: Hydrol. Process. – volume: 129 start-page: 256−266 year: 2000 ident: bib0010 article-title: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling publication-title: Comput. Phys. Commun. – volume: 24 year: 2012 ident: bib0058 article-title: A study of pressure-driven displacement flow of two immiscible liquids using a multiphase lattice Boltzmann approach publication-title: Phys. Fluids – volume: 110 start-page: 114−121 year: 2015 ident: bib0077 article-title: Parallel computation of entropic lattice Boltzmann method on hybrid CPU–GPU accelerated system publication-title: Comput. Fluids – volume: 53 start-page: 743−750 year: 1996 ident: bib0050 article-title: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method publication-title: Phys. Rev. E – volume: 50 start-page: 8760−8774 year: 2014 ident: bib0001 article-title: Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: curvature, snap-off, and remobilization of residual CO publication-title: Water Resour. Res. – volume: 146 start-page: 282−300 year: 1998 ident: bib0025 article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit publication-title: J. Comput. Phys. – volume: 35 start-page: 541−554 year: 2016 ident: bib0048 article-title: Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks publication-title: J. Nat. Gas Sci. Eng. – volume: 32 start-page: 1632−1640 year: 2009 ident: bib0055 article-title: Lattice-Boltzmann simulations of the capillary pressure-saturation-interfacial area relationship for porous media publication-title: Adv. Water Resour. – volume: 54 start-page: 5041−5052 year: 1996 ident: bib0068 article-title: Lattice Boltzmann simulations of liquid-gas and binary fluid systems publication-title: Phys. Rev. E – volume: 103 start-page: 449−468 year: 2014 ident: bib0040 article-title: Pore-scale lattice Boltzmann modeling and 4D X-ray computed microtomography imaging of fracture-matrix fluid transfer publication-title: Transp. Porous Media – volume: 62 start-page: 356−369 year: 2013 ident: bib0006 article-title: Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media publication-title: Adv. Water Resour. – volume: 35 start-page: 614−623 year: 2016 ident: bib0035 article-title: CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites publication-title: J. Nat. Gas Sci. Eng. – volume: 185 start-page: 2350−2368 year: 2014 ident: bib0032 article-title: Sailfish: a flexible multi-GPU implementation of the lattice Boltzmann method publication-title: Comput. Phys. Commun. – volume: 27 start-page: 13−22 year: 2004 ident: bib0038 article-title: Immiscible displacement in a channel: simulations of fingering in two dimensions publication-title: Adv. Water Resour. – volume: 43 start-page: 4320−4327 year: 1991 ident: bib0022 article-title: Lattice Boltzmann model of immiscible fluids publication-title: Phys. Rev. A – volume: 61 start-page: 3606−3617 year: 2011 ident: bib0031 article-title: Evaluation of three lattice Boltzmann models for multiphase flows in porous media publication-title: Comput. Math. Appl. – year: 2016 ident: bib0066 article-title: Lattice Boltzmann beyond Navier-Stokes: where do we stand? publication-title: 30th International Symposium on Rarefied Gas Dynamics – volume: 51 start-page: 99−105 year: 2000 ident: bib0073 article-title: A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models publication-title: Eur. J. Soil Sci. – volume: 71 start-page: 1171−1177 year: 1993 ident: bib0083 article-title: Boundary conditions for lattice Boltzmann simulations publication-title: J. Stat. Phys. – volume: 109 start-page: 181−195 year: 2017 ident: bib0007 article-title: Pore-scale modeling of wettability effects on CO publication-title: Adv. Water Resour. – volume: 95 start-page: 3−15 year: 2016 ident: bib0070 article-title: Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone publication-title: Adv. Water Resour. – volume: 377 start-page: 406 year: 2012 end-page: 415 ident: bib0052 article-title: Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries publication-title: J. Colloid Interface Sci. – volume: 72 year: 2005 ident: bib0074 article-title: Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media publication-title: Phys. Rev. E – year: 2015 ident: bib0030 article-title: Multiphase Lattice Boltzmann Methods: Theory and Application – volume: 34 start-page: 105−114 year: 2012 ident: bib0060 article-title: Multiphase lattice Boltzmann simulations of buoyancy-induced flow of two immiscible fluids with different viscosities publication-title: Eur. J. Mech. B Fluids – volume: 81 start-page: 379−393 year: 1995 ident: bib0065 article-title: Multicomponent lattice-Boltzmann model with interparticle interaction publication-title: J. Stat. Phys. – volume: 53 start-page: 188−197 year: 2013 ident: bib0084 article-title: Micromodel investigations of CO publication-title: Adv. Water Resour. – volume: 227 start-page: 4895−4911 year: 2008 ident: bib0005 article-title: Performance evaluation of a parallel sparse lattice Boltzmann solver publication-title: J. Comput. Phys. – volume: 212 start-page: 14−27 year: 2017 ident: bib0014 article-title: Lattice Boltzmann simulations of liquid CO publication-title: J. Contam. Hydrol. – volume: 49 start-page: 537−543 year: 2015 ident: bib0075 article-title: Lattice Boltzmann simulations of supercritical CO publication-title: Environ. Sci. Technol. – volume: 50 start-page: 1383 year: 2017 end-page: 1407 ident: bib0036 article-title: Visualization and transparentization of the structure and stress field of aggregated geomaterials through 3D printing and photoelastic techniques publication-title: Rock Mech. Rock Eng. – volume: 59 start-page: 5354−5365 year: 2014 ident: bib0037 article-title: Visualization of the complex structure and stress field inside rock by means of 3D printing technology publication-title: Chin. Sci. Bull. – volume: 46 start-page: 26−37 year: 2017 ident: bib0034 article-title: Three-dimensional characterisation of multi-scale structures of the Silurian Longmaxi shale using focused ion beam-scanning electron microscopy and reconstruction technology publication-title: J. Nat. Gas Sci. Eng. – volume: 91 start-page: 4059−4067 year: 2008 ident: bib0053 article-title: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion publication-title: J. Am. Ceram. Soc. – volume: 178 start-page: 894−914 year: 2008 ident: bib0051 article-title: HemeLB: a high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries publication-title: Comput. Phys. Commun. – volume: 65 start-page: 882−890 year: 2013 ident: bib0076 article-title: A comparison study of multi-component lattice Boltzmann models for flow in porous media applications publication-title: Comput. Math. Appl. – volume: 88 year: 2013 ident: bib0002 article-title: Interfacial velocities and capillary pressure gradients during Haines jumps publication-title: Phys. Rev. E – volume: 51 start-page: 1381−1400 year: 2015 ident: bib0019 article-title: Challenges in modeling unstable two-phase flow experiments in porous micromodels publication-title: Water Resour. Res. – volume: 7 start-page: 4584 year: 2017 ident: bib0057 article-title: New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions publication-title: Sci. Rep. – volume: 158 start-page: 89−105 year: 2004 ident: bib0054 article-title: A high-performance lattice Boltzmann implementation to model flow in porous media publication-title: Comput. Phys. Commun. – volume: 135 year: 2013 ident: bib0059 article-title: A lattice Boltzmann simulation of three-dimensional displacement flow of two immiscible liquids in a square duct publication-title: ASME J. Fluids Eng. – volume: 116 start-page: 153−166 year: 2018 ident: bib0044 article-title: A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: effects of fluid and geometrical properties publication-title: Adv. Water Resour. – volume: 110 start-page: 3755−3759 year: 2013 ident: bib0008 article-title: Real-time 3D imaging of Haines jumps in porous media flow publication-title: Proc. Natl. Acad. Sci. USA – volume: 114 start-page: 119−134 year: 2018 ident: bib0017 article-title: A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: application and comparison to experiments of CO publication-title: Adv. Water Resour. – volume: 6 start-page: 407−429 year: 2002 ident: bib0027 article-title: Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis publication-title: Med. Image Anal. – volume: 18 start-page: 157 year: 1992 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0021 article-title: Microscopic modeling of immiscible fluids in three dimensions by a lattice Boltzmann method publication-title: EPL doi: 10.1209/0295-5075/18/2/012 – volume: 33 start-page: 343−350 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0033 article-title: Assessment criteria, main types, basic features and resource prospects of the tight oil in China publication-title: Acta Pet. Sin. – volume: 212 start-page: 14−27 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0014 article-title: Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions publication-title: J. Contam. Hydrol. – volume: 31 start-page: 4748−4756 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0023 article-title: The impact of well-field configuration on contaminant mass removal and plume persistence for homogeneous versus layered systems publication-title: Hydrol. Process. doi: 10.1002/hyp.11393 – volume: 103 start-page: 449−468 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0040 article-title: Pore-scale lattice Boltzmann modeling and 4D X-ray computed microtomography imaging of fracture-matrix fluid transfer publication-title: Transp. Porous Media doi: 10.1007/s11242-014-0311-x – volume: 129 start-page: 256−266 year: 2000 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0010 article-title: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(00)00112-0 – volume: 613 start-page: 176−185 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0011 article-title: Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface publication-title: Sci. Total Environ. – year: 2006 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0067 – volume: 100 start-page: 14−25 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0013 article-title: Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.12.003 – volume: 51 start-page: 1381−1400 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0019 article-title: Challenges in modeling unstable two-phase flow experiments in porous micromodels publication-title: Water Resour. Res. doi: 10.1002/2014WR016384 – volume: 26 start-page: 277−297 year: 1997 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0039 article-title: Micromodel observation of the role of oil layers in three-phase flow publication-title: Transp. Porous Media doi: 10.1023/A:1006589611884 – start-page: 429−437 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0071 article-title: Computational fluid dynamics using graphics processing units: challenges and opportunities – volume: 95 start-page: 3−15 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0070 article-title: Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.03.005 – volume: 105 start-page: 29−38 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0045 article-title: Modeling variability in porescale multiphase flow experiments publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.04.005 – volume: 50 start-page: 8760−8774 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0001 article-title: Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: curvature, snap-off, and remobilization of residual CO2 publication-title: Water Resour. Res. doi: 10.1002/2014WR015970 – volume: 35 start-page: 541−554 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0048 article-title: Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.08.071 – volume: 92 start-page: 142−158 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0012 article-title: Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.03.015 – year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0030 – volume: 61 start-page: 3606−3617 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0031 article-title: Evaluation of three lattice Boltzmann models for multiphase flows in porous media publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.06.034 – volume: 69 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0081 article-title: Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.032602 – volume: 47 start-page: 83−90 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0082 article-title: Characterization of nanopore morphology of shale and its effects on gas permeability publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.10.004 – volume: 51 start-page: 99−105 year: 2000 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0073 article-title: A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2000.00275.x – volume: 43 start-page: 4320−4327 year: 1991 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0022 article-title: Lattice Boltzmann model of immiscible fluids publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.43.4320 – volume: 28 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0041 article-title: Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183117500851 – volume: 146 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0016 article-title: Perspective: dissipative particle dynamics publication-title: J. Chem. Phys. doi: 10.1063/1.4979514 – volume: 9 start-page: 676−682 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0062 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 27 start-page: 13−22 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0038 article-title: Immiscible displacement in a channel: simulations of fingering in two dimensions publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2003.10.002 – volume: 159 start-page: 354−363 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0078 article-title: CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs publication-title: Fuel doi: 10.1016/j.fuel.2015.06.092 – volume: 46 start-page: 55−62 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0004 article-title: Linking pore-scale interfacial curvature to column-scale capillary pressure publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.05.009 – volume: 84 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0018 article-title: Two-phase flow in a rough fracture: experiment and modeling publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.016316 – volume: 134 start-page: 273−290 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0015 article-title: LUDWIG: a parallel lattice-Boltzmann code for complex fluids publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(00)00205-8 – volume: 7 start-page: 4584 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0057 article-title: New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions publication-title: Sci. Rep. doi: 10.1038/s41598-017-04545-4 – volume: 50 start-page: 199−215 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0061 article-title: A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2011.07.012 – volume: 47 start-page: 1815−1819 year: 1993 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0064 article-title: Lattice Boltzmann model for simulating flows with multiple phases and components publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.47.1815 – volume: 110 start-page: 114−121 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0077 article-title: Parallel computation of entropic lattice Boltzmann method on hybrid CPU–GPU accelerated system publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.06.002 – volume: 73 start-page: 144−158 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0047 article-title: Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2014.07.010 – volume: 18 start-page: 627−634 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0028 article-title: The OpenLB project: an open source and object oriented implementation of lattice Boltzmann methods publication-title: Int. J. Mod. Phys. C – volume: 35 start-page: 341−372 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0063 article-title: Level set methods for fluid interfaces publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.35.101101.161105 – volume: 53 start-page: 188−197 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0084 article-title: Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.11.004 – volume: 88 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0002 article-title: Interfacial velocities and capillary pressure gradients during Haines jumps publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.043010 – volume: 39 start-page: 324−337 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0072 article-title: On improving the performance of large parallel lattice Boltzmann flow simulations in heterogeneous porous media publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2009.09.011 – volume: 77 start-page: 57−68 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0003 article-title: Modeling the velocity field during Haines jumps in porous media publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2015.01.008 – volume: 65 start-page: 882−890 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0076 article-title: A comparison study of multi-component lattice Boltzmann models for flow in porous media applications publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2012.11.022 – volume: 377 start-page: 406 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0052 article-title: Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.03.070 – volume: 59 start-page: 5354−5365 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0037 article-title: Visualization of the complex structure and stress field inside rock by means of 3D printing technology publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-014-0579-9 – volume: 227 start-page: 4895−4911 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0005 article-title: Performance evaluation of a parallel sparse lattice Boltzmann solver publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.01.013 – volume: 56 start-page: 6811−6817 issue: 6 year: 1997 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0026 article-title: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.56.6811 – volume: 79 start-page: 848−861 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0049 article-title: Morphology, genesis, and distribution of nanometer-sale pores in Siliceous Mudstones of the Mississippian Barnett Shale publication-title: J. Sediment Res. doi: 10.2110/jsr.2009.092 – volume: 20 start-page: 777−805 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0046 article-title: Multiphase lattice Boltzmann simulations for porous media applications publication-title: Comput. Geosci. doi: 10.1007/s10596-015-9542-3 – volume: 91 start-page: 4059−4067 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0053 article-title: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02736.x – volume: 81 start-page: 379−393 year: 1995 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0065 article-title: Multicomponent lattice-Boltzmann model with interparticle interaction publication-title: J. Stat. Phys. doi: 10.1007/BF02179985 – volume: 25 start-page: 3493−3505 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0080 article-title: Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering publication-title: Energy Fuels doi: 10.1021/ef101732k – volume: 178 start-page: 894−914 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0051 article-title: HemeLB: a high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.02.013 – volume: 146 start-page: 282−300 year: 1998 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0025 article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.6057 – volume: 135 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0059 article-title: A lattice Boltzmann simulation of three-dimensional displacement flow of two immiscible liquids in a square duct publication-title: ASME J. Fluids Eng. doi: 10.1115/1.4024998 – volume: 34 start-page: 105−114 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0060 article-title: Multiphase lattice Boltzmann simulations of buoyancy-induced flow of two immiscible fluids with different viscosities publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2012.01.006 – volume: 11 start-page: 366−374 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0024 article-title: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method publication-title: Chin. Phys. – volume: 49 start-page: 537−543 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0075 article-title: Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism publication-title: Environ. Sci. Technol. doi: 10.1021/es504510y – volume: 92 start-page: 43−56 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0079 article-title: Capillary filling and Haines jump dynamics using free energy lattice Boltzmann simulations publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.03.013 – volume: 71 start-page: 1171−1177 year: 1993 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0083 article-title: Boundary conditions for lattice Boltzmann simulations publication-title: J. Stat. Phys. doi: 10.1007/BF01049965 – volume: 110 start-page: 3755−3759 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0008 article-title: Real-time 3D imaging of Haines jumps in porous media flow publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1221373110 – volume: 185 start-page: 2350−2368 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0032 article-title: Sailfish: a flexible multi-GPU implementation of the lattice Boltzmann method publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.04.018 – volume: 60 start-page: 129−139 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0029 article-title: Wettability effects on supercritical CO2–brine immiscible displacement during drainage: pore-scale observation and 3D simulation publication-title: Int. J. Greenh. Gas Con. doi: 10.1016/j.ijggc.2017.03.011 – volume: 95 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0042 article-title: Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.033306 – volume: 17 start-page: 479 issue: 6 year: 1992 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0056 article-title: Lattice BGK models for Navier-Stokes equation publication-title: EPL doi: 10.1209/0295-5075/17/6/001 – volume: 53 start-page: 743−750 issue: 1 year: 1996 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0050 article-title: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.743 – volume: 158 start-page: 89−105 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0054 article-title: A high-performance lattice Boltzmann implementation to model flow in porous media publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2003.12.003 – year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0066 article-title: Lattice Boltzmann beyond Navier-Stokes: where do we stand? – volume: 180 start-page: 1495−1502 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0009 article-title: MUPHY: a parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.04.001 – volume: 109 start-page: 181−195 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0007 article-title: Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.09.004 – volume: 116 start-page: 153−166 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0044 article-title: A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: effects of fluid and geometrical properties publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2018.04.009 – volume: 54 start-page: 5041−5052 year: 1996 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0068 article-title: Lattice Boltzmann simulations of liquid-gas and binary fluid systems publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.54.5041 – volume: 153 start-page: 664−681 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0020 article-title: Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization publication-title: Fuel – volume: 35 start-page: 614−623 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0035 article-title: CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.09.011 – volume: 114 start-page: 119−134 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0017 article-title: A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: application and comparison to experiments of CO2 sequestration at pore scale publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2018.02.005 – volume: 62 start-page: 356−369 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0006 article-title: Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.09.014 – volume: 24 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0058 article-title: A study of pressure-driven displacement flow of two immiscible liquids using a multiphase lattice Boltzmann approach publication-title: Phys. Fluids doi: 10.1063/1.4760257 – volume: 32 start-page: 1632−1640 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0055 article-title: Lattice-Boltzmann simulations of the capillary pressure-saturation-interfacial area relationship for porous media publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2009.08.009 – volume: 75 start-page: 830−833 year: 1995 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0069 article-title: Lattice Boltzmann simulation of nonideal fluids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.830 – volume: 6 start-page: 407−429 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0027 article-title: Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(02)00058-0 – volume: 50 start-page: 1383 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0036 article-title: Visualization and transparentization of the structure and stress field of aggregated geomaterials through 3D printing and photoelastic techniques publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-017-1171-9 – volume: 189 start-page: 165−187 year: 1988 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0043 article-title: Numerical models and experiments on immiscible displacements in porous media publication-title: J. Fluid Mech. doi: 10.1017/S0022112088000953 – volume: 46 start-page: 26−37 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0034 article-title: Three-dimensional characterisation of multi-scale structures of the Silurian Longmaxi shale using focused ion beam-scanning electron microscopy and reconstruction technology publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.07.015 – volume: 72 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0074 article-title: Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.016706 |
| SSID | ssj0005743 |
| Score | 2.385401 |
| Snippet | •Immiscible oil-water displacement in heterogeneous pore structures is investigated.•A multicomponent lattice Boltzmann model with high-resolution meshes is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 50 |
| SubjectTerms | 3DP technology Experimental validation Heterogeneous pore structure Immiscible oil-water displacement Multicomponent lattice Boltzmann model Parallel computing algorithm |
| Title | Characterization of immiscible phase displacement in heterogeneous pore structures: Parallel multicomponent lattice Boltzmann simulation and experimental validation using three-dimensional printing technology |
| URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.02.006 |
| Volume | 114 |
| WOSCitedRecordID | wos000467888200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3533 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005743 issn: 0301-9322 databaseCode: AIEXJ dateStart: 19951201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW2DiZ4QDBAG1_yA-KlCmoSp7GReCjTEExomsSAvkWJ40CqNKn6MU37lfwk7rWTOO0QKhK8RFUqu7busX17fe65hLwUqWQJk4GTKhY4TAV4SRh4DpPcE9zN_EwrMX39FJ6d8fFYnO_skiYX5rIIy5JfXYnZfzU1vANjY-rsX5i77RRewGcwOjzB7PDcyvDHrQTzdesO5tMpZt9iltTsB5xbeC-j2ViaCpCX4C9Cgwr6VEiJBZ8chWdRWXY1N6S5c-i0KFRhGIhIRK9KbFvES6TP9d9VxfJ6Gpdlf5FP65Jg-mJirYQAzDM3RZz6q4VJ1Jor5aT4vZEH6WOg0RSvWA_6Tyzl3kYwO7oXhhmpJ5cVVRuZP13pQyauD2hdCcBsb99UmVQ2bq5qajIsl-_LuOpGQzABK-hGQ9o0HcuJ0qlhA9cBR9Vs-8rs9DwUjh8YFY72KHBZZzM3iri1W2AqWtw4cEzsY_I6n9hp4iyRNCiMGuyG0rf2HT7jkHBEsKPiZTjbJXteGAjeI3ujjyfjU0tTMkki7RT2ySvLUfzTr_7e0eo4Txf3yb36Xw8dGbQ-IDuqPCB3O1qYB-S25iLLxUPycxPBtMqoRTDV46BdBNO8pGsIpohgahH8hjb4pev4pTV-aYtfavFLAb-0i19q8Us1fukN_NIGv9Ti9xH58v7k4viDUxcecaQv2NLx46Efg2VUzLnMuJ8lfsoTlSaZ5D4PMjeRw4xxySRqH0kpUGHDH6bCTUI5kKH_mPRKmMUhoVwOYw9rOMjEZUJlPMT6C6EXCDA399Mj8raxUiRrVX4sDlNEDf1yEm1aOUIrRwMvAisfkbBtPzP6NFu3HDWgiGpv23jREWB7yz6e_IM-npI7diE_Iz2AhnpObsnLZb6Yv6iXwy9Uzhnj |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+immiscible+phase+displacement+in+heterogeneous+pore+structures%3A+Parallel+multicomponent+lattice+Boltzmann+simulation+and+experimental+validation+using+three-dimensional+printing+technology&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Ju%2C+Yang&rft.au=Gong%2C+Wenbo&rft.au=Zheng%2C+Jiangtao&rft.date=2019-05-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=114&rft.spage=50&rft.epage=65&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2019.02.006&rft.externalDocID=S0301932218306724 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |