Characterization of immiscible phase displacement in heterogeneous pore structures: Parallel multicomponent lattice Boltzmann simulation and experimental validation using three-dimensional printing technology

•Immiscible oil-water displacement in heterogeneous pore structures is investigated.•A multicomponent lattice Boltzmann model with high-resolution meshes is proposed.•A realistic pore model is built using three-dimensional printing (3DP) technology.•The simulation is validated by the experimental da...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of multiphase flow Ročník 114; s. 50 - 65
Hlavní autoři: Ju, Yang, Gong, Wenbo, Zheng, Jiangtao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2019
Témata:
ISSN:0301-9322, 1879-3533
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Immiscible oil-water displacement in heterogeneous pore structures is investigated.•A multicomponent lattice Boltzmann model with high-resolution meshes is proposed.•A realistic pore model is built using three-dimensional printing (3DP) technology.•The simulation is validated by the experimental data.•The effect of interface distributions on the displacement is characterized. Understanding and characterization of immiscible-fluid displacement mechanisms in pore structures are required for enhanced hydrocarbon resource recovery in unconventional tight reservoirs. The displacement process of immiscible fluids in a porous structure on the pore scale has been widely simulated and characterized via lattice Boltzmann (LB) methods. However, owing to the heterogeneity and tortuosity of rock pore structures, it is difficult to numerically represent the real irregular geometry and accurately describe the varied immiscible interfaces in experiments using LB simulation. A low mesh resolution is usually applied, which causes simulation inaccuracy compared to realistic displacement behaviors. In this study, we introduce a multicomponent LB model with high-resolution meshes to investigate immiscible oil-water displacement in heterogeneous pore structures. The pore-scale LB model is established using information extracted from a realistic reservoir rock. A parallel computing algorithm is integrated into the model to accelerate the LB simulation. To verify the LB simulation, an oil-water displacement experiment is conducted using a transparent pore model replicated using three-dimensional printing (3DP) technology and information on the real porous rock. Owing to the sensitivity of the interfacial condition at the inlet, the inlet buffer was designed to relieve injecting perturbations in experiments, and an artificial velocity profile was applied in the simulation to approximate this relieved interface. Comparison of the LB simulation and experiment data indicates that the suggested parallel multicomponent LB method can simulate the oil-water displacement process in heterogeneous pore structures well. This study provides a method for characterizing the immiscible fluid displacement mechanism in a porous structure and forecasting the preferential flow path in a heterogeneous structure with a certain water wettability.
AbstractList •Immiscible oil-water displacement in heterogeneous pore structures is investigated.•A multicomponent lattice Boltzmann model with high-resolution meshes is proposed.•A realistic pore model is built using three-dimensional printing (3DP) technology.•The simulation is validated by the experimental data.•The effect of interface distributions on the displacement is characterized. Understanding and characterization of immiscible-fluid displacement mechanisms in pore structures are required for enhanced hydrocarbon resource recovery in unconventional tight reservoirs. The displacement process of immiscible fluids in a porous structure on the pore scale has been widely simulated and characterized via lattice Boltzmann (LB) methods. However, owing to the heterogeneity and tortuosity of rock pore structures, it is difficult to numerically represent the real irregular geometry and accurately describe the varied immiscible interfaces in experiments using LB simulation. A low mesh resolution is usually applied, which causes simulation inaccuracy compared to realistic displacement behaviors. In this study, we introduce a multicomponent LB model with high-resolution meshes to investigate immiscible oil-water displacement in heterogeneous pore structures. The pore-scale LB model is established using information extracted from a realistic reservoir rock. A parallel computing algorithm is integrated into the model to accelerate the LB simulation. To verify the LB simulation, an oil-water displacement experiment is conducted using a transparent pore model replicated using three-dimensional printing (3DP) technology and information on the real porous rock. Owing to the sensitivity of the interfacial condition at the inlet, the inlet buffer was designed to relieve injecting perturbations in experiments, and an artificial velocity profile was applied in the simulation to approximate this relieved interface. Comparison of the LB simulation and experiment data indicates that the suggested parallel multicomponent LB method can simulate the oil-water displacement process in heterogeneous pore structures well. This study provides a method for characterizing the immiscible fluid displacement mechanism in a porous structure and forecasting the preferential flow path in a heterogeneous structure with a certain water wettability.
Author Zheng, Jiangtao
Gong, Wenbo
Ju, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0003-4297-4455
  surname: Ju
  fullname: Ju, Yang
  email: juy@cumtb.edu.cn
  organization: State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology at Beijing, Beijing 100083, China
– sequence: 2
  givenname: Wenbo
  surname: Gong
  fullname: Gong, Wenbo
  organization: School of Mechanics and Civil Engineering, China University of Mining and Technology at Beijing, Beijing 100083, China
– sequence: 3
  givenname: Jiangtao
  surname: Zheng
  fullname: Zheng, Jiangtao
  organization: State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology at Beijing, Beijing 100083, China
BookMark eNqNkcFu1DAQhi1UJLaFd_CJW4Id72YdDkiwQItUCQ5wtpzxZOOVY0e2U9o-JY-Ed7ennnqyxv_MN__ovyQXPngk5D1nNWe8_XCo7WFaXLbzqBMOLvytG8a7mjU1Y-0rsuJy21ViI8QFWTHBeNWJpnlDLlM6MMY227VYkX-7UUcNGaN91NkGT8NA7TTZBLZ3SE9samyanQac0GdqPR2xDIQ9egxLonOISFOOC-QlYvpIfxWkc-joyR6EaS7Oy6TTuZRIvwSXHyftPU22tJz3am8o3s_FyHGLdvROO2vO2pKs39M8RsTKHPVUfkvLHK3PJwlh9MGF_cNb8nrQLuG7p_eK_Pn-7ffuprr9ef1j9_m2AtGtcyV0KzSXArWUMEgx9MLIHk0_gBRyM_Ae2mEtYQ0dayRAtwEjRWs63m-BwVZcka9nLsSQUsRBgc0ntzlq6xRn6piSOqjnKaljSoo1qqRUMJ-eYcpNk44PLwfcnAFYjr2zGFVJDj2gsREhKxPsS1H_AZ_eyQs
CitedBy_id crossref_primary_10_1007_s12613_020_2119_8
crossref_primary_10_1016_j_icheatmasstransfer_2023_106810
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105035
crossref_primary_10_1016_j_petrol_2019_106575
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104085
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104274
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104532
crossref_primary_10_1016_j_ces_2024_120289
crossref_primary_10_1016_j_fuel_2023_129567
crossref_primary_10_1016_j_energy_2022_125226
crossref_primary_10_1016_j_apenergy_2024_123621
crossref_primary_10_1016_j_jhydrol_2025_134065
crossref_primary_10_1016_j_rineng_2025_105077
crossref_primary_10_2118_223938_PA
crossref_primary_10_1016_j_ijengsci_2021_103615
crossref_primary_10_1016_j_petrol_2021_110008
crossref_primary_10_1016_j_cis_2025_103523
crossref_primary_10_1134_S1995080221010297
crossref_primary_10_1140_epjp_s13360_023_03977_4
crossref_primary_10_2118_225413_PA
crossref_primary_10_1016_j_jcis_2022_07_122
crossref_primary_10_1016_j_ijengsci_2020_103343
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125749
Cites_doi 10.1209/0295-5075/18/2/012
10.1002/hyp.11393
10.1007/s11242-014-0311-x
10.1016/S0010-4655(00)00112-0
10.1016/j.advwatres.2016.12.003
10.1002/2014WR016384
10.1023/A:1006589611884
10.1016/j.advwatres.2016.03.005
10.1016/j.advwatres.2017.04.005
10.1002/2014WR015970
10.1016/j.jngse.2016.08.071
10.1016/j.advwatres.2016.03.015
10.1016/j.camwa.2010.06.034
10.1103/PhysRevE.69.032602
10.1016/j.jngse.2017.10.004
10.1046/j.1365-2389.2000.00275.x
10.1103/PhysRevA.43.4320
10.1142/S0129183117500851
10.1063/1.4979514
10.1038/nmeth.2019
10.1016/j.advwatres.2003.10.002
10.1016/j.fuel.2015.06.092
10.1016/j.advwatres.2012.05.009
10.1103/PhysRevE.84.016316
10.1016/S0010-4655(00)00205-8
10.1038/s41598-017-04545-4
10.1016/j.compfluid.2011.07.012
10.1103/PhysRevE.47.1815
10.1016/j.compfluid.2014.06.002
10.1016/j.advwatres.2014.07.010
10.1146/annurev.fluid.35.101101.161105
10.1016/j.advwatres.2012.11.004
10.1103/PhysRevE.88.043010
10.1016/j.compfluid.2009.09.011
10.1016/j.advwatres.2015.01.008
10.1016/j.camwa.2012.11.022
10.1016/j.jcis.2012.03.070
10.1007/s11434-014-0579-9
10.1016/j.jcp.2008.01.013
10.1103/PhysRevE.56.6811
10.2110/jsr.2009.092
10.1007/s10596-015-9542-3
10.1111/j.1551-2916.2008.02736.x
10.1007/BF02179985
10.1021/ef101732k
10.1016/j.cpc.2008.02.013
10.1006/jcph.1998.6057
10.1115/1.4024998
10.1016/j.euromechflu.2012.01.006
10.1021/es504510y
10.1016/j.advwatres.2016.03.013
10.1007/BF01049965
10.1073/pnas.1221373110
10.1016/j.cpc.2014.04.018
10.1016/j.ijggc.2017.03.011
10.1103/PhysRevE.95.033306
10.1209/0295-5075/17/6/001
10.1103/PhysRevE.53.743
10.1016/j.cpc.2003.12.003
10.1016/j.cpc.2009.04.001
10.1016/j.advwatres.2017.09.004
10.1016/j.advwatres.2018.04.009
10.1103/PhysRevE.54.5041
10.1016/j.jngse.2016.09.011
10.1016/j.advwatres.2018.02.005
10.1016/j.advwatres.2013.09.014
10.1063/1.4760257
10.1016/j.advwatres.2009.08.009
10.1103/PhysRevLett.75.830
10.1016/S1361-8415(02)00058-0
10.1007/s00603-017-1171-9
10.1017/S0022112088000953
10.1016/j.jngse.2017.07.015
10.1103/PhysRevE.72.016706
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijmultiphaseflow.2019.02.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
EndPage 65
ExternalDocumentID 10_1016_j_ijmultiphaseflow_2019_02_006
S0301932218306724
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c394t-3a63a183ea88cf83fb3d8bedbfc8385f1bc6f48c4c9028cc95cd836d91b7c0c73
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467888200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-9322
IngestDate Sat Nov 29 07:20:35 EST 2025
Tue Nov 18 22:03:04 EST 2025
Fri Feb 23 02:50:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Experimental validation
Heterogeneous pore structure
3DP technology
Multicomponent lattice Boltzmann model
Parallel computing algorithm
Immiscible oil-water displacement
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-3a63a183ea88cf83fb3d8bedbfc8385f1bc6f48c4c9028cc95cd836d91b7c0c73
ORCID 0000-0003-4297-4455
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_ijmultiphaseflow_2019_02_006
crossref_primary_10_1016_j_ijmultiphaseflow_2019_02_006
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2019_02_006
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of multiphase flow
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Oostrom, Wietsma, Grate, Warner (bib0080) 2011; 25
Ferrari, Jimenez-Martinez, Le Borgne, Meheust, Lunati (bib0019) 2015; 51
Sethian, Smereka (bib0063) 2003; 35
Swift, Osborn, Yeomans (bib0069) 1995; 75
Liu, Valocchi, Werth, Kang, Oostrom (bib0047) 2014; 73
Armstrong, Porter, Wildenschild (bib0004) 2012; 46
Wang, Zhang, Bengough, Crawford (bib0074) 2005; 72
Leclaire, Parmigiani, Chopard, Latt (bib0041) 2017; 28
Huang, Wang, Lu (bib0031) 2011; 61
Hu, Wan, Kim, Tokunaga (bib0029) 2017; 60
Ferer, Crandall, Ahmadi, Smith (bib0018) 2011; 84
Redapangu, Sahu, Vanka (bib0059) 2013; 135
Redapangu, Vanka, Sahu (bib0060) 2012; 34
Blaak, Sloot (bib0010) 2000; 129
Zhang, Li, Kwok (bib0081) 2004; 69
Berg, Ott, Klapp, Schwing, Neiteler, Brussee, Makurat, Leu, Enzmann, Schwarz, Kersten, Irvine, Stampanoni (bib0008) 2013; 110
Liu, Ju, Ranjith, Zheng, Chen (bib0048) 2016; 35
Kang, Zhang, Chen (bib0038) 2004; 27
Loucks, Reed, Ruppel, Jarvie (bib0049) 2009; 79
Zacharoudiou, Boek (bib0079) 2016; 92
Chang, Zhou, Kneafsey, Oostrom, Wietsma, Yu (bib0012) 2016; 92
Ghanizadeh, Clarkson, Aquino, Ardakani, Sanei (bib0020) 2015; 153
Munch, Holzer (bib0053) 2008; 91
Axner, Bernsdorf, Zeiser, Lammers, Linxweiler, Hoekstra (bib0005) 2008; 227
Huang, Sukop, Lu (bib0030) 2015
Heuvellne, Latt (bib0028) 2007; 18
Ziegler (bib0083) 1993; 71
Rabbani, Joekar-Niasar, Pak, Shokri (bib0057) 2017; 7
Yang, Boek (bib0076) 2013; 65
Yamabe, Tsuji, Liang, Matsuoka (bib0075) 2015; 49
Ju, Gong, Chang, Xie, Xie, Liu (bib0034) 2017; 46
Leclaire, Parmigiani, Malaspinas, Chopard, Latt (bib0042) 2017; 95
Brusseau (bib0011) 2018; 613
Ye, Li, Wang, Deng (bib0077) 2015; 110
Succi (bib0066) 2016
Tsuji, Jiang, Christensen (bib0070) 2016; 95
Desplat, Pagonabarraga, Bladon (bib0015) 2001; 134
Landry, Karpyn, Ayala (bib0040) 2014; 103
He, Chen, Doolen (bib0025) 1998; 146
Yu, Lashgari, Wu, Sepehrnoori (bib0078) 2015; 159
Español, Warren (bib0016) 2017; 146
Gunstensen, Rothman (bib0021) 1992; 18
Mazzeo, Coveney (bib0051) 2008; 178
Armstrong, Berg (bib0002) 2013; 88
Sukop, Thorne (bib0067) 2006
Lenormand, Touboul, Zarcone (bib0043) 1988; 189
Vidal, Roy, Bertrand (bib0072) 2010; 39
Li, Galindo-Torres, Yan, Scheuermann, Li (bib0044) 2018; 116
Moebius, Or (bib0052) 2012; 377
Zuo, Zhang, Falta, Benson (bib0084) 2013; 53
Pan, Prins, Miller (bib0054) 2004; 158
Ju, Xie, Zheng, Lu, Mao, Gao, Peng (bib0037) 2014; 59
Chang, Zhou, Oostrom, Kneafsey, Mehta (bib0013) 2017; 100
Ju, Liu, Chen, Yang, Ranjith (bib0035) 2016; 35
Januszewski, Kostur (bib0032) 2014; 185
Basirat, Yang, Niemi (bib0007) 2017; 109
Ju, Wang, Xie, Ma, Zheng, Mao (bib0036) 2017; 50
Porter, Schaap, Wildenschild (bib0055) 2009; 32
Qian, d'Humières, Lallemand (bib0056) 1992; 17
Andrew, Bijeljic, Blunt (bib0001) 2014; 50
Armstrong, Evseev, Koroteev, Berg (bib0003) 2015; 77
Chen, Li, Valocchi, Christensen (bib0014) 2017; 212
Swift, Orlandini, Osborn, Yeomans (bib0068) 1996; 54
Fakhari, Li, Bolster, Christensen (bib0017) 2018; 114
Heneghan, Flynn, O'Keefe, Cahill (bib0027) 2002; 6
Shan, Doolen (bib0065) 1995; 81
Guo, Zheng, Shi (bib0024) 2002; 11
Sahu, Vanka (bib0061) 2011; 50
Liu, Kang, Leonardi, Schmieschek, Narváez, Jones, Williams, Valocchi, Harting (bib0046) 2016; 20
He, Luo (bib0026) 1997; 56
Ling, Bao, Oostrom, Battiato, Tartakovsky (bib0045) 2017; 105
Vanka, Shinn, Sahu (bib0071) 2011
Bandara, Tartakovsky, Oostrom, Palmer, Grate, Zhang (bib0006) 2013; 62
Zheng, Wang, Gong, Ju, Wang (bib0082) 2017; 47
Guo, Brusseau (bib0023) 2017; 31
Keller, Blunt, Roberts (bib0039) 1997; 26
Shan, Chen (bib0064) 1993; 47
Bernaschi, Melchionna, Succi, Fyta, Kaxiras, Sircar (bib0009) 2009; 180
Gunstensen, Rothman, Zaleski, Zanetti (bib0022) 1991; 43
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid, Tinevez, White, Hartenstein, Eliceiri, Tomancak, Cardona (bib0062) 2012; 9
Vogel (bib0073) 2000; 51
Redapangu, Sahu, Vanka (bib0058) 2012; 24
Jia, Zou, Li, Li, Zheng (bib0033) 2012; 33
Martys, Chen (bib0050) 1996; 53
Succi (10.1016/j.ijmultiphaseflow.2019.02.006_bib0066) 2016
Ju (10.1016/j.ijmultiphaseflow.2019.02.006_bib0035) 2016; 35
Shan (10.1016/j.ijmultiphaseflow.2019.02.006_bib0065) 1995; 81
Sukop (10.1016/j.ijmultiphaseflow.2019.02.006_bib0067) 2006
Vanka (10.1016/j.ijmultiphaseflow.2019.02.006_bib0071) 2011
Kang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0038) 2004; 27
Armstrong (10.1016/j.ijmultiphaseflow.2019.02.006_bib0004) 2012; 46
Zuo (10.1016/j.ijmultiphaseflow.2019.02.006_bib0084) 2013; 53
Chang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0012) 2016; 92
Schindelin (10.1016/j.ijmultiphaseflow.2019.02.006_bib0062) 2012; 9
Axner (10.1016/j.ijmultiphaseflow.2019.02.006_bib0005) 2008; 227
Munch (10.1016/j.ijmultiphaseflow.2019.02.006_bib0053) 2008; 91
Ferrari (10.1016/j.ijmultiphaseflow.2019.02.006_bib0019) 2015; 51
Vogel (10.1016/j.ijmultiphaseflow.2019.02.006_bib0073) 2000; 51
Redapangu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0059) 2013; 135
Andrew (10.1016/j.ijmultiphaseflow.2019.02.006_bib0001) 2014; 50
Leclaire (10.1016/j.ijmultiphaseflow.2019.02.006_bib0042) 2017; 95
Sahu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0061) 2011; 50
Liu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0047) 2014; 73
Zacharoudiou (10.1016/j.ijmultiphaseflow.2019.02.006_bib0079) 2016; 92
Chang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0013) 2017; 100
Rabbani (10.1016/j.ijmultiphaseflow.2019.02.006_bib0057) 2017; 7
Vidal (10.1016/j.ijmultiphaseflow.2019.02.006_bib0072) 2010; 39
Lenormand (10.1016/j.ijmultiphaseflow.2019.02.006_bib0043) 1988; 189
Yang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0076) 2013; 65
Ziegler (10.1016/j.ijmultiphaseflow.2019.02.006_bib0083) 1993; 71
Leclaire (10.1016/j.ijmultiphaseflow.2019.02.006_bib0041) 2017; 28
Ling (10.1016/j.ijmultiphaseflow.2019.02.006_bib0045) 2017; 105
Bernaschi (10.1016/j.ijmultiphaseflow.2019.02.006_bib0009) 2009; 180
Jia (10.1016/j.ijmultiphaseflow.2019.02.006_bib0033) 2012; 33
Qian (10.1016/j.ijmultiphaseflow.2019.02.006_bib0056) 1992; 17
Swift (10.1016/j.ijmultiphaseflow.2019.02.006_bib0069) 1995; 75
Mazzeo (10.1016/j.ijmultiphaseflow.2019.02.006_bib0051) 2008; 178
Ju (10.1016/j.ijmultiphaseflow.2019.02.006_bib0036) 2017; 50
Huang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0030) 2015
Ju (10.1016/j.ijmultiphaseflow.2019.02.006_bib0037) 2014; 59
He (10.1016/j.ijmultiphaseflow.2019.02.006_bib0026) 1997; 56
Porter (10.1016/j.ijmultiphaseflow.2019.02.006_bib0055) 2009; 32
Armstrong (10.1016/j.ijmultiphaseflow.2019.02.006_bib0002) 2013; 88
Chen (10.1016/j.ijmultiphaseflow.2019.02.006_bib0014) 2017; 212
Guo (10.1016/j.ijmultiphaseflow.2019.02.006_bib0023) 2017; 31
Huang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0031) 2011; 61
Ferer (10.1016/j.ijmultiphaseflow.2019.02.006_bib0018) 2011; 84
Yamabe (10.1016/j.ijmultiphaseflow.2019.02.006_bib0075) 2015; 49
Heuvellne (10.1016/j.ijmultiphaseflow.2019.02.006_bib0028) 2007; 18
Keller (10.1016/j.ijmultiphaseflow.2019.02.006_bib0039) 1997; 26
Ju (10.1016/j.ijmultiphaseflow.2019.02.006_bib0034) 2017; 46
Zheng (10.1016/j.ijmultiphaseflow.2019.02.006_bib0082) 2017; 47
Sethian (10.1016/j.ijmultiphaseflow.2019.02.006_bib0063) 2003; 35
Fakhari (10.1016/j.ijmultiphaseflow.2019.02.006_bib0017) 2018; 114
Pan (10.1016/j.ijmultiphaseflow.2019.02.006_bib0054) 2004; 158
Basirat (10.1016/j.ijmultiphaseflow.2019.02.006_bib0007) 2017; 109
Berg (10.1016/j.ijmultiphaseflow.2019.02.006_bib0008) 2013; 110
Desplat (10.1016/j.ijmultiphaseflow.2019.02.006_bib0015) 2001; 134
He (10.1016/j.ijmultiphaseflow.2019.02.006_bib0025) 1998; 146
Blaak (10.1016/j.ijmultiphaseflow.2019.02.006_bib0010) 2000; 129
Shan (10.1016/j.ijmultiphaseflow.2019.02.006_bib0064) 1993; 47
Brusseau (10.1016/j.ijmultiphaseflow.2019.02.006_bib0011) 2018; 613
Li (10.1016/j.ijmultiphaseflow.2019.02.006_bib0044) 2018; 116
Moebius (10.1016/j.ijmultiphaseflow.2019.02.006_bib0052) 2012; 377
Wang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0074) 2005; 72
Ghanizadeh (10.1016/j.ijmultiphaseflow.2019.02.006_bib0020) 2015; 153
Januszewski (10.1016/j.ijmultiphaseflow.2019.02.006_bib0032) 2014; 185
Heneghan (10.1016/j.ijmultiphaseflow.2019.02.006_bib0027) 2002; 6
Ye (10.1016/j.ijmultiphaseflow.2019.02.006_bib0077) 2015; 110
Yu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0078) 2015; 159
Armstrong (10.1016/j.ijmultiphaseflow.2019.02.006_bib0003) 2015; 77
Zhang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0080) 2011; 25
Loucks (10.1016/j.ijmultiphaseflow.2019.02.006_bib0049) 2009; 79
Redapangu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0058) 2012; 24
Swift (10.1016/j.ijmultiphaseflow.2019.02.006_bib0068) 1996; 54
Hu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0029) 2017; 60
Zhang (10.1016/j.ijmultiphaseflow.2019.02.006_bib0081) 2004; 69
Tsuji (10.1016/j.ijmultiphaseflow.2019.02.006_bib0070) 2016; 95
Liu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0046) 2016; 20
Gunstensen (10.1016/j.ijmultiphaseflow.2019.02.006_bib0022) 1991; 43
Liu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0048) 2016; 35
Redapangu (10.1016/j.ijmultiphaseflow.2019.02.006_bib0060) 2012; 34
Guo (10.1016/j.ijmultiphaseflow.2019.02.006_bib0024) 2002; 11
Landry (10.1016/j.ijmultiphaseflow.2019.02.006_bib0040) 2014; 103
Bandara (10.1016/j.ijmultiphaseflow.2019.02.006_bib0006) 2013; 62
Gunstensen (10.1016/j.ijmultiphaseflow.2019.02.006_bib0021) 1992; 18
Martys (10.1016/j.ijmultiphaseflow.2019.02.006_bib0050) 1996; 53
Español (10.1016/j.ijmultiphaseflow.2019.02.006_bib0016) 2017; 146
References_xml – volume: 159
  start-page: 354−363
  year: 2015
  ident: bib0078
  article-title: CO
  publication-title: Fuel
– volume: 95
  year: 2017
  ident: bib0042
  article-title: Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media
  publication-title: Phys. Rev. E
– volume: 146
  year: 2017
  ident: bib0016
  article-title: Perspective: dissipative particle dynamics
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 676−682
  year: 2012
  ident: bib0062
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 18
  start-page: 627−634
  year: 2007
  ident: bib0028
  article-title: The OpenLB project: an open source and object oriented implementation of lattice Boltzmann methods
  publication-title: Int. J. Mod. Phys. C
– volume: 84
  year: 2011
  ident: bib0018
  article-title: Two-phase flow in a rough fracture: experiment and modeling
  publication-title: Phys. Rev. E
– volume: 26
  start-page: 277−297
  year: 1997
  ident: bib0039
  article-title: Micromodel observation of the role of oil layers in three-phase flow
  publication-title: Transp. Porous Media
– volume: 17
  start-page: 479
  year: 1992
  ident: bib0056
  article-title: Lattice BGK models for Navier-Stokes equation
  publication-title: EPL
– volume: 11
  start-page: 366−374
  year: 2002
  ident: bib0024
  article-title: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method
  publication-title: Chin. Phys.
– volume: 69
  year: 2004
  ident: bib0081
  article-title: Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces
  publication-title: Phys. Rev. E
– volume: 47
  start-page: 83−90
  year: 2017
  ident: bib0082
  article-title: Characterization of nanopore morphology of shale and its effects on gas permeability
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 79
  start-page: 848−861
  year: 2009
  ident: bib0049
  article-title: Morphology, genesis, and distribution of nanometer-sale pores in Siliceous Mudstones of the Mississippian Barnett Shale
  publication-title: J. Sediment Res.
– volume: 18
  start-page: 157
  year: 1992
  ident: bib0021
  article-title: Microscopic modeling of immiscible fluids in three dimensions by a lattice Boltzmann method
  publication-title: EPL
– volume: 134
  start-page: 273−290
  year: 2001
  ident: bib0015
  article-title: LUDWIG: a parallel lattice-Boltzmann code for complex fluids
  publication-title: Comput. Phys. Commun.
– volume: 35
  start-page: 341−372
  year: 2003
  ident: bib0063
  article-title: Level set methods for fluid interfaces
  publication-title: Annu. Rev. Fluid Mech.
– year: 2006
  ident: bib0067
  article-title: Lattice Boltzmann Modeling: An Introduction For Geoscientists and Engineers
– volume: 77
  start-page: 57−68
  year: 2015
  ident: bib0003
  article-title: Modeling the velocity field during Haines jumps in porous media
  publication-title: Adv. Water Resour.
– volume: 613
  start-page: 176−185
  year: 2018
  ident: bib0011
  article-title: Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface
  publication-title: Sci. Total Environ.
– volume: 46
  start-page: 55−62
  year: 2012
  ident: bib0004
  article-title: Linking pore-scale interfacial curvature to column-scale capillary pressure
  publication-title: Adv. Water Resour.
– volume: 47
  start-page: 1815−1819
  year: 1993
  ident: bib0064
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Phys. Rev. E
– start-page: 429−437
  year: 2011
  ident: bib0071
  article-title: Computational fluid dynamics using graphics processing units: challenges and opportunities
– volume: 28
  year: 2017
  ident: bib0041
  article-title: Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models
  publication-title: Int. J. Mod. Phys. C
– volume: 25
  start-page: 3493−3505
  year: 2011
  ident: bib0080
  article-title: Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering
  publication-title: Energy Fuels
– volume: 56
  start-page: 6811−6817
  year: 1997
  ident: bib0026
  article-title: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation
  publication-title: Phys. Rev. E.
– volume: 50
  start-page: 199−215
  year: 2011
  ident: bib0061
  article-title: A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel
  publication-title: Comput. Fluids
– volume: 39
  start-page: 324−337
  year: 2010
  ident: bib0072
  article-title: On improving the performance of large parallel lattice Boltzmann flow simulations in heterogeneous porous media
  publication-title: Comput. Fluids
– volume: 20
  start-page: 777−805
  year: 2016
  ident: bib0046
  article-title: Multiphase lattice Boltzmann simulations for porous media applications
  publication-title: Comput. Geosci.
– volume: 75
  start-page: 830−833
  year: 1995
  ident: bib0069
  article-title: Lattice Boltzmann simulation of nonideal fluids
  publication-title: Phys. Rev. Lett.
– volume: 180
  start-page: 1495−1502
  year: 2009
  ident: bib0009
  article-title: MUPHY: a parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations
  publication-title: Comput. Phys. Commun.
– volume: 92
  start-page: 43−56
  year: 2016
  ident: bib0079
  article-title: Capillary filling and Haines jump dynamics using free energy lattice Boltzmann simulations
  publication-title: Adv. Water Resour.
– volume: 153
  start-page: 664−681
  year: 2015
  ident: bib0020
  article-title: Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization
  publication-title: Fuel
– volume: 33
  start-page: 343−350
  year: 2012
  ident: bib0033
  article-title: Assessment criteria, main types, basic features and resource prospects of the tight oil in China
  publication-title: Acta Pet. Sin.
– volume: 60
  start-page: 129−139
  year: 2017
  ident: bib0029
  article-title: Wettability effects on supercritical CO
  publication-title: Int. J. Greenh. Gas Con.
– volume: 189
  start-page: 165−187
  year: 1988
  ident: bib0043
  article-title: Numerical models and experiments on immiscible displacements in porous media
  publication-title: J. Fluid Mech.
– volume: 105
  start-page: 29−38
  year: 2017
  ident: bib0045
  article-title: Modeling variability in porescale multiphase flow experiments
  publication-title: Adv. Water Resour.
– volume: 73
  start-page: 144−158
  year: 2014
  ident: bib0047
  article-title: Pore-scale simulation of liquid CO
  publication-title: Adv. Water Resour.
– volume: 92
  start-page: 142−158
  year: 2016
  ident: bib0012
  article-title: Pore-scale supercritical CO
  publication-title: Adv. Water Resour.
– volume: 100
  start-page: 14−25
  year: 2017
  ident: bib0013
  article-title: Pore-scale supercritical CO
  publication-title: Adv. Water Resour.
– volume: 31
  start-page: 4748−4756
  year: 2017
  ident: bib0023
  article-title: The impact of well-field configuration on contaminant mass removal and plume persistence for homogeneous versus layered systems
  publication-title: Hydrol. Process.
– volume: 129
  start-page: 256−266
  year: 2000
  ident: bib0010
  article-title: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling
  publication-title: Comput. Phys. Commun.
– volume: 24
  year: 2012
  ident: bib0058
  article-title: A study of pressure-driven displacement flow of two immiscible liquids using a multiphase lattice Boltzmann approach
  publication-title: Phys. Fluids
– volume: 110
  start-page: 114−121
  year: 2015
  ident: bib0077
  article-title: Parallel computation of entropic lattice Boltzmann method on hybrid CPU–GPU accelerated system
  publication-title: Comput. Fluids
– volume: 53
  start-page: 743−750
  year: 1996
  ident: bib0050
  article-title: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method
  publication-title: Phys. Rev. E
– volume: 50
  start-page: 8760−8774
  year: 2014
  ident: bib0001
  article-title: Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: curvature, snap-off, and remobilization of residual CO
  publication-title: Water Resour. Res.
– volume: 146
  start-page: 282−300
  year: 1998
  ident: bib0025
  article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit
  publication-title: J. Comput. Phys.
– volume: 35
  start-page: 541−554
  year: 2016
  ident: bib0048
  article-title: Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 32
  start-page: 1632−1640
  year: 2009
  ident: bib0055
  article-title: Lattice-Boltzmann simulations of the capillary pressure-saturation-interfacial area relationship for porous media
  publication-title: Adv. Water Resour.
– volume: 54
  start-page: 5041−5052
  year: 1996
  ident: bib0068
  article-title: Lattice Boltzmann simulations of liquid-gas and binary fluid systems
  publication-title: Phys. Rev. E
– volume: 103
  start-page: 449−468
  year: 2014
  ident: bib0040
  article-title: Pore-scale lattice Boltzmann modeling and 4D X-ray computed microtomography imaging of fracture-matrix fluid transfer
  publication-title: Transp. Porous Media
– volume: 62
  start-page: 356−369
  year: 2013
  ident: bib0006
  article-title: Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media
  publication-title: Adv. Water Resour.
– volume: 35
  start-page: 614−623
  year: 2016
  ident: bib0035
  article-title: CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 185
  start-page: 2350−2368
  year: 2014
  ident: bib0032
  article-title: Sailfish: a flexible multi-GPU implementation of the lattice Boltzmann method
  publication-title: Comput. Phys. Commun.
– volume: 27
  start-page: 13−22
  year: 2004
  ident: bib0038
  article-title: Immiscible displacement in a channel: simulations of fingering in two dimensions
  publication-title: Adv. Water Resour.
– volume: 43
  start-page: 4320−4327
  year: 1991
  ident: bib0022
  article-title: Lattice Boltzmann model of immiscible fluids
  publication-title: Phys. Rev. A
– volume: 61
  start-page: 3606−3617
  year: 2011
  ident: bib0031
  article-title: Evaluation of three lattice Boltzmann models for multiphase flows in porous media
  publication-title: Comput. Math. Appl.
– year: 2016
  ident: bib0066
  article-title: Lattice Boltzmann beyond Navier-Stokes: where do we stand?
  publication-title: 30th International Symposium on Rarefied Gas Dynamics
– volume: 51
  start-page: 99−105
  year: 2000
  ident: bib0073
  article-title: A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models
  publication-title: Eur. J. Soil Sci.
– volume: 71
  start-page: 1171−1177
  year: 1993
  ident: bib0083
  article-title: Boundary conditions for lattice Boltzmann simulations
  publication-title: J. Stat. Phys.
– volume: 109
  start-page: 181−195
  year: 2017
  ident: bib0007
  article-title: Pore-scale modeling of wettability effects on CO
  publication-title: Adv. Water Resour.
– volume: 95
  start-page: 3−15
  year: 2016
  ident: bib0070
  article-title: Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone
  publication-title: Adv. Water Resour.
– volume: 377
  start-page: 406
  year: 2012
  end-page: 415
  ident: bib0052
  article-title: Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries
  publication-title: J. Colloid Interface Sci.
– volume: 72
  year: 2005
  ident: bib0074
  article-title: Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media
  publication-title: Phys. Rev. E
– year: 2015
  ident: bib0030
  article-title: Multiphase Lattice Boltzmann Methods: Theory and Application
– volume: 34
  start-page: 105−114
  year: 2012
  ident: bib0060
  article-title: Multiphase lattice Boltzmann simulations of buoyancy-induced flow of two immiscible fluids with different viscosities
  publication-title: Eur. J. Mech. B Fluids
– volume: 81
  start-page: 379−393
  year: 1995
  ident: bib0065
  article-title: Multicomponent lattice-Boltzmann model with interparticle interaction
  publication-title: J. Stat. Phys.
– volume: 53
  start-page: 188−197
  year: 2013
  ident: bib0084
  article-title: Micromodel investigations of CO
  publication-title: Adv. Water Resour.
– volume: 227
  start-page: 4895−4911
  year: 2008
  ident: bib0005
  article-title: Performance evaluation of a parallel sparse lattice Boltzmann solver
  publication-title: J. Comput. Phys.
– volume: 212
  start-page: 14−27
  year: 2017
  ident: bib0014
  article-title: Lattice Boltzmann simulations of liquid CO
  publication-title: J. Contam. Hydrol.
– volume: 49
  start-page: 537−543
  year: 2015
  ident: bib0075
  article-title: Lattice Boltzmann simulations of supercritical CO
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 1383
  year: 2017
  end-page: 1407
  ident: bib0036
  article-title: Visualization and transparentization of the structure and stress field of aggregated geomaterials through 3D printing and photoelastic techniques
  publication-title: Rock Mech. Rock Eng.
– volume: 59
  start-page: 5354−5365
  year: 2014
  ident: bib0037
  article-title: Visualization of the complex structure and stress field inside rock by means of 3D printing technology
  publication-title: Chin. Sci. Bull.
– volume: 46
  start-page: 26−37
  year: 2017
  ident: bib0034
  article-title: Three-dimensional characterisation of multi-scale structures of the Silurian Longmaxi shale using focused ion beam-scanning electron microscopy and reconstruction technology
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 91
  start-page: 4059−4067
  year: 2008
  ident: bib0053
  article-title: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion
  publication-title: J. Am. Ceram. Soc.
– volume: 178
  start-page: 894−914
  year: 2008
  ident: bib0051
  article-title: HemeLB: a high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries
  publication-title: Comput. Phys. Commun.
– volume: 65
  start-page: 882−890
  year: 2013
  ident: bib0076
  article-title: A comparison study of multi-component lattice Boltzmann models for flow in porous media applications
  publication-title: Comput. Math. Appl.
– volume: 88
  year: 2013
  ident: bib0002
  article-title: Interfacial velocities and capillary pressure gradients during Haines jumps
  publication-title: Phys. Rev. E
– volume: 51
  start-page: 1381−1400
  year: 2015
  ident: bib0019
  article-title: Challenges in modeling unstable two-phase flow experiments in porous micromodels
  publication-title: Water Resour. Res.
– volume: 7
  start-page: 4584
  year: 2017
  ident: bib0057
  article-title: New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions
  publication-title: Sci. Rep.
– volume: 158
  start-page: 89−105
  year: 2004
  ident: bib0054
  article-title: A high-performance lattice Boltzmann implementation to model flow in porous media
  publication-title: Comput. Phys. Commun.
– volume: 135
  year: 2013
  ident: bib0059
  article-title: A lattice Boltzmann simulation of three-dimensional displacement flow of two immiscible liquids in a square duct
  publication-title: ASME J. Fluids Eng.
– volume: 116
  start-page: 153−166
  year: 2018
  ident: bib0044
  article-title: A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: effects of fluid and geometrical properties
  publication-title: Adv. Water Resour.
– volume: 110
  start-page: 3755−3759
  year: 2013
  ident: bib0008
  article-title: Real-time 3D imaging of Haines jumps in porous media flow
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 114
  start-page: 119−134
  year: 2018
  ident: bib0017
  article-title: A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: application and comparison to experiments of CO
  publication-title: Adv. Water Resour.
– volume: 6
  start-page: 407−429
  year: 2002
  ident: bib0027
  article-title: Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis
  publication-title: Med. Image Anal.
– volume: 18
  start-page: 157
  year: 1992
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0021
  article-title: Microscopic modeling of immiscible fluids in three dimensions by a lattice Boltzmann method
  publication-title: EPL
  doi: 10.1209/0295-5075/18/2/012
– volume: 33
  start-page: 343−350
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0033
  article-title: Assessment criteria, main types, basic features and resource prospects of the tight oil in China
  publication-title: Acta Pet. Sin.
– volume: 212
  start-page: 14−27
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0014
  article-title: Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions
  publication-title: J. Contam. Hydrol.
– volume: 31
  start-page: 4748−4756
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0023
  article-title: The impact of well-field configuration on contaminant mass removal and plume persistence for homogeneous versus layered systems
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11393
– volume: 103
  start-page: 449−468
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0040
  article-title: Pore-scale lattice Boltzmann modeling and 4D X-ray computed microtomography imaging of fracture-matrix fluid transfer
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-014-0311-x
– volume: 129
  start-page: 256−266
  year: 2000
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0010
  article-title: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(00)00112-0
– volume: 613
  start-page: 176−185
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0011
  article-title: Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface
  publication-title: Sci. Total Environ.
– year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0067
– volume: 100
  start-page: 14−25
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0013
  article-title: Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.12.003
– volume: 51
  start-page: 1381−1400
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0019
  article-title: Challenges in modeling unstable two-phase flow experiments in porous micromodels
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016384
– volume: 26
  start-page: 277−297
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0039
  article-title: Micromodel observation of the role of oil layers in three-phase flow
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1006589611884
– start-page: 429−437
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0071
  article-title: Computational fluid dynamics using graphics processing units: challenges and opportunities
– volume: 95
  start-page: 3−15
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0070
  article-title: Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.03.005
– volume: 105
  start-page: 29−38
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0045
  article-title: Modeling variability in porescale multiphase flow experiments
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.04.005
– volume: 50
  start-page: 8760−8774
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0001
  article-title: Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: curvature, snap-off, and remobilization of residual CO2
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR015970
– volume: 35
  start-page: 541−554
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0048
  article-title: Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.08.071
– volume: 92
  start-page: 142−158
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0012
  article-title: Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.03.015
– year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0030
– volume: 61
  start-page: 3606−3617
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0031
  article-title: Evaluation of three lattice Boltzmann models for multiphase flows in porous media
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.06.034
– volume: 69
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0081
  article-title: Mean-field free-energy approach to the lattice Boltzmann method for liquid-vapor and solid-fluid interfaces
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.032602
– volume: 47
  start-page: 83−90
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0082
  article-title: Characterization of nanopore morphology of shale and its effects on gas permeability
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.10.004
– volume: 51
  start-page: 99−105
  year: 2000
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0073
  article-title: A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2000.00275.x
– volume: 43
  start-page: 4320−4327
  year: 1991
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0022
  article-title: Lattice Boltzmann model of immiscible fluids
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.43.4320
– volume: 28
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0041
  article-title: Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183117500851
– volume: 146
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0016
  article-title: Perspective: dissipative particle dynamics
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4979514
– volume: 9
  start-page: 676−682
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0062
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 27
  start-page: 13−22
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0038
  article-title: Immiscible displacement in a channel: simulations of fingering in two dimensions
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2003.10.002
– volume: 159
  start-page: 354−363
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0078
  article-title: CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.092
– volume: 46
  start-page: 55−62
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0004
  article-title: Linking pore-scale interfacial curvature to column-scale capillary pressure
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.05.009
– volume: 84
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0018
  article-title: Two-phase flow in a rough fracture: experiment and modeling
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.016316
– volume: 134
  start-page: 273−290
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0015
  article-title: LUDWIG: a parallel lattice-Boltzmann code for complex fluids
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(00)00205-8
– volume: 7
  start-page: 4584
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0057
  article-title: New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04545-4
– volume: 50
  start-page: 199−215
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0061
  article-title: A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2011.07.012
– volume: 47
  start-page: 1815−1819
  year: 1993
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0064
  article-title: Lattice Boltzmann model for simulating flows with multiple phases and components
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.47.1815
– volume: 110
  start-page: 114−121
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0077
  article-title: Parallel computation of entropic lattice Boltzmann method on hybrid CPU–GPU accelerated system
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2014.06.002
– volume: 73
  start-page: 144−158
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0047
  article-title: Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2014.07.010
– volume: 18
  start-page: 627−634
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0028
  article-title: The OpenLB project: an open source and object oriented implementation of lattice Boltzmann methods
  publication-title: Int. J. Mod. Phys. C
– volume: 35
  start-page: 341−372
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0063
  article-title: Level set methods for fluid interfaces
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.35.101101.161105
– volume: 53
  start-page: 188−197
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0084
  article-title: Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.11.004
– volume: 88
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0002
  article-title: Interfacial velocities and capillary pressure gradients during Haines jumps
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.043010
– volume: 39
  start-page: 324−337
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0072
  article-title: On improving the performance of large parallel lattice Boltzmann flow simulations in heterogeneous porous media
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2009.09.011
– volume: 77
  start-page: 57−68
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0003
  article-title: Modeling the velocity field during Haines jumps in porous media
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.01.008
– volume: 65
  start-page: 882−890
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0076
  article-title: A comparison study of multi-component lattice Boltzmann models for flow in porous media applications
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.11.022
– volume: 377
  start-page: 406
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0052
  article-title: Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.03.070
– volume: 59
  start-page: 5354−5365
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0037
  article-title: Visualization of the complex structure and stress field inside rock by means of 3D printing technology
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-014-0579-9
– volume: 227
  start-page: 4895−4911
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0005
  article-title: Performance evaluation of a parallel sparse lattice Boltzmann solver
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.01.013
– volume: 56
  start-page: 6811−6817
  issue: 6
  year: 1997
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0026
  article-title: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.56.6811
– volume: 79
  start-page: 848−861
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0049
  article-title: Morphology, genesis, and distribution of nanometer-sale pores in Siliceous Mudstones of the Mississippian Barnett Shale
  publication-title: J. Sediment Res.
  doi: 10.2110/jsr.2009.092
– volume: 20
  start-page: 777−805
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0046
  article-title: Multiphase lattice Boltzmann simulations for porous media applications
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-015-9542-3
– volume: 91
  start-page: 4059−4067
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0053
  article-title: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02736.x
– volume: 81
  start-page: 379−393
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0065
  article-title: Multicomponent lattice-Boltzmann model with interparticle interaction
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF02179985
– volume: 25
  start-page: 3493−3505
  year: 2011
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0080
  article-title: Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering
  publication-title: Energy Fuels
  doi: 10.1021/ef101732k
– volume: 178
  start-page: 894−914
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0051
  article-title: HemeLB: a high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.02.013
– volume: 146
  start-page: 282−300
  year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0025
  article-title: A novel thermal model for the lattice Boltzmann method in incompressible limit
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.6057
– volume: 135
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0059
  article-title: A lattice Boltzmann simulation of three-dimensional displacement flow of two immiscible liquids in a square duct
  publication-title: ASME J. Fluids Eng.
  doi: 10.1115/1.4024998
– volume: 34
  start-page: 105−114
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0060
  article-title: Multiphase lattice Boltzmann simulations of buoyancy-induced flow of two immiscible fluids with different viscosities
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2012.01.006
– volume: 11
  start-page: 366−374
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0024
  article-title: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method
  publication-title: Chin. Phys.
– volume: 49
  start-page: 537−543
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0075
  article-title: Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es504510y
– volume: 92
  start-page: 43−56
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0079
  article-title: Capillary filling and Haines jump dynamics using free energy lattice Boltzmann simulations
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.03.013
– volume: 71
  start-page: 1171−1177
  year: 1993
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0083
  article-title: Boundary conditions for lattice Boltzmann simulations
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01049965
– volume: 110
  start-page: 3755−3759
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0008
  article-title: Real-time 3D imaging of Haines jumps in porous media flow
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1221373110
– volume: 185
  start-page: 2350−2368
  year: 2014
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0032
  article-title: Sailfish: a flexible multi-GPU implementation of the lattice Boltzmann method
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.04.018
– volume: 60
  start-page: 129−139
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0029
  article-title: Wettability effects on supercritical CO2–brine immiscible displacement during drainage: pore-scale observation and 3D simulation
  publication-title: Int. J. Greenh. Gas Con.
  doi: 10.1016/j.ijggc.2017.03.011
– volume: 95
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0042
  article-title: Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.033306
– volume: 17
  start-page: 479
  issue: 6
  year: 1992
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0056
  article-title: Lattice BGK models for Navier-Stokes equation
  publication-title: EPL
  doi: 10.1209/0295-5075/17/6/001
– volume: 53
  start-page: 743−750
  issue: 1
  year: 1996
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0050
  article-title: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.53.743
– volume: 158
  start-page: 89−105
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0054
  article-title: A high-performance lattice Boltzmann implementation to model flow in porous media
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2003.12.003
– year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0066
  article-title: Lattice Boltzmann beyond Navier-Stokes: where do we stand?
– volume: 180
  start-page: 1495−1502
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0009
  article-title: MUPHY: a parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.04.001
– volume: 109
  start-page: 181−195
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0007
  article-title: Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.09.004
– volume: 116
  start-page: 153−166
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0044
  article-title: A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: effects of fluid and geometrical properties
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.04.009
– volume: 54
  start-page: 5041−5052
  year: 1996
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0068
  article-title: Lattice Boltzmann simulations of liquid-gas and binary fluid systems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.54.5041
– volume: 153
  start-page: 664−681
  year: 2015
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0020
  article-title: Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization
  publication-title: Fuel
– volume: 35
  start-page: 614−623
  year: 2016
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0035
  article-title: CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.09.011
– volume: 114
  start-page: 119−134
  year: 2018
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0017
  article-title: A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: application and comparison to experiments of CO2 sequestration at pore scale
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.02.005
– volume: 62
  start-page: 356−369
  year: 2013
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0006
  article-title: Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.09.014
– volume: 24
  year: 2012
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0058
  article-title: A study of pressure-driven displacement flow of two immiscible liquids using a multiphase lattice Boltzmann approach
  publication-title: Phys. Fluids
  doi: 10.1063/1.4760257
– volume: 32
  start-page: 1632−1640
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0055
  article-title: Lattice-Boltzmann simulations of the capillary pressure-saturation-interfacial area relationship for porous media
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2009.08.009
– volume: 75
  start-page: 830−833
  year: 1995
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0069
  article-title: Lattice Boltzmann simulation of nonideal fluids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.830
– volume: 6
  start-page: 407−429
  year: 2002
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0027
  article-title: Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(02)00058-0
– volume: 50
  start-page: 1383
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0036
  article-title: Visualization and transparentization of the structure and stress field of aggregated geomaterials through 3D printing and photoelastic techniques
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-017-1171-9
– volume: 189
  start-page: 165−187
  year: 1988
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0043
  article-title: Numerical models and experiments on immiscible displacements in porous media
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112088000953
– volume: 46
  start-page: 26−37
  year: 2017
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0034
  article-title: Three-dimensional characterisation of multi-scale structures of the Silurian Longmaxi shale using focused ion beam-scanning electron microscopy and reconstruction technology
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.07.015
– volume: 72
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2019.02.006_bib0074
  article-title: Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.016706
SSID ssj0005743
Score 2.385401
Snippet •Immiscible oil-water displacement in heterogeneous pore structures is investigated.•A multicomponent lattice Boltzmann model with high-resolution meshes is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms 3DP technology
Experimental validation
Heterogeneous pore structure
Immiscible oil-water displacement
Multicomponent lattice Boltzmann model
Parallel computing algorithm
Title Characterization of immiscible phase displacement in heterogeneous pore structures: Parallel multicomponent lattice Boltzmann simulation and experimental validation using three-dimensional printing technology
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.02.006
Volume 114
WOSCitedRecordID wos000467888200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005743
  issn: 0301-9322
  databaseCode: AIEXJ
  dateStart: 19951201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW2DiZ4QDBAG1_yA-KlCmoSp7GReCjTEExomsSAvkWJ40CqNKn6MU37lfwk7rWTOO0QKhK8RFUqu7busX17fe65hLwUqWQJk4GTKhY4TAV4SRh4DpPcE9zN_EwrMX39FJ6d8fFYnO_skiYX5rIIy5JfXYnZfzU1vANjY-rsX5i77RRewGcwOjzB7PDcyvDHrQTzdesO5tMpZt9iltTsB5xbeC-j2ViaCpCX4C9Cgwr6VEiJBZ8chWdRWXY1N6S5c-i0KFRhGIhIRK9KbFvES6TP9d9VxfJ6Gpdlf5FP65Jg-mJirYQAzDM3RZz6q4VJ1Jor5aT4vZEH6WOg0RSvWA_6Tyzl3kYwO7oXhhmpJ5cVVRuZP13pQyauD2hdCcBsb99UmVQ2bq5qajIsl-_LuOpGQzABK-hGQ9o0HcuJ0qlhA9cBR9Vs-8rs9DwUjh8YFY72KHBZZzM3iri1W2AqWtw4cEzsY_I6n9hp4iyRNCiMGuyG0rf2HT7jkHBEsKPiZTjbJXteGAjeI3ujjyfjU0tTMkki7RT2ySvLUfzTr_7e0eo4Txf3yb36Xw8dGbQ-IDuqPCB3O1qYB-S25iLLxUPycxPBtMqoRTDV46BdBNO8pGsIpohgahH8hjb4pev4pTV-aYtfavFLAb-0i19q8Us1fukN_NIGv9Ti9xH58v7k4viDUxcecaQv2NLx46Efg2VUzLnMuJ8lfsoTlSaZ5D4PMjeRw4xxySRqH0kpUGHDH6bCTUI5kKH_mPRKmMUhoVwOYw9rOMjEZUJlPMT6C6EXCDA399Mj8raxUiRrVX4sDlNEDf1yEm1aOUIrRwMvAisfkbBtPzP6NFu3HDWgiGpv23jREWB7yz6e_IM-npI7diE_Iz2AhnpObsnLZb6Yv6iXwy9Uzhnj
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+immiscible+phase+displacement+in+heterogeneous+pore+structures%3A+Parallel+multicomponent+lattice+Boltzmann+simulation+and+experimental+validation+using+three-dimensional+printing+technology&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Ju%2C+Yang&rft.au=Gong%2C+Wenbo&rft.au=Zheng%2C+Jiangtao&rft.date=2019-05-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=114&rft.spage=50&rft.epage=65&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2019.02.006&rft.externalDocID=S0301932218306724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon