An Attention-Based 3D Convolutional Autoencoder for Few-Shot Hyperspectral Unmixing and Classification

Few-shot hyperspectral classification is a challenging problem that involves obtaining effective spatial–spectral features in an unsupervised or semi-supervised manner. In recent years, as a result of the development of computer vision, deep learning techniques have demonstrated their superiority in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 15; H. 2; S. 451
Hauptverfasser: Li, Chunyu, Cai, Rong, Yu, Junchuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2023
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Few-shot hyperspectral classification is a challenging problem that involves obtaining effective spatial–spectral features in an unsupervised or semi-supervised manner. In recent years, as a result of the development of computer vision, deep learning techniques have demonstrated their superiority in tackling the problems of hyperspectral unmixing (HU) and classification. In this paper, we present a new semi-supervised pipeline for few-shot hyperspectral classification, where endmember abundance maps obtained by HU are treated as latent features for classification. A cube-based attention 3D convolutional autoencoder network (CACAE), is applied to extract spectral–spatial features. In addition, an attention approach is used to improve the accuracy of abundance estimation by extracting the diagnostic spectral features associated with the given endmember more effectively. The endmember abundance estimated by the proposed model outperforms other convolutional neural networks (CNNs) with respect to the root mean square error (RMSE) and abundance spectral angle distance (ASAD). Classification experiments are performed on real hyperspectral datasets and compared to several supervised and semi-supervised models. The experimental findings demonstrate that the proposed approach has promising potential for hyperspectral feature extraction and has better performance relative to CNN-based supervised classification under small-sample conditions.
AbstractList Few-shot hyperspectral classification is a challenging problem that involves obtaining effective spatial–spectral features in an unsupervised or semi-supervised manner. In recent years, as a result of the development of computer vision, deep learning techniques have demonstrated their superiority in tackling the problems of hyperspectral unmixing (HU) and classification. In this paper, we present a new semi-supervised pipeline for few-shot hyperspectral classification, where endmember abundance maps obtained by HU are treated as latent features for classification. A cube-based attention 3D convolutional autoencoder network (CACAE), is applied to extract spectral–spatial features. In addition, an attention approach is used to improve the accuracy of abundance estimation by extracting the diagnostic spectral features associated with the given endmember more effectively. The endmember abundance estimated by the proposed model outperforms other convolutional neural networks (CNNs) with respect to the root mean square error (RMSE) and abundance spectral angle distance (ASAD). Classification experiments are performed on real hyperspectral datasets and compared to several supervised and semi-supervised models. The experimental findings demonstrate that the proposed approach has promising potential for hyperspectral feature extraction and has better performance relative to CNN-based supervised classification under small-sample conditions.
Author Li, Chunyu
Yu, Junchuan
Cai, Rong
Author_xml – sequence: 1
  givenname: Chunyu
  surname: Li
  fullname: Li, Chunyu
– sequence: 2
  givenname: Rong
  surname: Cai
  fullname: Cai, Rong
– sequence: 3
  givenname: Junchuan
  orcidid: 0000-0003-2987-0504
  surname: Yu
  fullname: Yu, Junchuan
BookMark eNptkd9rFDEQxxepYK196V8Q8EWE1cmP3Wwez9PaQsEH2-eQTSY1x15yJtlq_3v3eoqldF4yDJ_5QL7zujmKKWLTnFH4wLmCj7nQDhiIjr5ojhlI1gqm2NGj_lVzWsoGluKcKhDHjV9FsqoVYw0ptp9MQUf4Z7JO8S5N835oJrKaa8Jok8NMfMrkHH-133-kSi7ud5jLDm3NC3YTt-F3iLfEREfWkykl-GDNXvKmeenNVPD073vS3Jx_uV5ftFffvl6uV1et5UrUljOKDFyHqJyBfjR2EFJRA4NDtGrsO2dkb6TvpB8RpIKxN8p2crDSKxz4SXN58LpkNnqXw9bke51M0A-DlG-1yTXYCbUQcvH2g-eSiZG6YfS-6wU3dBz4INXiendw7XL6OWOpehuKxWkyEdNcNAcBgnEOdEHfPkE3ac5LdEUz2UsO0A17Cg6UzamUjF7bUB_iWeILk6ag93fU_--4rLx_svLvT8_AfwDOEp7R
CitedBy_id crossref_primary_10_1080_01431161_2024_2334772
crossref_primary_10_1016_j_rse_2024_114291
crossref_primary_10_1109_JSTARS_2024_3359647
crossref_primary_10_3390_rs16132449
crossref_primary_10_3389_feart_2023_1229704
crossref_primary_10_3390_rs15112898
crossref_primary_10_1016_j_jfranklin_2023_08_027
Cites_doi 10.1109/JSTARS.2014.2322143
10.1080/2150704X.2017.1331053
10.1364/AO.403366
10.1109/TGRS.2018.2856929
10.1109/TGRS.2020.3010826
10.1080/01431161.2016.1225173
10.1109/TGRS.2018.2852066
10.3390/rs13132607
10.1109/MGRS.2019.2912563
10.1109/TGRS.2014.2381602
10.1109/36.911111
10.1109/JSTARS.2012.2194696
10.1016/j.ipm.2009.03.002
10.1109/LGRS.2010.2047711
10.1109/TGRS.2008.2001035
10.1109/ACCESS.2018.2818280
10.3390/rs12132106
10.1117/12.366289
10.1109/JSTARS.2020.2966512
10.1109/TGRS.2006.888466
10.1109/MSP.2013.2279274
10.1109/TGRS.2017.2693346
10.1109/TGRS.2019.2908756
10.1109/18.857802
10.1109/TPAMI.2012.59
10.1109/TGRS.2019.2952758
10.1109/TGRS.2011.2160950
10.1109/TGRS.2005.844293
10.1109/TGRS.2020.3004353
10.1109/TGRS.2019.2907932
10.1109/LGRS.2018.2841400
10.1109/TGRS.2010.2098414
10.1016/j.patrec.2005.08.011
10.1109/TIP.2015.2468177
10.1109/TGRS.2019.2892903
10.1109/TGRS.2016.2535298
10.1109/JSTARS.2016.2624560
10.1109/TGRS.2004.831865
10.1109/TGRS.2015.2513082
10.5194/isprs-annals-V-2-2020-203-2020
10.1080/01431169608948706
10.1109/JSTARS.2014.2329330
10.1016/j.neucom.2021.03.035
10.1016/j.patrec.2018.10.003
10.1109/TGRS.2004.841417
10.1109/TGRS.2018.2868690
10.1109/TGRS.2020.2992743
10.1109/LGRS.2018.2857804
10.1109/TGRS.2018.2890633
10.1016/j.rse.2020.111938
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15020451
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_447a0868f3724b1d8bff5643a1b83879
10_3390_rs15020451
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c394t-321e20d5ee9da06bac84791a08deec9b65da76a7f57fbe0790b6a9c578c7f9e83
IEDL.DBID M7S
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918910300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:38:03 EDT 2025
Sun Nov 09 14:24:55 EST 2025
Sun Jul 13 03:41:21 EDT 2025
Tue Nov 18 21:26:05 EST 2025
Sat Nov 29 07:12:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-321e20d5ee9da06bac84791a08deec9b65da76a7f57fbe0790b6a9c578c7f9e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2987-0504
OpenAccessLink https://www.proquest.com/docview/2767300581?pq-origsite=%requestingapplication%
PQID 2767300581
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_447a0868f3724b1d8bff5643a1b83879
proquest_miscellaneous_3040423301
proquest_journals_2767300581
crossref_citationtrail_10_3390_rs15020451
crossref_primary_10_3390_rs15020451
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_16) 2020; 247
Mei (ref_25) 2017; 55
Li (ref_50) 2014; 7
Miao (ref_33) 2007; 45
Zhu (ref_28) 2021; 60
ref_56
Qu (ref_43) 2019; 57
ref_53
Chen (ref_26) 2014; 7
ref_18
Jia (ref_54) 2022; 60
Dobigeon (ref_30) 2014; 31
Zhang (ref_35) 2018; 15
Dobigeon (ref_45) 2015; 24
Guan (ref_29) 2022; 60
Sun (ref_13) 2016; 37
Khajehrayeni (ref_46) 2020; 13
Wambugu (ref_20) 2021; 105
Savas (ref_42) 2019; 57
Su (ref_44) 2018; 15
Licciardi (ref_37) 2011; 49
Jia (ref_11) 2016; 51
Halimi (ref_36) 2011; 49
Melgani (ref_4) 2004; 42
Hecker (ref_2) 2008; 46
Li (ref_10) 2015; 53
Su (ref_40) 2019; 57
Nowakowski (ref_22) 2021; 98
Briechle (ref_23) 2020; 2
Winter (ref_31) 1999; 3753
Ji (ref_51) 2013; 35
Jia (ref_55) 2022; 19
Plaza (ref_1) 2012; 5
Jia (ref_21) 2021; 448
Shang (ref_12) 2021; 59
Zhu (ref_38) 2016; 54
Palsson (ref_41) 2018; 6
Liu (ref_24) 2017; 8
Heinz (ref_57) 2001; 39
Mei (ref_27) 2019; 57
Wang (ref_14) 2021; 59
Sokolova (ref_58) 2009; 45
Benediktsson (ref_6) 1989; 2
Gislason (ref_5) 2006; 27
Tarabalka (ref_9) 2010; 7
Palsson (ref_39) 2021; 59
Li (ref_15) 2020; 58
Chang (ref_3) 2000; 46
Han (ref_47) 2020; 130
Foody (ref_52) 1996; 17
Ma (ref_8) 2010; 48
Nascimento (ref_32) 2005; 43
Li (ref_17) 2019; 57
Plaza (ref_7) 2005; 43
Xu (ref_49) 2017; 10
Gao (ref_34) 2019; 57
Audebert (ref_19) 2019; 7
Drumetz (ref_48) 2019; 57
References_xml – volume: 7
  start-page: 3619
  year: 2014
  ident: ref_50
  article-title: A New Hybrid Strategy Combining Semisupervised Classification and Unmixing of Hyperspectral Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2322143
– volume: 8
  start-page: 839
  year: 2017
  ident: ref_24
  article-title: A semi-supervised convolutional neural network for hyperspectral image classification
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2017.1331053
– volume: 60
  start-page: A38
  year: 2021
  ident: ref_28
  article-title: Digital holographic imaging and classification of microplastics using deep transfer learning
  publication-title: Appl. Opt.
  doi: 10.1364/AO.403366
– volume: 57
  start-page: 482
  year: 2019
  ident: ref_42
  article-title: EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2856929
– volume: 59
  start-page: 6044
  year: 2021
  ident: ref_12
  article-title: Target-constrained interference-minimized band selection for hyperspectral target detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3010826
– volume: 37
  start-page: 4874
  year: 2016
  ident: ref_13
  article-title: A robust and efficient band selection method using graph representation for hyperspectral imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1225173
– volume: 57
  start-page: 46
  year: 2019
  ident: ref_34
  article-title: Tensorized principal component alignment: A unified framework for multimodal high-resolution images classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2852066
– ident: ref_53
  doi: 10.3390/rs13132607
– volume: 7
  start-page: 159
  year: 2019
  ident: ref_19
  article-title: Deep learning for classification of hyperspectral data: A comparative review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2019.2912563
– volume: 53
  start-page: 3681
  year: 2015
  ident: ref_10
  article-title: Local binary patterns and extreme learning machine for hyperspectral imagery classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2381602
– volume: 39
  start-page: 529
  year: 2001
  ident: ref_57
  article-title: Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.911111
– volume: 5
  start-page: 354
  year: 2012
  ident: ref_1
  article-title: Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
  publication-title: IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens.
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref_56
– volume: 45
  start-page: 427
  year: 2009
  ident: ref_58
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 7
  start-page: 736
  year: 2010
  ident: ref_9
  article-title: SVM-and MRF-based method for accurate classification of hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2047711
– volume: 46
  start-page: 4162
  year: 2008
  ident: ref_2
  article-title: Assessing the influence of reference spectra on synthetic SAM classification results
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2001035
– volume: 6
  start-page: 25646
  year: 2018
  ident: ref_41
  article-title: Hyperspectral unmixing using a neural network autoencoder
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2818280
– ident: ref_18
  doi: 10.3390/rs12132106
– volume: 3753
  start-page: 266
  year: 1999
  ident: ref_31
  article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
  publication-title: In Proc. SPIE.
  doi: 10.1117/12.366289
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_54
  article-title: Tradeoffs in the spatial and spectral resolution of airborne hyperspectral imaging systems: A crop identification case study
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 567
  year: 2020
  ident: ref_46
  article-title: Hyperspectral Unmixing Using Deep Convolutional Autoencoders in a Supervised Scenario
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2966512
– volume: 45
  start-page: 765
  year: 2007
  ident: ref_33
  article-title: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.888466
– volume: 48
  start-page: 4099
  year: 2010
  ident: ref_8
  article-title: Local manifold learning-based K-nearest-neighbor for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 31
  start-page: 82
  year: 2014
  ident: ref_30
  article-title: Nonlinear unmixing of hyperspectral images: Models and algorithms
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2279274
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_55
  article-title: Removing stripe noise based on improved statistics for hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 55
  start-page: 4520
  year: 2017
  ident: ref_25
  article-title: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2693346
– volume: 57
  start-page: 6808
  year: 2019
  ident: ref_27
  article-title: Unsupervised spatial–spectral feature learning by 3D convolutional autoencoder for hyperspectral classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2908756
– volume: 98
  start-page: 102313
  year: 2021
  ident: ref_22
  article-title: Crop type mapping by using transfer learning
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 46
  start-page: 1927
  year: 2000
  ident: ref_3
  article-title: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis
  publication-title: IEEE Trans. Inf. Theory.
  doi: 10.1109/18.857802
– volume: 2
  start-page: 489
  year: 1989
  ident: ref_6
  article-title: Neural network approaches versus statistical methods in classification of multisource remote sensing data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 105
  start-page: 102603
  year: 2021
  ident: ref_20
  article-title: Hyperspectral image classification on insufficient-sample and feature learning using deep neural networks: A review
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 35
  start-page: 221
  year: 2013
  ident: ref_51
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– volume: 58
  start-page: 2615
  year: 2020
  ident: ref_15
  article-title: Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2952758
– volume: 49
  start-page: 4163
  year: 2011
  ident: ref_37
  article-title: Pixel unmixing in hyperspectral data by means of neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2160950
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_29
  article-title: Cross-domain Contrastive Learning for Hyperspectral Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 43
  start-page: 898
  year: 2005
  ident: ref_32
  article-title: Vertex component analysis: A fast algorithm to unmix hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.844293
– volume: 59
  start-page: 2256
  year: 2021
  ident: ref_14
  article-title: Super-resolution mapping based on spatial-spectral correlation for spectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3004353
– volume: 57
  start-page: 6690
  year: 2019
  ident: ref_17
  article-title: Deep Learning for Hyperspectral Image Classification: An Overview
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2907932
– volume: 15
  start-page: 1427
  year: 2018
  ident: ref_44
  article-title: Stacked Nonnegative Sparse Autoencoders for Robust Hyperspectral Unmixing
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2841400
– volume: 49
  start-page: 4153
  year: 2011
  ident: ref_36
  article-title: Nonlinear unmixing of hyperspectral images using a generalized bilinear model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2098414
– volume: 27
  start-page: 294
  year: 2006
  ident: ref_5
  article-title: Random forests for land cover classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 24
  start-page: 4810
  year: 2015
  ident: ref_45
  article-title: Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2468177
– volume: 57
  start-page: 4775
  year: 2019
  ident: ref_48
  article-title: Hyperspectral Classification Through Unmixing Abundance Maps Addressing Spectral Variability
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2892903
– volume: 54
  start-page: 4012
  year: 2016
  ident: ref_38
  article-title: Biobjective nonnegative matrix factorization: Linear versus kernel-based models
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2535298
– volume: 10
  start-page: 1589
  year: 2017
  ident: ref_49
  article-title: Using Linear Spectral Unmixing for Subpixel Mapping of Hyperspectral Imagery: A Quantitative Assessment
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2624560
– volume: 42
  start-page: 1778
  year: 2004
  ident: ref_4
  article-title: Classification of hyperspectral remote sensing images with support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.831865
– volume: 51
  start-page: 3174
  year: 2016
  ident: ref_11
  article-title: Gabor cube selection based multitask joint sparse representation for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2513082
– volume: 2
  start-page: 203
  year: 2020
  ident: ref_23
  article-title: Classification of tree species and standing dead trees by fusing UAV-based lidar data and multispectral imagery in the 3D deep neural network PointNet++
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-annals-V-2-2020-203-2020
– volume: 17
  start-page: 1317
  year: 1996
  ident: ref_52
  article-title: Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608948706
– volume: 7
  start-page: 2094
  year: 2014
  ident: ref_26
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 448
  start-page: 179
  year: 2021
  ident: ref_21
  article-title: A survey: Deep learning for hyperspectral image classification with few labeled samples
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.035
– volume: 130
  start-page: 38
  year: 2020
  ident: ref_47
  article-title: Joint spatial-spectral hyperspectral image classification based on convolutional neural network
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.10.003
– volume: 43
  start-page: 466
  year: 2005
  ident: ref_7
  article-title: Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
  publication-title: IEEE Trans Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.841417
– volume: 57
  start-page: 1698
  year: 2019
  ident: ref_43
  article-title: uDAS: An Untied Denoising Autoencoder with Sparsity for Spectral Unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2868690
– volume: 59
  start-page: 535
  year: 2021
  ident: ref_39
  article-title: Convolutional Autoencoder for Spectral-Spatial Hyperspectral Unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2992743
– volume: 15
  start-page: 1755
  year: 2018
  ident: ref_35
  article-title: Hyperspectral Unmixing via Deep Convolutional Neural Networks
  publication-title: IEEE Geoence Remote Sensing Lett.
  doi: 10.1109/LGRS.2018.2857804
– volume: 57
  start-page: 4309
  year: 2019
  ident: ref_40
  article-title: DAEN: Deep autoencoder networks for hyperspectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2890633
– volume: 247
  start-page: 111938
  year: 2020
  ident: ref_16
  article-title: Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111938
SSID ssj0000331904
Score 2.406156
Snippet Few-shot hyperspectral classification is a challenging problem that involves obtaining effective spatial–spectral features in an unsupervised or...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 451
SubjectTerms Abundance
Accuracy
Artificial neural networks
autoencoder
Classification
Computer vision
data collection
Deep learning
Feature extraction
few-shot
hyperspectral
Machine learning
Neural networks
Remote sensing
Root-mean-square errors
unmixing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQQoJLRUurbqGVq_bSg0US27F9XCgrTqhSQeIW-WMskNqkymaB_vuOnbBQFYlLr8lEiWbsmTex_R4hn6soQwFlyYLXkQkwJXNWShYKryFWItbOZbEJdXamLy_Nt0dSX2lP2EgPPDruUAhlEXbryFUlXBm0i1FiGbWl01yrfHQPUc-jZirnYI5DqxAjHynHvv6wXyL0Sdzr5V8VKBP1_5OHc3FZ7JIXEyqk8_FrXpINaF-R7Umg_Or3Honzls6HYdybyI6w9ATKv9Ljrr2Zxk56fDV0iZcyQE8Ri9IF3LLvV91AT7HZHM9U9mh20f68vsOKRW0baBbFTNuFcoRek4vFyfnxKZskEpjnRgyMVyVURZAAJtiidtZjtTEleiwAeONqGayqrYpSRQeFMoWrrfE4Tb2KBjR_QzbbroW3hEpZyQqM9BBA8LR8KQRo5aOUPCAwmZEv925r_MQfnmQsfjTYRyQXNw8unpFPa9tfI2vGk1ZHyftri8R0nS9g_Jsp_s1z8Z-Rg_vYNdP0WzaVqjMPv8Z3fFzfxomTVkNsC91q2XBMX4glMcG9-x_fsU92khL9-HfmgGwO_Qreky1_M1wv-w95dP4Bygnpgg
  priority: 102
  providerName: Directory of Open Access Journals
Title An Attention-Based 3D Convolutional Autoencoder for Few-Shot Hyperspectral Unmixing and Classification
URI https://www.proquest.com/docview/2767300581
https://www.proquest.com/docview/3040423301
https://doaj.org/article/447a0868f3724b1d8bff5643a1b83879
Volume 15
WOSCitedRecordID wos000918910300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9QwGLagRYKFb8RBORnBwmA1ie3YntBduVMZOEWUSoUl8mdbCZKS5Aos_HZsx3cVArGweEjeREneT792ngeAl4WjJrN5jozmDhErcqQkpchkmltXEFcqFckm2GrFT05ElRpufdpWuYmJMVCbVoce-X7BygitzvPXF19RYI0Kq6uJQuM62A0oCUXcune07bFk2BtYRkZUUuxn9_td7wuggMCe_5aHIlz_H9E4ppjlnf99uLvgdiou4Wy0hnvgmm3ug5uJ5_zsxwPgZg2cDcO4xRHNfQYzEL-BB21zmUwwXL4e2gBvaWwHfUkLl_YbOjprB3jo56zjr5mdFztuvpx_94kPysbAyK0Zdh1FRT8Ex8vFh4NDlJgWkMaCDAgXuS0yQ60VRmalktonLZHLjBtrtVAlNZKVkjnKnLIZE5kqpdDe2zVzwnL8COw0bWMfA0hpQQsrqLbGEhxWQQmxnGlHKTa-vpmAV5vvXusEQx7YMD7XfjoSdFRf6WgCXmxlL0bwjb9KzYP6thIBMDseaLvTOvlfTQjzb1Nyh1lBVG64co76akzmimPOxATsbTRbJy_u6yu1TsDz7Wnvf2FRRTa2Xfc19lHQl6Q-Tj759y2egluBqn5s3-yBnaFb22fghr4czvtuCnbni1X1fhp7AtNoxmH8ufBjRT_589Xbd9XHX8Tm_vE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQSoXvisWChgBBw5RE3_E9gGhbctqq5YVUlupt5DYY1oJkpJkW_qn-I2Mk-xWCMStB67JxJLj5zdjezyPkNfMSxdDkkTOah8JMElU5FJGLrYaPBM-LYpObELNZvr42HxaIT8Xd2FCWuWCEzuidpUNe-SbTKVdaXWdvD_7HgXVqHC6upDQ6GGxB5cXuGRr3u3u4Pi-YWzy4XB7Gg2qApHlRrQRZwmw2EkA4_I4LXKLBG2SPNYOwJoilS5Xaa68VL6AWJm4SHNjEdlWeQOaY7s3yE0R2L9LFTxY7unEHAEdi74KKucm3qwbDLhCxffkN7_XyQP8wf6dS5vc_d9-xj1yZwie6bhH-32yAuUDsjbouJ9cPiR-XNJx2_YpnNEWemhH-Q7drsrzYYqFz-dtFcp3Oqgphux0AhfRwUnV0imuyfurpzWaHZXfTn-gY6d56WinHRqyqjogPyJH19LNdbJaViU8JlRKJhkYacGB4OGUVwjQynopucP4bUTeLsY5s0OZ9aD28TXD5VbARHaFiRF5tbQ964uL_NVqK8BlaREKgncPqvpLNvBLJoTC3qTac8VEkThdeC8x2syTQnOtzIhsLJCUDSzVZFcwGpGXy9fIL-HQKC-hmjcZR5bHkBv9wJN_N_GCrE0PP-5n-7uzvafkNsNgsN-q2iCrbT2HZ-SWPW9Pm_p5N2ko-XzdwPwFK5RXwg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCFN2KhgBFw4BBtYsexfUBo22XVqmi1ElSquKSJPaaV2qQk2Zb-NX4d4zy2QiBuPXBNJpYcf56HZzwfIW-YEzaEKAqsUS6IQUdBngkR2NAocCx2SZ63ZBNyPlf7-3qxRn4Od2F8WeWgE1tFbUvjz8jHTCZta3UVjV1fFrGYzj6cfg88g5TPtA50Gh1EduHiHMO3-v3OFNf6LWOzj1-2toOeYSAwXMdNwFkELLQCQNssTPLMoLLWURYqC2B0ngibySSTTkiXQyh1mCeZNohyI50GxXHca-S6xBjTB34L8XV1vhNyBHcYdx1ROdfhuKrR-fLd36PfbGBLFfCHJWjN2-zu__xj7pE7vVNNJ90uuE_WoHhAbvX87ocXD4mbFHTSNF1pZ7CJlttSPqVbZXHWbz3_-bIpfVtPCxVFV57O4Dz4fFg2dBtj9e5KaoVie8XJ0Q80-DQrLG05RX21VQvwR2TvSqb5mKwXZQFPCBWCCQZaGLAQc5_9jWNQ0jghuEW_bkTeDWuemr79umcBOU4xDPP4SC_xMSKvV7KnXdORv0pteuisJHyj8PZBWX1Le72TxrHE2STKccniPLIqd06gF5pFueJK6hHZGFCV9tqrTi8hNSKvVq9R7_hkUlZAuaxTjtofXXG0D0__PcRLchPxmH7ame8-I7cZ-ojdCdYGWW-qJTwnN8xZc1RXL9r9Q8nBVePyF-GRYKU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Attention-Based+3D+Convolutional+Autoencoder+for+Few-Shot+Hyperspectral+Unmixing+and+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Chunyu&rft.au=Cai%2C+Rong&rft.au=Yu%2C+Junchuan&rft.date=2023-01-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=2&rft.spage=451&rft_id=info:doi/10.3390%2Frs15020451&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15020451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon