Hybrids of Support Vector Regression with Grey Wolf Optimizer and Firefly Algorithm for Spatial Prediction of Landslide Susceptibility
Landslides are one of the most frequent and important natural disasters in the world. The purpose of this study is to evaluate the landslide susceptibility in Zhenping County using a hybrid of support vector regression (SVR) with grey wolf optimizer (GWO) and firefly algorithm (FA) by frequency rati...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 13; číslo 24; s. 4966 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.12.2021
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Landslides are one of the most frequent and important natural disasters in the world. The purpose of this study is to evaluate the landslide susceptibility in Zhenping County using a hybrid of support vector regression (SVR) with grey wolf optimizer (GWO) and firefly algorithm (FA) by frequency ratio (FR) preprocessed. Therefore, a landslide inventory composed of 140 landslides and 16 landslide conditioning factors is compiled as a landslide database. Among these landslides, 70% (98) landslides were randomly selected as the training dataset of the model, and the other landslides (42) were used to verify the model. The 16 landslide conditioning factors include elevation, slope, aspect, plan curvature, profile curvature, distance to faults, distance to rivers, distance to roads, sediment transport index (STI), stream power index (SPI), topographic wetness index (TWI), normalized difference vegetation index (NDVI), landslide, rainfall, soil and lithology. The conditioning factors selection and spatial correlation analysis were carried out by using the correlation attribute evaluation (CAE) method and the frequency ratio (FR) algorithm. The area under the receiver operating characteristic curve (AUROC) and kappa data of the training dataset and validation dataset are used to evaluate the prediction ability and the relationship between the advantages and disadvantages of landslide susceptibility maps. The results show that the SVR-GWO model (AUROC = 0.854) has the best performance in landslide spatial prediction, followed by the SVR-FA (AUROC = 0.838) and SVR models (AUROC = 0.818). The hybrid models of SVR-GWO and SVR-FA improve the performance of the single SVR model, and all three models have good prospects for regional-scale landslide spatial modeling. |
|---|---|
| AbstractList | Landslides are one of the most frequent and important natural disasters in the world. The purpose of this study is to evaluate the landslide susceptibility in Zhenping County using a hybrid of support vector regression (SVR) with grey wolf optimizer (GWO) and firefly algorithm (FA) by frequency ratio (FR) preprocessed. Therefore, a landslide inventory composed of 140 landslides and 16 landslide conditioning factors is compiled as a landslide database. Among these landslides, 70% (98) landslides were randomly selected as the training dataset of the model, and the other landslides (42) were used to verify the model. The 16 landslide conditioning factors include elevation, slope, aspect, plan curvature, profile curvature, distance to faults, distance to rivers, distance to roads, sediment transport index (STI), stream power index (SPI), topographic wetness index (TWI), normalized difference vegetation index (NDVI), landslide, rainfall, soil and lithology. The conditioning factors selection and spatial correlation analysis were carried out by using the correlation attribute evaluation (CAE) method and the frequency ratio (FR) algorithm. The area under the receiver operating characteristic curve (AUROC) and kappa data of the training dataset and validation dataset are used to evaluate the prediction ability and the relationship between the advantages and disadvantages of landslide susceptibility maps. The results show that the SVR-GWO model (AUROC = 0.854) has the best performance in landslide spatial prediction, followed by the SVR-FA (AUROC = 0.838) and SVR models (AUROC = 0.818). The hybrid models of SVR-GWO and SVR-FA improve the performance of the single SVR model, and all three models have good prospects for regional-scale landslide spatial modeling. |
| Author | Peng, Jianbing Chen, Wei Liu, Ru Lee, Saro Panahi, Mahdi Zhao, Xia Leng, Yanqiu |
| Author_xml | – sequence: 1 givenname: Ru surname: Liu fullname: Liu, Ru – sequence: 2 givenname: Jianbing surname: Peng fullname: Peng, Jianbing – sequence: 3 givenname: Yanqiu surname: Leng fullname: Leng, Yanqiu – sequence: 4 givenname: Saro orcidid: 0000-0003-0409-8263 surname: Lee fullname: Lee, Saro – sequence: 5 givenname: Mahdi surname: Panahi fullname: Panahi, Mahdi – sequence: 6 givenname: Wei surname: Chen fullname: Chen, Wei – sequence: 7 givenname: Xia surname: Zhao fullname: Zhao, Xia |
| BookMark | eNptkduKFDEQhoOs4Dq7Nz5BwBsRZk3n0OlcLot7gIGVPehlU-kkY4ZMp00ySPsAPreZHVFZDIRUwvf_lap6jY7GOFqE3jTkjDFFPqTcMMq5atsX6JgSSZecKnr0T_wKnea8IXUx1ijCj9HP61knbzKODt_vpimmgj_bocSE7-w62Zx9HPF3X77iq2Rn_CUGh2-n4rf-h00YRoMvfbIuzPg8rGOq4Ba7qr6foHgI-FOyxg9l71JTrKogB29sTZYHW320D77MJ-ilg5Dt6e9zgR4vPz5cXC9Xt1c3F-er5cAUL0sGjXHK0UbqWnFHOwmNFFJyACJaTTkF12prHCinDEhbr0YNUmrujADHFujm4GsibPop-S2kuY_g-6eHmNY9pOKHYHsOVhOieWuY4ERYEJozB5Ip2ZlOi-r17uA1pfhtZ3Ppt77WFAKMNu5yT1vWdqRuVdG3z9BN3KWxVlqphnZC0DqRBXp_oIYUc65N_fPBhvT7Cfd_J1xh8gwefIF9n0sCH_4n-QUCvawo |
| CitedBy_id | crossref_primary_10_3390_rs14081919 crossref_primary_10_3390_su141711092 crossref_primary_10_1007_s11069_023_06176_7 crossref_primary_10_1155_2022_1511479 crossref_primary_10_1007_s00477_025_02911_7 crossref_primary_10_1007_s42452_025_06498_0 crossref_primary_10_1007_s11069_024_06673_3 crossref_primary_10_1007_s11069_023_06121_8 crossref_primary_10_1007_s11069_022_05520_7 crossref_primary_10_1007_s11600_023_01072_x crossref_primary_10_1080_02723646_2025_2541644 crossref_primary_10_1016_j_envpol_2022_120203 crossref_primary_10_3390_ma18184274 crossref_primary_10_1002_gj_5175 crossref_primary_10_2166_wcc_2022_257 crossref_primary_10_2166_ws_2025_007 crossref_primary_10_3390_w15030453 crossref_primary_10_1007_s42979_024_02790_9 crossref_primary_10_3390_app122412887 crossref_primary_10_1007_s11227_023_05681_7 crossref_primary_10_3390_rs15041007 crossref_primary_10_1007_s40808_024_02157_2 crossref_primary_10_1007_s12517_022_09974_8 crossref_primary_10_3390_rs15153901 |
| Cites_doi | 10.1016/j.catena.2011.01.014 10.1007/s12665-010-0687-z 10.1016/j.asej.2016.08.023 10.1007/s12665-017-6731-5 10.1016/j.advengsoft.2013.12.007 10.1016/j.isatra.2017.08.009 10.1023/B:NHAZ.0000007097.42735.9e 10.3390/rs13194011 10.1007/s10346-006-0047-y 10.1007/s11069-012-0347-6 10.1007/s11069-012-0163-z 10.1016/j.catena.2007.01.003 10.1016/j.catena.2018.03.003 10.1016/j.rse.2014.05.013 10.1007/s12665-010-0705-1 10.1007/s11069-010-9598-2 10.1007/s40710-017-0248-5 10.1016/j.jhydrol.2016.06.027 10.1016/j.geomorph.2014.02.003 10.1007/s11707-017-0635-2 10.1016/j.scitotenv.2020.137231 10.1016/j.ecoleng.2017.08.010 10.1007/s11069-008-9305-8 10.1016/j.jseaes.2012.12.014 10.1016/j.cageo.2011.05.010 10.1016/j.catena.2016.06.004 10.1016/j.catena.2015.10.010 10.1007/s12665-014-3718-3 10.1016/j.catena.2012.05.005 10.1016/j.catena.2015.08.007 10.1007/s12665-015-5233-6 10.1007/s12517-012-0526-5 10.3390/su11164386 10.1016/j.jseaes.2009.01.002 10.1007/s12665-018-7268-y 10.1016/j.jhydrol.2020.125033 10.3390/app9214715 10.1007/978-981-10-5221-7 10.1016/j.geomorph.2009.10.002 10.5194/nhess-16-2729-2016 10.3390/s19214698 10.17485/ijst/2018/v11i12/99745 10.1007/s12665-018-7844-1 10.1007/s12040-012-0230-6 10.1016/j.geomorph.2020.107432 10.1016/j.geomorph.2017.09.007 10.1016/j.geomorph.2017.06.013 10.2307/2529310 10.1016/j.enggeo.2011.09.011 10.3390/rs8040347 10.1007/s12040-015-0624-3 10.1007/s12665-010-0531-5 10.1080/10106049.2017.1323964 10.1016/j.cageo.2010.10.012 10.1016/j.geomorph.2006.03.041 10.1016/j.scitotenv.2020.139937 10.1007/s10346-014-0521-x 10.1016/j.geomorph.2005.07.005 10.1016/j.envsoft.2004.11.013 10.1007/s11069-021-04844-0 10.3390/en12020289 10.1111/j.1467-9671.2005.00229.x 10.1007/s11069-018-3536-0 10.1016/j.jafrearsci.2016.02.019 10.1007/s10346-018-0950-z 10.1016/j.geomorph.2004.06.010 10.1080/19475705.2012.662915 10.1016/j.enggeo.2005.02.002 10.1016/j.catena.2015.05.019 10.1016/j.neunet.2013.01.008 10.1007/s10346-015-0614-1 10.1007/978-981-15-0306-1 10.1016/j.catena.2011.11.014 10.3390/su11051362 10.1016/j.cageo.2012.08.023 10.1007/s12665-017-6839-7 10.1016/j.asoc.2015.03.041 10.1016/j.scitotenv.2018.01.266 10.1145/130385.130401 10.1016/j.catena.2019.104364 10.1016/j.catena.2016.01.022 10.1016/S0169-555X(02)00176-9 10.1016/j.geomorph.2018.06.006 10.3390/e19080396 10.1007/s12665-017-7177-5 10.3390/rs11161943 10.1016/j.ijleo.2016.11.173 10.1016/S0167-8809(01)00187-6 10.3390/rs12142180 10.1023/B:NHAZ.0000026786.85589.4a 10.1007/s12517-017-2918-z 10.1016/j.ecolmodel.2011.12.007 10.1007/s12145-015-0220-8 10.1007/s12665-017-6981-2 10.1016/S1672-6529(09)60240-7 10.1007/s11069-012-0217-2 10.1016/j.beproc.2011.09.006 10.1016/j.cageo.2017.11.019 10.1155/2015/137695 10.1007/s12665-016-5919-4 10.1007/s00254-008-1342-9 10.1007/s13762-013-0464-0 10.1016/S0013-7952(03)00143-1 10.1007/s00254-007-0818-3 10.1016/j.enggeo.2006.05.001 10.1016/j.geoderma.2015.11.028 10.1007/s005310050149 10.1007/s11629-015-3464-3 10.1016/j.geomorph.2017.10.006 10.1016/j.scs.2017.08.004 10.1080/14498596.2018.1505564 10.5194/hess-22-4771-2018 10.1038/s41598-019-48773-2 10.1016/j.scitotenv.2018.01.124 10.1007/s11069-006-9027-8 10.3390/e21020218 10.1007/s11069-014-1378-y 10.1016/j.asoc.2016.12.022 10.1080/19475705.2018.1487471 10.1007/s12594-013-0162-z 10.1016/j.geoderma.2017.06.020 10.1016/j.geomorph.2016.02.012 10.1108/09653561011052547 10.1016/j.cageo.2008.08.007 10.1186/s40677-016-0053-x 10.1016/j.enggeo.2008.03.009 10.1007/s12524-010-0020-z 10.1080/13658810410001702003 10.1016/j.envsoft.2017.08.003 10.1016/j.jseaes.2012.10.005 10.1007/s12517-012-0532-7 10.1016/S0169-555X(02)00079-X 10.1016/j.catena.2015.07.020 10.1016/0034-4257(94)00071-T 10.1016/j.jhydrol.2010.12.027 10.1016/j.catena.2013.08.006 10.1016/j.catena.2020.104833 10.1016/j.catena.2017.11.022 10.1007/s12303-018-0052-x 10.1007/s10346-017-0883-y 10.1007/s00366-017-0535-9 10.1007/s10346-016-0711-9 10.1007/s11069-014-1245-x 10.1016/j.geoderma.2018.05.027 10.1080/19475705.2018.1481147 10.1007/s11629-017-4404-1 10.1016/j.molliq.2018.04.070 10.1016/j.catena.2019.104396 10.1080/19475705.2015.1115431 10.2166/nh.2017.044 10.1007/s00704-015-1702-9 10.3390/app7101000 10.1007/s12205-018-1337-3 10.1016/j.catena.2019.104225 10.1007/s12665-017-6558-0 10.1016/j.catena.2013.11.014 10.1007/s10346-011-0308-2 10.3390/rs10101545 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs13244966 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_4aeb00b46d35405ea5b43fa73978d8b5 10_3390_rs13244966 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-3a1df9f217b3398287a175774aa056b242af6bedfa9f9da7eaf6d9c77b4fd5af3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000737367900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:05:06 EDT 2025 Fri Sep 05 11:46:36 EDT 2025 Fri Jul 25 11:52:47 EDT 2025 Sat Nov 29 07:14:17 EST 2025 Tue Nov 18 21:06:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-3a1df9f217b3398287a175774aa056b242af6bedfa9f9da7eaf6d9c77b4fd5af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0409-8263 |
| OpenAccessLink | https://doaj.org/article/4aeb00b46d35405ea5b43fa73978d8b5 |
| PQID | 2612855203 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4aeb00b46d35405ea5b43fa73978d8b5 proquest_miscellaneous_2636803689 proquest_journals_2612855203 crossref_primary_10_3390_rs13244966 crossref_citationtrail_10_3390_rs13244966 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Pradhan (ref_112) 2012; 171 Zhiwen (ref_142) 2017; 71 Pham (ref_102) 2017; 4 Youssef (ref_91) 2016; 13 ref_139 Choi (ref_19) 2012; 124 Yesilnacar (ref_111) 2005; 79 ref_138 Sujatha (ref_24) 2012; 121 Rozos (ref_39) 2011; 63 Hong (ref_64) 2017; 76 Miao (ref_93) 2018; 15 ref_13 ref_131 ref_130 Pourghasemi (ref_26) 2013; 6 Ayalew (ref_50) 2005; 65 ref_132 Rasyid (ref_8) 2016; 3 Pradhan (ref_100) 2016; 140 Mohammady (ref_41) 2012; 61 Steger (ref_61) 2016; 16 Lai (ref_78) 2018; 49 Hong (ref_67) 2015; 133 Oh (ref_96) 2009; 57 ref_16 Pourghasemi (ref_35) 2012; 63 Feizizadeh (ref_74) 2017; 10 Shahabi (ref_153) 2014; 115 Fell (ref_166) 2008; 102 Lee (ref_30) 2004; 18 Oh (ref_156) 2018; 9 Aditian (ref_10) 2018; 318 ref_129 Pham (ref_5) 2017; 128 Huang (ref_86) 2018; 165 Visser (ref_162) 2006; 21 ref_22 ref_122 ref_121 Garosi (ref_90) 2018; 330 Pradhan (ref_137) 2018; 9 Chang (ref_107) 2019; 9 Dahal (ref_108) 2008; 54 Westen (ref_15) 1997; 86 Zang (ref_150) 2010; 7 Yalcin (ref_40) 2008; 72 Rengers (ref_47) 2003; 30 ref_72 ref_159 ref_70 Zhang (ref_141) 2016; 130 Camilo (ref_92) 2017; 97 Asl (ref_149) 2017; 34 ref_152 Chen (ref_167) 2017; 297 ref_155 Irigaray (ref_52) 2009; 50 Jaafari (ref_117) 2014; 11 Ho (ref_164) 2016; 75 Sarkar (ref_46) 2013; 82 Alexandridis (ref_151) 2013; 42 Arabameri (ref_79) 2017; 76 Pradhan (ref_21) 2010; 38 Pourghasemi (ref_42) 2013; 4 Colkesen (ref_88) 2016; 118 Gorsevski (ref_45) 2005; 9 Lorang (ref_105) 2002; 48 Muro (ref_143) 2011; 88 ref_148 Sahana (ref_60) 2017; 14 Sahoo (ref_136) 2016; 52 Meten (ref_58) 2015; 12 ref_140 ref_89 Kayastha (ref_28) 2012; 63 Irigaray (ref_51) 2007; 41 ref_146 Panahi (ref_53) 2020; 741 ref_84 ref_145 Tsangaratos (ref_80) 2014; 74 Tian (ref_81) 2019; 10 Pontius (ref_161) 2001; 85 Ercanoglu (ref_7) 2004; 32 Pham (ref_1) 2018; 77 Zhang (ref_71) 2017; 76 Pourghasemi (ref_109) 2018; 162 Thomas (ref_125) 2018; 15 Chen (ref_160) 2017; 305 Doyuran (ref_12) 2004; 71 Saboya (ref_34) 2006; 86 Pradhan (ref_32) 2011; 63 Dehnavi (ref_54) 2015; 135 Hong (ref_99) 2020; 718 Conforti (ref_115) 2011; 56 Devkota (ref_25) 2013; 65 Panahi (ref_133) 2020; 588 Khosravi (ref_103) 2018; 627 Wang (ref_18) 2014; 72 Yilmaz (ref_20) 2009; 35 Zhu (ref_36) 2014; 214 Vorpahl (ref_116) 2012; 239 Kim (ref_76) 2018; 33 Razavizadeh (ref_95) 2017; 76 Rahmati (ref_106) 2016; 137 Aghdam (ref_57) 2017; 76 Landis (ref_165) 1977; 33 Ghorbanzadeh (ref_56) 2020; 65 Razandi (ref_17) 2015; 8 Wu (ref_157) 2020; 187 Conforti (ref_82) 2014; 113 Khosravi (ref_94) 2018; 22 Oh (ref_126) 2011; 399 Clerici (ref_11) 2002; 48 Jebur (ref_27) 2014; 152 Komac (ref_38) 2006; 74 Singh (ref_168) 2010; 19 ref_69 Solaimani (ref_97) 2013; 6 ref_68 Feng (ref_65) 2018; 22 Lee (ref_127) 2007; 4 Hong (ref_154) 2019; 96 Zhou (ref_3) 2018; 112 Wei (ref_98) 2021; 109 Che (ref_49) 2012; 92 Chen (ref_128) 2021; 196 Sulaiman (ref_135) 2015; 32 Avelar (ref_114) 2007; 87 Meliho (ref_163) 2018; 77 Aghdam (ref_55) 2016; 75 Ahmed (ref_37) 2015; 12 Kumar (ref_85) 2017; 295 Yalcin (ref_113) 2011; 85 Pham (ref_66) 2018; 11 Mahalingam (ref_4) 2015; 7 Kadirhodjaev (ref_77) 2018; 22 Wang (ref_23) 2015; 124 Tuan (ref_73) 2017; 14 Wang (ref_62) 2015; 135 Aksoy (ref_33) 2012; 38 Nassar (ref_59) 2018; 11 Tsangaratos (ref_63) 2016; 145 Pourghasemi (ref_104) 2020; 187 Hall (ref_118) 1995; 51 Rossi (ref_123) 2017; 109 Pourghasemi (ref_158) 2012; 97 Chen (ref_169) 2018; 626 Pradhan (ref_14) 2013; 51 Hong (ref_75) 2016; 259 Zhao (ref_119) 2015; 2015 Sharma (ref_48) 2015; 75 Micu (ref_9) 2020; 371 Park (ref_43) 2011; 62 Martelloni (ref_120) 2012; 9 Yuan (ref_101) 2017; 11 Spross (ref_83) 2019; 183 Ozdemir (ref_29) 2013; 64 Oh (ref_110) 2011; 37 Cheng (ref_124) 2016; 265 Mirjalili (ref_134) 2014; 69 ref_2 Jiang (ref_147) 2017; 35 Regmi (ref_31) 2010; 115 Pradhan (ref_87) 2016; 540 Tangestani (ref_44) 2009; 35 Bian (ref_144) 2018; 261 ref_6 |
| References_xml | – volume: 85 start-page: 274 year: 2011 ident: ref_113 article-title: A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey publication-title: Catena doi: 10.1016/j.catena.2011.01.014 – volume: 63 start-page: 49 year: 2011 ident: ref_39 article-title: Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: A case study from the Eastern Achaia County of Peloponnesus, Greece publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0687-z – volume: 9 start-page: 2015 year: 2018 ident: ref_137 article-title: Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2016.08.023 – volume: 76 start-page: 405 year: 2017 ident: ref_71 article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6731-5 – volume: 69 start-page: 46 year: 2014 ident: ref_134 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 71 start-page: 206 year: 2017 ident: ref_142 article-title: An adaptive stochastic resonance method based on grey wolf optimizer algorithm and its application to machinery fault diagnosis publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.08.009 – volume: 30 start-page: 399 year: 2003 ident: ref_47 article-title: Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment publication-title: Nat. Hazards doi: 10.1023/B:NHAZ.0000007097.42735.9e – ident: ref_13 doi: 10.3390/rs13194011 – volume: 4 start-page: 33 year: 2007 ident: ref_127 article-title: Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models publication-title: Landslides doi: 10.1007/s10346-006-0047-y – ident: ref_155 – volume: 65 start-page: 135 year: 2013 ident: ref_25 article-title: Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya publication-title: Nat. Hazards doi: 10.1007/s11069-012-0347-6 – volume: 63 start-page: 479 year: 2012 ident: ref_28 article-title: Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal publication-title: Nat. Hazards doi: 10.1007/s11069-012-0163-z – ident: ref_132 – volume: 72 start-page: 1 year: 2008 ident: ref_40 article-title: GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations publication-title: Catena doi: 10.1016/j.catena.2007.01.003 – volume: 165 start-page: 520 year: 2018 ident: ref_86 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena doi: 10.1016/j.catena.2018.03.003 – volume: 152 start-page: 150 year: 2014 ident: ref_27 article-title: Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.05.013 – volume: 63 start-page: 329 year: 2011 ident: ref_32 article-title: Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0705-1 – volume: 56 start-page: 881 year: 2011 ident: ref_115 article-title: Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy) publication-title: Nat. Hazards doi: 10.1007/s11069-010-9598-2 – volume: 4 start-page: 711 year: 2017 ident: ref_102 article-title: Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India publication-title: Environ. Process. doi: 10.1007/s40710-017-0248-5 – volume: 540 start-page: 317 year: 2016 ident: ref_87 article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.06.027 – volume: 214 start-page: 128 year: 2014 ident: ref_36 article-title: An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.02.003 – volume: 11 start-page: 202 year: 2017 ident: ref_101 article-title: Erratum to: Newmark displacement model for landslides induced by the 2013 Ms 7.0 Lushan earthquake, China publication-title: Front. Earth Sci. doi: 10.1007/s11707-017-0635-2 – volume: 718 start-page: 137231 year: 2020 ident: ref_99 article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137231 – volume: 109 start-page: 249 year: 2017 ident: ref_123 article-title: Sensitivity of the landslide model LAPSUS_LS to vegetation and soil parameters publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2017.08.010 – volume: 50 start-page: 571 year: 2009 ident: ref_52 article-title: Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS publication-title: Nat. Hazards doi: 10.1007/s11069-008-9305-8 – volume: 64 start-page: 180 year: 2013 ident: ref_29 article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2012.12.014 – volume: 38 start-page: 87 year: 2012 ident: ref_33 article-title: Landslide identification and classification by object-based image analysis and fuzzy logic: An example from the Azdavay region (Kastamonu, Turkey) publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.05.010 – volume: 145 start-page: 164 year: 2016 ident: ref_63 article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size publication-title: Catena doi: 10.1016/j.catena.2016.06.004 – volume: 137 start-page: 360 year: 2016 ident: ref_106 article-title: Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran publication-title: Catena doi: 10.1016/j.catena.2015.10.010 – volume: 72 start-page: 4639 year: 2014 ident: ref_18 article-title: Comparison of rockfall susceptibility assessment at local and regional scale: A case study in the north of Beijing (China) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-014-3718-3 – volume: 97 start-page: 71 year: 2012 ident: ref_158 article-title: Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran publication-title: Catena doi: 10.1016/j.catena.2012.05.005 – volume: 135 start-page: 271 year: 2015 ident: ref_62 article-title: Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models publication-title: Catena doi: 10.1016/j.catena.2015.08.007 – volume: 75 start-page: 553 year: 2016 ident: ref_55 article-title: Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-5233-6 – volume: 6 start-page: 2557 year: 2013 ident: ref_97 article-title: Landslide susceptibility mapping based on frequency ratio and logistic regression models publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0526-5 – ident: ref_152 – ident: ref_68 doi: 10.3390/su11164386 – volume: 35 start-page: 66 year: 2009 ident: ref_44 article-title: A comparative study of Dempster–Shafer and fuzzy models for landslide susceptibility mapping using a GIS: An experience from Zagros Mountains, SW Iran publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2009.01.002 – volume: 77 start-page: 146 year: 2018 ident: ref_1 article-title: Bagging based Support Vector Machines for spatial prediction of landslides publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7268-y – volume: 588 start-page: 125033 year: 2020 ident: ref_133 article-title: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125033 – ident: ref_146 doi: 10.3390/app9214715 – ident: ref_139 doi: 10.1007/978-981-10-5221-7 – volume: 115 start-page: 172 year: 2010 ident: ref_31 article-title: Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.10.002 – volume: 16 start-page: 2729 year: 2016 ident: ref_61 article-title: The propagation of inventory-based positional errors into statistical landslide susceptibility models publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-16-2729-2016 – ident: ref_138 doi: 10.3390/s19214698 – volume: 11 start-page: 1 year: 2018 ident: ref_66 article-title: Machine Learning Methods of Kernel Logistic Regression and Classification and Regression Trees for Landslide Susceptibility Assessment at Part of Himalayan Area, India publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2018/v11i12/99745 – volume: 77 start-page: 655 year: 2018 ident: ref_163 article-title: A GIS-based approach for gully erosion susceptibility modelling using bivariate statistics methods in the Ourika watershed, Morocco publication-title: Environ. Earth Ences doi: 10.1007/s12665-018-7844-1 – volume: 121 start-page: 1337 year: 2012 ident: ref_24 article-title: Landslide susceptibility analysis using Probabilistic Certainty Factor Approach: A case study on Tevankarai stream watershed, India publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-012-0230-6 – volume: 371 start-page: 107432 year: 2020 ident: ref_9 article-title: National-scale landslide susceptibility map of Romania in a European methodological framework publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107432 – volume: 297 start-page: 69 year: 2017 ident: ref_167 article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.09.007 – volume: 295 start-page: 115 year: 2017 ident: ref_85 article-title: Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.06.013 – ident: ref_129 – volume: 33 start-page: 159 year: 1977 ident: ref_165 article-title: JSTOR: Biometrics publication-title: Biometrics doi: 10.2307/2529310 – volume: 124 start-page: 12 year: 2012 ident: ref_19 article-title: Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2011.09.011 – ident: ref_69 doi: 10.3390/rs8040347 – volume: 124 start-page: 1399 year: 2015 ident: ref_23 article-title: GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China publication-title: J. Earth Syst. Sci. doi: 10.1007/s12040-015-0624-3 – volume: 62 start-page: 367 year: 2011 ident: ref_43 article-title: Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0531-5 – volume: 33 start-page: 1000 year: 2018 ident: ref_76 article-title: Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea publication-title: Geocarto Int. doi: 10.1080/10106049.2017.1323964 – volume: 37 start-page: 1264 year: 2011 ident: ref_110 article-title: Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.10.012 – volume: 87 start-page: 120 year: 2007 ident: ref_114 article-title: Landslide susceptibility in a mountainous geoecosystem, Tijuca Massif, Rio de Janeiro: The role of morphometric subdivision of the terrain publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.03.041 – ident: ref_6 – volume: 741 start-page: 139937 year: 2020 ident: ref_53 article-title: Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139937 – volume: 12 start-page: 1077 year: 2015 ident: ref_37 article-title: Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh publication-title: Landslides doi: 10.1007/s10346-014-0521-x – volume: 74 start-page: 17 year: 2006 ident: ref_38 article-title: A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.07.005 – volume: 21 start-page: 346 year: 2006 ident: ref_162 article-title: The Map Comparison Kit publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2004.11.013 – volume: 109 start-page: 471 year: 2021 ident: ref_98 article-title: A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping publication-title: Nat. Hazards doi: 10.1007/s11069-021-04844-0 – ident: ref_140 doi: 10.3390/en12020289 – volume: 9 start-page: 455 year: 2005 ident: ref_45 article-title: Spatial Prediction of Landslide Hazard Using Fuzzy k-means and Dempster-Shafer Theory publication-title: Trans. GIS doi: 10.1111/j.1467-9671.2005.00229.x – volume: 96 start-page: 173 year: 2019 ident: ref_154 article-title: Landslide susceptibility assessment at the Wuning area, China: A comparison between multi-criteria decision making, bivariate statistical and machine learning methods publication-title: Nat. Hazards doi: 10.1007/s11069-018-3536-0 – volume: 118 start-page: 53 year: 2016 ident: ref_88 article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression publication-title: J. Afr. Earth Sci. doi: 10.1016/j.jafrearsci.2016.02.019 – volume: 15 start-page: 1265 year: 2018 ident: ref_125 article-title: Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria publication-title: Landslides doi: 10.1007/s10346-018-0950-z – volume: 65 start-page: 15 year: 2005 ident: ref_50 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – ident: ref_22 – volume: 4 start-page: 93 year: 2013 ident: ref_42 article-title: A comparative assessment of prediction capabilities of Dempster–Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2012.662915 – volume: 79 start-page: 251 year: 2005 ident: ref_111 article-title: Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey) publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2005.02.002 – volume: 133 start-page: 266 year: 2015 ident: ref_67 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: Catena doi: 10.1016/j.catena.2015.05.019 – volume: 42 start-page: 1 year: 2013 ident: ref_151 article-title: Wavelet neural networks: A practical guide publication-title: Neural Netw. doi: 10.1016/j.neunet.2013.01.008 – volume: 13 start-page: 839 year: 2016 ident: ref_91 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – ident: ref_148 doi: 10.1007/978-981-15-0306-1 – volume: 92 start-page: 83 year: 2012 ident: ref_49 article-title: Landslide susceptibility assessment in Limbe (SW Cameroon): A field calibrated seed cell and information value method publication-title: Catena doi: 10.1016/j.catena.2011.11.014 – ident: ref_16 doi: 10.3390/su11051362 – volume: 51 start-page: 350 year: 2013 ident: ref_14 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 76 start-page: 499 year: 2017 ident: ref_95 article-title: Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: A case study in northern Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6839-7 – volume: 32 start-page: 286 year: 2015 ident: ref_135 article-title: Using the gray wolf optimizer for solving optimal reactive power dispatch problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.041 – volume: 627 start-page: 744 year: 2018 ident: ref_103 article-title: A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.266 – ident: ref_131 doi: 10.1145/130385.130401 – volume: 187 start-page: 104364 year: 2020 ident: ref_104 article-title: Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2019.104364 – volume: 140 start-page: 125 year: 2016 ident: ref_100 article-title: Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2016.01.022 – volume: 48 start-page: 87 year: 2002 ident: ref_105 article-title: Predicting the crest height of a gravel beach publication-title: Geomorphology doi: 10.1016/S0169-555X(02)00176-9 – volume: 318 start-page: 101 year: 2018 ident: ref_10 article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.06.006 – ident: ref_72 doi: 10.3390/e19080396 – volume: 76 start-page: 20 year: 2017 ident: ref_79 article-title: Applying different scenarios for landslide spatial modeling using computational intelligence methods publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-7177-5 – ident: ref_89 doi: 10.3390/rs11161943 – volume: 130 start-page: 1229 year: 2016 ident: ref_141 article-title: Template Matching Using Grey Wolf Optimizer with Lateral Inhibition publication-title: Optik doi: 10.1016/j.ijleo.2016.11.173 – volume: 85 start-page: 239 year: 2001 ident: ref_161 article-title: Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00187-6 – ident: ref_159 doi: 10.3390/rs12142180 – volume: 32 start-page: 1 year: 2004 ident: ref_7 article-title: Landslide Susceptibility Zoning North of Yenice (NW Turkey) by Multivariate Statistical Techniques publication-title: Nat. Hazards doi: 10.1023/B:NHAZ.0000026786.85589.4a – volume: 10 start-page: 13 year: 2017 ident: ref_74 article-title: Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping publication-title: Arab. J. Geosci. doi: 10.1007/s12517-017-2918-z – volume: 239 start-page: 27 year: 2012 ident: ref_116 article-title: How can statistical models help to determine driving factors of landslides? publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2011.12.007 – volume: 8 start-page: 867 year: 2015 ident: ref_17 article-title: Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS publication-title: Earth Sci. Inform. doi: 10.1007/s12145-015-0220-8 – volume: 76 start-page: 652 year: 2017 ident: ref_64 article-title: A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6981-2 – volume: 7 start-page: S232 year: 2010 ident: ref_150 article-title: A Review of Nature-Inspired Algorithms publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(09)60240-7 – volume: 63 start-page: 965 year: 2012 ident: ref_35 article-title: Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran publication-title: Nat. Hazards doi: 10.1007/s11069-012-0217-2 – volume: 88 start-page: 192 year: 2011 ident: ref_143 article-title: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations publication-title: Behav. Process. doi: 10.1016/j.beproc.2011.09.006 – volume: 112 start-page: 23 year: 2018 ident: ref_3 article-title: Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.11.019 – volume: 2015 start-page: 137695 year: 2015 ident: ref_119 article-title: Umbilical Cord-Derived Mesenchymal Stem Cells Inhibit Cadherin-11 Expression by Fibroblast-Like Synoviocytes in Rheumatoid Arthritis publication-title: J. Immunol. Res. doi: 10.1155/2015/137695 – volume: 75 start-page: 1101 year: 2016 ident: ref_164 article-title: GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5919-4 – volume: 57 start-page: 641 year: 2009 ident: ref_96 article-title: Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand publication-title: Environ. Geol. doi: 10.1007/s00254-008-1342-9 – volume: 11 start-page: 909 year: 2014 ident: ref_117 article-title: GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-013-0464-0 – volume: 71 start-page: 303 year: 2004 ident: ref_12 article-title: Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey publication-title: Eng. Geol. doi: 10.1016/S0013-7952(03)00143-1 – volume: 54 start-page: 311 year: 2008 ident: ref_108 article-title: GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping publication-title: Environ. Geol. doi: 10.1007/s00254-007-0818-3 – volume: 86 start-page: 211 year: 2006 ident: ref_34 article-title: Assessment of failure susceptibility of soil slopes using fuzzy logic publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2006.05.001 – volume: 265 start-page: 187 year: 2016 ident: ref_124 article-title: Landslide-induced changes of soil physicochemical properties in Xitou, Central Taiwan publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.028 – volume: 86 start-page: 404 year: 1997 ident: ref_15 article-title: Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation publication-title: Geol. Rundsch. doi: 10.1007/s005310050149 – volume: 12 start-page: 1355 year: 2015 ident: ref_58 article-title: GIS-based frequency ratio and logistic regression modelling for landslide susceptibility mapping of Debre Sina area in central Ethiopia publication-title: J. Mt. Sci. doi: 10.1007/s11629-015-3464-3 – ident: ref_145 – ident: ref_122 doi: 10.1016/j.geomorph.2017.10.006 – volume: 35 start-page: 250 year: 2017 ident: ref_147 article-title: Dynamic measurement errors prediction for sensors based on firefly algorithm optimize support vector machine publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.08.004 – volume: 65 start-page: 401 year: 2020 ident: ref_56 article-title: A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping publication-title: J. Spat. Sci. doi: 10.1080/14498596.2018.1505564 – volume: 22 start-page: 4771 year: 2018 ident: ref_94 article-title: Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-4771-2018 – volume: 9 start-page: 12296 year: 2019 ident: ref_107 article-title: Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques publication-title: Sci. Rep. doi: 10.1038/s41598-019-48773-2 – volume: 626 start-page: 1121 year: 2018 ident: ref_169 article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.124 – volume: 41 start-page: 61 year: 2007 ident: ref_51 article-title: Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: Examples from the Betic Cordillera (southern Spain) publication-title: Nat. Hazards doi: 10.1007/s11069-006-9027-8 – ident: ref_121 doi: 10.3390/e21020218 – volume: 75 start-page: 1555 year: 2015 ident: ref_48 article-title: Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India publication-title: Nat. Hazards doi: 10.1007/s11069-014-1378-y – volume: 52 start-page: 64 year: 2016 ident: ref_136 article-title: Multi-objective Grey Wolf Optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.022 – volume: 10 start-page: 1 year: 2019 ident: ref_81 article-title: Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: An example of the 2013 Minxian (China) Mw 5.9 event publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2018.1487471 – volume: 82 start-page: 351 year: 2013 ident: ref_46 article-title: Landslide susceptibility assessment using Information Value Method in parts of the Darjeeling Himalayas publication-title: J. Geol. Soc. India doi: 10.1007/s12594-013-0162-z – volume: 171 start-page: 12 year: 2012 ident: ref_112 article-title: Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural networks publication-title: Geomorphology – volume: 305 start-page: 314 year: 2017 ident: ref_160 article-title: Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques publication-title: Geoderma doi: 10.1016/j.geoderma.2017.06.020 – volume: 259 start-page: 105 year: 2016 ident: ref_75 article-title: Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.02.012 – volume: 19 start-page: 384 year: 2010 ident: ref_168 article-title: Bioengineering techniques of slope stabilization and landslide mitigation publication-title: Disaster Prev. Manag. doi: 10.1108/09653561011052547 – volume: 35 start-page: 1125 year: 2009 ident: ref_20 article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey) publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.08.007 – volume: 3 start-page: 19 year: 2016 ident: ref_8 article-title: Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia publication-title: Geoenviron. Disasters doi: 10.1186/s40677-016-0053-x – volume: 11 start-page: 10 year: 2018 ident: ref_59 article-title: Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors publication-title: Arab. J. Geosci. – volume: 102 start-page: 83 year: 2008 ident: ref_166 article-title: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning—ScienceDirect publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2008.03.009 – ident: ref_130 – volume: 38 start-page: 301 year: 2010 ident: ref_21 article-title: Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-010-0020-z – volume: 18 start-page: 789 year: 2004 ident: ref_30 article-title: Landslide susceptibility mapping using GIS and the weight-of-evidence model publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810410001702003 – volume: 97 start-page: 145 year: 2017 ident: ref_92 article-title: Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.08.003 – volume: 61 start-page: 221 year: 2012 ident: ref_41 article-title: Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2012.10.005 – volume: 6 start-page: 2351 year: 2013 ident: ref_26 article-title: Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0532-7 – volume: 48 start-page: 349 year: 2002 ident: ref_11 article-title: A procedure for landslide susceptibility zonation by the conditional analysis method publication-title: Geomorphology doi: 10.1016/S0169-555X(02)00079-X – volume: 135 start-page: 122 year: 2015 ident: ref_54 article-title: A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran publication-title: Catena doi: 10.1016/j.catena.2015.07.020 – volume: 51 start-page: 138 year: 1995 ident: ref_118 article-title: Status of remote sensing algorithms for estimation of land surface state parameters publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)00071-T – volume: 399 start-page: 158 year: 2011 ident: ref_126 article-title: GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.12.027 – volume: 113 start-page: 236 year: 2014 ident: ref_82 article-title: Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy) publication-title: Catena doi: 10.1016/j.catena.2013.08.006 – volume: 196 start-page: 104833 year: 2021 ident: ref_128 article-title: Gis-based landslide susceptibility assessment using optimized hybrid machine learning methods publication-title: CATENA doi: 10.1016/j.catena.2020.104833 – ident: ref_2 – volume: 162 start-page: 177 year: 2018 ident: ref_109 article-title: Prediction of the landslide susceptibility: Which algorithm, which precision? publication-title: Catena doi: 10.1016/j.catena.2017.11.022 – volume: 22 start-page: 1053 year: 2018 ident: ref_77 article-title: Analysis of the relationships between topographic factors and landslide occurrence and their application to landslide susceptibility mapping: A case study of Mingchukur, Uzbekistan publication-title: Geosci. J. doi: 10.1007/s12303-018-0052-x – volume: 15 start-page: 475 year: 2018 ident: ref_93 article-title: Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model publication-title: Landslides doi: 10.1007/s10346-017-0883-y – volume: 34 start-page: 241 year: 2017 ident: ref_149 article-title: Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm publication-title: Eng. Comput. doi: 10.1007/s00366-017-0535-9 – volume: 14 start-page: 447 year: 2017 ident: ref_73 article-title: Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization publication-title: Landslides doi: 10.1007/s10346-016-0711-9 – volume: 74 start-page: 1489 year: 2014 ident: ref_80 article-title: Estimating landslide susceptibility through a artificial neural network classifier publication-title: Nat. Hazards doi: 10.1007/s11069-014-1245-x – volume: 330 start-page: 65 year: 2018 ident: ref_90 article-title: Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.027 – volume: 9 start-page: 1053 year: 2018 ident: ref_156 article-title: Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2018.1481147 – volume: 14 start-page: 2150 year: 2017 ident: ref_60 article-title: Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: A case from Rudraprayag district, India publication-title: J. Mt. Sci. doi: 10.1007/s11629-017-4404-1 – volume: 261 start-page: 431 year: 2018 ident: ref_144 article-title: Prediction of sulfur solubility in supercritical sour gases using grey wolf optimizer-based support vector machine publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.04.070 – volume: 187 start-page: 104396 year: 2020 ident: ref_157 article-title: Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2019.104396 – volume: 7 start-page: 1835 year: 2015 ident: ref_4 article-title: Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2015.1115431 – volume: 49 start-page: 1363 year: 2018 ident: ref_78 article-title: Rainfall-induced landslide susceptibility assessment using random forest weight at basin scale publication-title: Hydrol. Res. doi: 10.2166/nh.2017.044 – volume: 128 start-page: 255 year: 2017 ident: ref_5 article-title: Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1702-9 – ident: ref_84 doi: 10.3390/app7101000 – volume: 22 start-page: 941 year: 2018 ident: ref_65 article-title: Prediction of Slope Stability using Naive Bayes Classifier publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-018-1337-3 – volume: 183 start-page: 104225 year: 2019 ident: ref_83 article-title: Landslide susceptibility hazard map in southwest Sweden using artificial neural network publication-title: Catena doi: 10.1016/j.catena.2019.104225 – volume: 76 start-page: 22 year: 2017 ident: ref_57 article-title: Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference system (ANFIS) at southern Zagros Mountains in Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6558-0 – volume: 115 start-page: 55 year: 2014 ident: ref_153 article-title: Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models publication-title: Catena doi: 10.1016/j.catena.2013.11.014 – volume: 9 start-page: 485 year: 2012 ident: ref_120 article-title: Rainfall thresholds for the forecasting of landslide occurrence at regional scale publication-title: Landslides doi: 10.1007/s10346-011-0308-2 – ident: ref_70 doi: 10.3390/rs10101545 |
| SSID | ssj0000331904 |
| Score | 2.4150372 |
| Snippet | Landslides are one of the most frequent and important natural disasters in the world. The purpose of this study is to evaluate the landslide susceptibility in... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4966 |
| SubjectTerms | Algorithms Artificial intelligence Conditioning Correlation analysis Curvature data collection Datasets Decision making Disasters Elevation Fault lines firefly algorithm Geographic information systems Geology grey wolf optimizer algorithm Heuristic methods Human engineering hybrid model Hybrids inventories Land use planning landslide susceptibility Landslides Landslides & mudslides Lithology Machine learning Mapping Natural disasters Neural networks Normalized difference vegetative index Performance enhancement prediction Predictions rain Rainfall regression analysis Remote sensing Sediment transport Software soil Soil conditions Spatial analysis streams Support vector machines support vector regression algorithm Topography Training Vegetation |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgC4ILj1LUhYKM4MIharp2Hj6hFnXbQ7WsKii9RRM_tiulSZtskcIP4Hcz4_XuHkBcOCaxEiszHn8ej7-PsQ-QKzMSqY0QHLtIGjWKlNR5hMvrZJQBImifzLk4yyaT_PJSTUPCrQtllauY6AO1aTTlyPeJ6ipPklEsPt3cRqQaRburQULjPtsipjI5YFtHx5Pp-TrLEgt0sVgueUkFdmC_7XD9JaXytIibmcgT9v8Rj_0kM376v917xp4EeMkPl_7wnN2z9TZ7FJTOr_pt9vDES_n2L9iv055Oa3W8cZy0PRGH8wufw-fndrYsj6055Wn5Cdqbf28qx79ghLme_7Qth9rwMcZLV_X8sJphXxZX1xwhMCeVY_RqPm1pE4gMT584ozPF1dxY_Fjna2l8WW6_w76Nj79-Po2CKkOkhZKLSMCBccrhUqbEH0p8-YAQBFEkAIKpEqd8cGlpjQPllIHM4qVROstK6UwCTrxkg7qp7S7jsUsTWWqVaaullgLyHKAEq-yBySCNh-zjykKFDpTlpJxRFbh0IWsWG2sO2ft125slUcdfWx2RodctiFzb32jaWRHGaiGBBJVKmRpKiiUWklIKBxlCt9zkZTJkeysfKMKI74qNAwzZu_VjHKu0AQO1be6ojUhzhAy5evXvV7xmj0dUO-PLZvbYYNHe2Tfsgf6xmHft2-DkvwHyqwmv priority: 102 providerName: ProQuest |
| Title | Hybrids of Support Vector Regression with Grey Wolf Optimizer and Firefly Algorithm for Spatial Prediction of Landslide Susceptibility |
| URI | https://www.proquest.com/docview/2612855203 https://www.proquest.com/docview/2636803689 https://doaj.org/article/4aeb00b46d35405ea5b43fa73978d8b5 |
| Volume | 13 |
| WOSCitedRecordID | wos000737367900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kCnoRP_FpfazoxUPoa3aT7B5beY8K9Rmq1uolTPajfZAmkrwK8eDRv9uZTfpaUPDiJZBkYMPOZOc3s7O_YewVKG1jkboIwbGPpNVxpKVREYbXSZwBIuiQzDk-zJZLdXKi82utvqgmbKAHHiZuRwJ1tyllailDkThISik8ZOhHlVVlYC9F1HMtmAprsEDTmsmBj1TgwDtth3GXlDrQIV55oEDU_8c6HJzL4h67O6JCvjd8zX12w9UP2O2xQflZ_5D9OujpaFXHG8-pESeCZn4cEu78yJ0Otaw1p6Qqx6C_55-byvP3uBycr364lkNt-QIXN1_1fK86bVoUPOeIVzm1JEYT5HlLOzakJRrikA4AVyvrcLAuFL6EGtr-Efu0mH98cxCNLRQiI7RcRwJ2rdce444SZ4HI7QHxAkI-AEQ-Jfpn8GnprAfttYXM4a3VJstK6W0CXjxmW3VTuyeMz3yayNLozDgjjRSgFEAJTrtdm0E6m7DXl9NamJFfnNpcVAXGGaSC4koFE_ZyI_ttYNX4q9Q-aWcjQUzY4QHaRzHaR_Ev-5iw7UvdFuPv2RXEm6aSJJ6JCXuxeY0_Fu2WQO2aC5IRqUL_rvTT__Edz9idmMphQiXMNttatxfuObtlvq9XXTtlN_fny_xoGqx4SgWoH-j6c47XPPmK7_O37_IvvwEynv3j |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELXKFlQufBQQCwWMgAOHqGnsJPYBofKx3VW3ywqVtpyCE9vbldKkJFtQ-AH8HH4jM97s7gHErQeOSSxHSV5m3ozH8wh5roTUAYuMB-TYelzLwJM8Ex6E12EQK2DQLplzNIxHI3FyIsdr5NdiLwyWVS5sojPUuswwR76Nra5EGAY-e33-1UPVKFxdXUhozGGxb5rvELLVrwbv4Pu-CILe-8O3fa9VFfAyJvnMY2pHW2mBiqeMSez3rsCFAgtSCshACi5L2Sg12ipppVaxgUMtszhOudWhsgzmvULWOYBddMj6eHAw_rzM6vgMIO3zeR9UmN7frmqI9ziXrg3jyvM5gYA_7L9zar2b_9vruEVutPSZ7s7xfpusmWKTbLRK7qfNJrm256SKmzvkZ7_B3Wg1LS1F7VKIM-iRW6OgH81kXv5bUMxD0z3AMz0uc0s_gAU9m_4wFVWFpj3wBzZv6G4-gWefnZ5RoPgUVZzhr6XjChe5ENh4iyHumc6n2sDNalcr5MqOm7vk06W8kHukU5SFuU-ob6OQp5mMM5PxjDMlhFKpMtLs6FhFfpe8XCAiydqW7KgMkicQmiF6khV6uuTZcuz5vBHJX0e9QWAtR2DzcHeirCZJa4sSrlAwKuWRxqRfaFSYcmZVDNRUaJGGXbK1wFzSWrQ6WQGuS54uL4MtwgUmVZjyAsewSAAlEvLBv6d4Qjb6hwfDZDgY7T8k1wOsE3IlQlukM6suzCNyNfs2m9bV4_YHo-TLZYP4N978aZM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nc9MwENWUlK8LHwWGQAExwIGDJ64l29KBYdKWtJ1mQqYDbW9GtqQ0M65d7BTG_AB-FL-OXcVJDjDceuAYRyOP7afdt6vVPkJeKyF1wCLjATm2Htcy8CTPhAfhdRjEChi0S-YcD-PRSJyeyvEa-bU4C4NllQub6Ay1LjPMkfew1ZUIw8BnPduWRYx3B-8vvnqoIIU7rQs5jTlEDk3zHcK3-t3BLnzrN0Ew-PBpZ99rFQa8jEk-85ja0lZaoOUpYxJ7vytwp8CIlAJikIL7UjZKjbZKWqlVbOCnllkcp9zqUFkG814j6yKK_aBD1sc72_2jZYbHZwBvn897osL0fq-qIfbjXLqWjCsv6MQC_vAFzsEN7v7Pr-YeudPSatqfr4P7ZM0UG-RWq_B-1myQG3tOwrh5QH7uN3hKraalpahpCvEHPXZ7F_TITOZlwQXF_DTdA5zTkzK39CNY1vPpD1NRVWg6AD9h84b28wk8--zsnAL1p6juDKuZjivc_ELA4y2GeJY6n2oDN6tdDZErR24eks9X8kIekU5RFuYxob6NQp5mMs5MxjPOlBBKpcpIs6VjFfld8naBjiRrW7WjYkieQMiGSEpWSOqSV8uxF_MGJX8dtY0gW47ApuLuQllNktZGJVyhkFTKI43JwNCoMOXMqhgoq9AiDbtkc4G_pLV0dbICX5e8XP4NNgo3nlRhykscwyIBVEnIJ_-e4gW5CchNhgejw6fkdoDlQ65yaJN0ZtWleUauZ99m07p63q41Sr5cNYZ_A_AXcgM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrids+of+Support+Vector+Regression+with+Grey+Wolf+Optimizer+and+Firefly+Algorithm+for+Spatial+Prediction+of+Landslide+Susceptibility&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ru+Liu&rft.au=Jianbing+Peng&rft.au=Yanqiu+Leng&rft.au=Saro+Lee&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=24&rft.spage=4966&rft_id=info:doi/10.3390%2Frs13244966&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4aeb00b46d35405ea5b43fa73978d8b5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |