Integrating Adversarial Generative Network with Variational Autoencoders towards Cross-Modal Alignment for Zero-Shot Remote Sensing Image Scene Classification

Remote sensing image scene classification takes image blocks as classification units and predicts their semantic descriptors. Because it is difficult to obtain enough labeled samples for all classes of remote sensing image scenes, zero-shot classification methods which can recognize image scenes tha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 14; číslo 18; s. 4533
Hlavní autoři: Ma, Suqiang, Liu, Chun, Li, Zheng, Yang, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2022
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Remote sensing image scene classification takes image blocks as classification units and predicts their semantic descriptors. Because it is difficult to obtain enough labeled samples for all classes of remote sensing image scenes, zero-shot classification methods which can recognize image scenes that are not seen in the training stage are of great significance. By projecting the image visual features and the class semantic features into the latent space and ensuring their alignment, the variational autoencoder (VAE) generative model has been applied to address remote-sensing image scene classification under a zero-shot setting. However, the VAE model takes the element-wise square error as the reconstruction loss, which may not be suitable for measuring the reconstruction quality of the visual and semantic features. Therefore, this paper proposes to augment the VAE models with the generative adversarial network (GAN) to make use of the GAN’s discriminator in order to learn a suitable reconstruction quality metric for VAE. To promote feature alignment in the latent space, we have also proposed cross-modal feature-matching loss to make sure that the visual features of one class are aligned with the semantic features of the class and not those of other classes. Based on a public dataset, our experiments have shown the effects of the proposed improvements. Moreover, taking the ResNet models of ResNet18, extracting 512-dimensional visual features, and ResNet50 and ResNet101, both extracting 2048-dimensional visual features for testing, the impact of the different visual feature extractors has also been investigated. The experimental results show that better performance is achieved by ResNet18. This indicates that more layers of the extractors and larger dimensions of the extracted features may not contribute to the image scene classification under a zero-shot setting.
AbstractList Remote sensing image scene classification takes image blocks as classification units and predicts their semantic descriptors. Because it is difficult to obtain enough labeled samples for all classes of remote sensing image scenes, zero-shot classification methods which can recognize image scenes that are not seen in the training stage are of great significance. By projecting the image visual features and the class semantic features into the latent space and ensuring their alignment, the variational autoencoder (VAE) generative model has been applied to address remote-sensing image scene classification under a zero-shot setting. However, the VAE model takes the element-wise square error as the reconstruction loss, which may not be suitable for measuring the reconstruction quality of the visual and semantic features. Therefore, this paper proposes to augment the VAE models with the generative adversarial network (GAN) to make use of the GAN’s discriminator in order to learn a suitable reconstruction quality metric for VAE. To promote feature alignment in the latent space, we have also proposed cross-modal feature-matching loss to make sure that the visual features of one class are aligned with the semantic features of the class and not those of other classes. Based on a public dataset, our experiments have shown the effects of the proposed improvements. Moreover, taking the ResNet models of ResNet18, extracting 512-dimensional visual features, and ResNet50 and ResNet101, both extracting 2048-dimensional visual features for testing, the impact of the different visual feature extractors has also been investigated. The experimental results show that better performance is achieved by ResNet18. This indicates that more layers of the extractors and larger dimensions of the extracted features may not contribute to the image scene classification under a zero-shot setting.
Author Li, Zheng
Ma, Suqiang
Liu, Chun
Yang, Wei
Author_xml – sequence: 1
  givenname: Suqiang
  surname: Ma
  fullname: Ma, Suqiang
– sequence: 2
  givenname: Chun
  surname: Liu
  fullname: Liu, Chun
– sequence: 3
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
– sequence: 4
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
BookMark eNptkV1rFDEUhgepYK298RcEvBFhar7m63JZtC5UBateeBPOJGemWWeSmmS7-Gf8rc3sKkoxBHJy8rznJec8LU6cd1gUzxm9EKKjr0NkkrWyEuJRccppw0vJO37yT_ykOI9xS_MSgnVUnha_Ni7hGCBZN5KVucMQIViYyCU6XNJ3SD5g2vvwnextuiFfl-dkvcvMapc8Ou1NVpHk9xBMJOvgYyzfe7MAkx3djC6RwQfyDYMvr298Ip9w9gnJNbq4-G5mGPNNZ0uyniBGO1h9MHlWPB5ginj--zwrvrx983n9rrz6eLlZr65KLTqZSt60DBCoYbVpOpBA-14OCH3Vi6rta8o5M5y3AGwwvJXSaAYt1RT6lvKWirNic6xrPGzVbbAzhJ_Kg1WHhA-jgpCsnlBRRiUTtayZbqTObr1uhe5MlT00asy1Xh5r3Qb_Y4cxqdlGjdMEDv0uKt5wwfKuq4y-eIBu_S7k1i5UBtps1GSKHim9tDbgoLRNh_akAHZSjKpl_urv_LPk1QPJnz_9B74HqEa0NQ
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3344628
crossref_primary_10_1109_TMM_2024_3372416
crossref_primary_10_1109_JSTARS_2024_3505935
crossref_primary_10_1088_1361_6501_acc1fc
crossref_primary_10_3390_e25091306
crossref_primary_10_1109_JSTARS_2024_3410995
crossref_primary_10_1109_JSTARS_2024_3414499
Cites_doi 10.3390/rs14102483
10.1080/01431161.2012.705443
10.1007/978-3-319-50077-5_2
10.1109/TGRS.2020.3047447
10.1109/TKDE.2009.191
10.1109/CVPR.2019.00844
10.3788/AOS201939.0610002
10.1109/CVPR.2018.00115
10.1109/CVPR.2016.15
10.1109/IJCNN.2019.8852315
10.1016/j.asoc.2021.107352
10.1109/TGRS.2017.2783902
10.1109/CVPRW.2009.5206594
10.3390/rs71114680
10.1109/TGRS.2014.2351395
10.1109/CVPR.2019.00089
10.1007/978-3-642-35085-6_6
10.3390/s20061594
10.1109/CVPR.2017.321
10.1109/CVPR.2017.473
10.1109/CVPR.2018.00581
10.1016/j.isprsjprs.2018.01.004
10.1109/TPAMI.2015.2408354
10.1109/TGRS.2017.2689071
10.1109/TGRS.2017.2685945
10.5244/C.31.3
10.1145/1869790.1869829
10.1109/ICCV.2015.474
10.1109/CVPRW.2015.7301382
10.3788/AOS201636.0428001
10.1016/j.rse.2018.05.006
10.1016/j.isprsjprs.2021.08.001
10.1109/ICECOME.2018.8645056
10.1109/JPROC.2017.2675998
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14184533
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_0104136461c74c79abc83c9d5221cece
10_3390_rs14184533
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c394t-2781aea0d16d79a4a0bb4feab5b358b60221d228aa1fd2844dc1a80c0ab802803
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857722700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:51:29 EDT 2025
Fri Sep 05 12:21:11 EDT 2025
Sat Sep 06 16:35:03 EDT 2025
Sat Nov 29 07:20:27 EST 2025
Tue Nov 18 22:21:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-2781aea0d16d79a4a0bb4feab5b358b60221d228aa1fd2844dc1a80c0ab802803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/0104136461c74c79abc83c9d5221cece
PQID 2716581367
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_0104136461c74c79abc83c9d5221cece
proquest_miscellaneous_2723123165
proquest_journals_2716581367
crossref_citationtrail_10_3390_rs14184533
crossref_primary_10_3390_rs14184533
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hu (ref_5) 2015; 7
Liu (ref_1) 2016; 36
Chen (ref_34) 2019; 39
Cheng (ref_17) 2018; 56
Ding (ref_12) 2014; 9284
ref_14
ref_35
ref_11
ref_33
ref_10
ref_30
Cheng (ref_3) 2013; 34
ref_18
Goodfellow (ref_22) 2014; 27
Li (ref_37) 2020; 49
ref_39
ref_38
ref_15
Hinton (ref_48) 2008; 9
Xia (ref_41) 2017; 55
Li (ref_8) 2017; 55
Rostami (ref_32) 2022; 8
Chen (ref_2) 2014; 53
ref_25
ref_47
ref_24
Luo (ref_31) 2021; 107
ref_46
ref_23
ref_45
ref_21
ref_43
ref_20
ref_40
Cheng (ref_42) 2017; 105
Pan (ref_9) 2009; 22
Fu (ref_13) 2015; 37
ref_29
ref_28
Li (ref_19) 2021; 179
ref_27
ref_26
Zhang (ref_4) 2018; 212
Chen (ref_36) 2019; 46
ref_7
Li (ref_16) 2021; 59
Zhou (ref_44) 2018; 145
ref_6
References_xml – ident: ref_18
  doi: 10.3390/rs14102483
– volume: 34
  start-page: 45
  year: 2013
  ident: ref_3
  article-title: Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.705443
– ident: ref_26
  doi: 10.1007/978-3-319-50077-5_2
– volume: 59
  start-page: 10590
  year: 2021
  ident: ref_16
  article-title: Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3047447
– ident: ref_47
– volume: 22
  start-page: 1345
  year: 2009
  ident: ref_9
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: ref_15
  doi: 10.1109/CVPR.2019.00844
– volume: 39
  start-page: 0610002
  year: 2019
  ident: ref_34
  article-title: Image Feature Fusion Based Remote Sensing Scene Zero-Shot Classification Algorithm
  publication-title: Acta Opt. Sin.
  doi: 10.3788/AOS201939.0610002
– ident: ref_10
  doi: 10.1109/CVPR.2018.00115
– volume: 27
  start-page: 139
  year: 2014
  ident: ref_22
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_27
  doi: 10.1109/CVPR.2016.15
– ident: ref_39
– ident: ref_11
  doi: 10.1109/IJCNN.2019.8852315
– volume: 107
  start-page: 107352
  year: 2021
  ident: ref_31
  article-title: Dual VAEGAN: A generative model for generalized zero-shot learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107352
– volume: 56
  start-page: 2811
  year: 2018
  ident: ref_17
  article-title: When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2783902
– ident: ref_25
  doi: 10.1109/CVPRW.2009.5206594
– volume: 8
  start-page: 100278
  year: 2022
  ident: ref_32
  article-title: Zero-shot image classification using coupled dictionary embedding
  publication-title: Mach. Learn. Appl.
– volume: 7
  start-page: 14680
  year: 2015
  ident: ref_5
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 53
  start-page: 1947
  year: 2014
  ident: ref_2
  article-title: Pyramid of spatial relatons for scene-level land use classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2351395
– ident: ref_14
  doi: 10.1109/CVPR.2019.00089
– ident: ref_24
  doi: 10.1007/978-3-642-35085-6_6
– volume: 9284
  start-page: 135
  year: 2014
  ident: ref_12
  article-title: Improving zero shot learning by mitigating the hubness problem
  publication-title: Comput. Sci.
– ident: ref_43
  doi: 10.3390/s20061594
– ident: ref_21
– ident: ref_29
  doi: 10.1109/CVPR.2017.321
– ident: ref_23
  doi: 10.1109/CVPR.2017.473
– ident: ref_30
  doi: 10.1109/CVPR.2018.00581
– volume: 145
  start-page: 197
  year: 2018
  ident: ref_44
  article-title: PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.004
– volume: 37
  start-page: 2332
  year: 2015
  ident: ref_13
  article-title: Transductive multi-view zero-shot learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2408354
– ident: ref_6
– volume: 55
  start-page: 4157
  year: 2017
  ident: ref_8
  article-title: Zero-shot scene classification for high spatial resolution remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2689071
– ident: ref_33
– volume: 55
  start-page: 3965
  year: 2017
  ident: ref_41
  article-title: AID: A benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
– ident: ref_46
  doi: 10.5244/C.31.3
– ident: ref_40
  doi: 10.1145/1869790.1869829
– ident: ref_28
  doi: 10.1109/ICCV.2015.474
– ident: ref_7
  doi: 10.1109/CVPRW.2015.7301382
– volume: 46
  start-page: 286
  year: 2019
  ident: ref_36
  article-title: Word Vectors Fusion Based Remote Sensing Scenes Zero-shot Classification Algorithm
  publication-title: Comput. Sci.
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_48
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 0428001
  year: 2016
  ident: ref_1
  article-title: High spatial resolution remote sensing image classification based on deep learning
  publication-title: Acta Opt. Sin.
  doi: 10.3788/AOS201636.0428001
– ident: ref_38
– volume: 212
  start-page: 231
  year: 2018
  ident: ref_4
  article-title: Integrating bottom-up classification and top-down feedback for improving urban land-cover and functional-zone mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.006
– volume: 49
  start-page: 1564
  year: 2020
  ident: ref_37
  article-title: Zero-shot remote sensing image scene classification based on robust cross-domain mapping and gradual refinement of semantic space
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 179
  start-page: 145
  year: 2021
  ident: ref_19
  article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.001
– ident: ref_20
– ident: ref_35
  doi: 10.1109/ICECOME.2018.8645056
– volume: 105
  start-page: 1865
  year: 2017
  ident: ref_42
  article-title: Remote sensing image scene classification: Benchmark and state of the art
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2675998
– ident: ref_45
  doi: 10.1109/CVPR.2016.90
SSID ssj0000331904
Score 2.3531215
Snippet Remote sensing image scene classification takes image blocks as classification units and predicts their semantic descriptors. Because it is difficult to obtain...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4533
SubjectTerms Alignment
Classification
cross-modal feature alignment
data collection
Deep learning
Experiments
Feature extraction
generative adversarial network
Generative adversarial networks
Image classification
Neural networks
Normal distribution
Reconstruction
Remote sensing
remote sensing image scene classification
Semantics
Sensory integration
variational autoencoder
zero-shot learning
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEF60Cvri7-LVKiv60oel2ewm2TxJLRYLeoinUvoSdmf32kJ7aZOc4D_j3-rMZu-KKL4I93BchtuEmZ35ZnbyDWOvfalyRLGYlijwQuN3gVEuE9LrEmptqwIiu_6Hajo1R0f1p1Rw61Nb5conRkftW6Aa-W6OwL4wRDD25vJK0NQoOl1NIzRuslvEkiBj695sXWPJFBpYpkdWUoXZ_W7XS405TaHUb3Eo0vX_4Y1jiDm4_78394DdS-CS743W8JDdCItH7E6ac3764zH7eZjYITBg8TiLubdkgXxknybXx6djYzinCi3_RpfHciHfWw4t0V5S6zMfYrttz_fp6cTH1pPA-dlJbC7giIT5cehaMTttB_45oD0EPqNeeVz38AJ9GJ8BLsnjTE7qVoqLPGFfD9592X8v0oQGAarWg8grI22wmZelr2qrbeacngfrCqcK40oECNLnubFWzj0GQu1BWpNBZp2hM121yTYW7SI8ZdwCAgvIlVMBQV1lHJpMgNrPA4JKsGrCdlb6aiDRl9MUjfMG0xjSbXOt2wl7tZa9HEk7_ir1ltS-liCi7fhD2500ad82lK6iXnUpodKAz-jAKLwthK0SAoQJ215ZRJN2f99cm8OEvVxfxn1LhzF2EdolySCyxk9ZbP37L56xuzm9chH72rbZxtAtw3N2G74PZ333Ihr8L7kvDR0
  priority: 102
  providerName: ProQuest
Title Integrating Adversarial Generative Network with Variational Autoencoders towards Cross-Modal Alignment for Zero-Shot Remote Sensing Image Scene Classification
URI https://www.proquest.com/docview/2716581367
https://www.proquest.com/docview/2723123165
https://doaj.org/article/0104136461c74c79abc83c9d5221cece
Volume 14
WOSCitedRecordID wos000857722700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhLbSX0lfotsmikl5yMLEs2ZaPSdjQhWQx2aYkuRhppG0C6bqsvYVe-lP6WzMjO9uEBnIpGGOsAQnNeB72528Y--QymWAWi2WJBBcpvI4wysWRcCqDQpk8hcCuf5RPJvrsrCjvtPoiTFhHD9xt3C7VC0JmKhOQK8gLY0FLKBzmDQI8ePK-cV7cKaaCD5ZoWrHq-Egl1vW7i0YorGZSKe9FoEDU_48fDsHl8CV70WeFfK9bzSu25uev2bO-Qfnlrzfsz7indcBIw0MT5caQ6fCONpp8Fp90iG5Or1b5Vxru3vPxvWVbE18lYZZ5G3CyDT-gxUXHtSOB66tvARXAMYXlF35RR9PLuuUnHhXp-ZRA7jjv-Ds6Hz4FnJKHZpoEMwqTvGWnh6MvB5-jvrVCBLJQbZTkWhhvYicyh3uqTGytmnljUytTbTOM7MIliTZGzBxGMOVAGB1DbKymj7Fyg63P67l_x7gBzAggkVZ6zMZybVHXHhU085gNgpEDtnO73RX0vOPU_uK6wvqDVFP9Vc2Aba9kf3RsGw9K7ZPWVhLEkB1uoN1Uvd1Uj9nNgG3e6rzqH9umSrB6TDWx2A3Yx9UwPnD0FcXMfb0kGUyJ8cjS9_9jHR_Y84T-qAiwtU223i6Wfos9hZ_tVbMYsif7o0l5MgzWPSRg6pTOv0d4LtMLHC_Hx-X5DYk6BRE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVJ7oTzFQgtGwIFD1CR2XgeESqFq1N3Vii2o5RIc29tWajclyVL1z_AT-huZcZKtEIhbD0g5RMkoTpzP87DH3wC80iH30YvFsIQr7Qg8d9DKuY6nRagSIaNAWXb9QTQaxQcHyXgJrrq9MJRW2elEq6h1oWiOfNNHxz6IiWDs3fl3h6pG0epqV0KjgcWeubzAkK16m37A__va93c-7m_vOm1VAUfxRNSOH8WeNNLVXqijRArp5rmYGpkHOQ_iPESj5mnfj6X0phqVt9DKk7GrXJnHtA7J8bm3YFkQ2HuwPE6H48PFrI7LEdKuaHhQOU_czbLyBEZRAee_WT5bIOAP_W-N2s7a_9Ydd-FO6z6zrQbv92DJzO7DSlvJ_fjyAfxMW_4LNMnMVpuuJI0x1vBrk3Jnoyb1ndEcNPtCt5sJUbY1rwsi9qTkblbbhOKKbVNvOsNCk8DpyZFNn2Do67OvpiycyXFRs08GEW_YhHYDYLvpGWppNlHYJLNVRykfyzbyED7fSPc8gt6smJnHwKRC10n5POcG3dYoznFQGJXoqUG3WUnehzcdPjLVErRTnZDTDAM1wlJ2jaU-vFzInje0JH-Vek8wW0gQlbi9UJRHWauZMgrIEUci9FQkFH5jrmKOr4WOuaeMMn1Y7xCYtfqtyq7h14cXi9uomWi5Sc5MMScZjB3wCIMn_37Ec1jZ3R8OskE62nsKqz5tMLFZfOvQq8u52YDb6kd9UpXP2uHG4NtNQ_oXJBdrww
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb0SgwCLgwMGK7V2_DgiVloioJYoIoKoXs57dtJVKXGwH1D_DD-HXMbO2UyEQtx6QcrDikTdZf_Pa_XYG4JmJZUhRLKUlEo2n6NojL-d7gVExZkonEbrq-rvJZJLu7WXTNfjZn4VhWmVvE52hNiXyGvkwpMA-SrnA2HDe0SKm26NXJ1897iDFO619O40WIjv29Dulb_XL8Ta96-dhOHrzYeut13UY8FBmqvHCJA201b4JYpNkWmm_KNTc6iIqZJQWMTm4wIRhqnUwN2TIlcFApz76ukh5T1LScy_AxYRyTKYTTqP91fqOLwncvmorokqZ-cOqDhTlU5GUv_lA1yrgD0_g3Nvo-v88MTfgWhdUi81WC27Cml3cgitdf_fD09vwY9xVxSBHLVwP6lqz5om26jabfDFpCfGCV6bFJ77dLpOKzWVTcrlPpnyLxtGMa7HFM-u9Kw0LHB8dOFKFoAxA7Nuq9GaHZSPeW9IDK2Z8RoDGHX8h2y1mSEMK14uUWVpukDvw8Vym5y6sL8qFvQdCIwVUGMpCWgpmk7QgVbGYmbmlYBq1HMCLHis5dmXbuXvIcU7pG-MqP8PVAJ6uZE_aYiV_lXrNkFtJcIFx90VZHeSdvco5TSdMqTjARCH9xwJTST-LwvUALdoBbPRozDurV-dnUBzAk9Vtsle8CaUXtlyyDGUU9Imj-_9-xGO4TDjOd8eTnQdwNeRTJ47atwHrTbW0D-ESfmuO6uqR0zsBn88bz78ANTlzJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Adversarial+Generative+Network+with+Variational+Autoencoders+towards+Cross-Modal+Alignment+for+Zero-Shot+Remote+Sensing+Image+Scene+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Suqiang+Ma&rft.au=Chun+Liu&rft.au=Zheng+Li&rft.au=Wei+Yang&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=18&rft.spage=4533&rft_id=info:doi/10.3390%2Frs14184533&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0104136461c74c79abc83c9d5221cece
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon