Method of Minimax Optimization in the Coefficient Inverse Heat-Conduction Problem

Consideration has been given to the inverse problem on identification of a temperature-dependent thermal-conductivity coefficient. The problem was formulated in an extremum statement as a problem of search for a quantity considered as the optimum control of an object with distributed parameters, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering physics and thermophysics Jg. 89; H. 4; S. 1008 - 1013
Hauptverfasser: Diligenskaya, A. N., Rapoport, É. Ya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2016
Springer
Schlagworte:
ISSN:1062-0125, 1573-871X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Consideration has been given to the inverse problem on identification of a temperature-dependent thermal-conductivity coefficient. The problem was formulated in an extremum statement as a problem of search for a quantity considered as the optimum control of an object with distributed parameters, which is described by a nonlinear homogeneous spatially one-dimensional Fourier partial equation with boundary conditions of the second kind. As the optimality criterion, the authors used the error (minimized on the time interval of observation) of uniform approximation of the temperature computed on the object′s model at an assigned point of the segment of variation in the spatial variable to its directly measured value. Pre-parametrization of the sought control action, which a priori records its description accurate to assigning parameters of representation in the class of polynomial temperature functions, ensured the reduction of the problem under study to a problem of parametric optimization. To solve the formulated problem, the authors used an analytical minimax-optimization method taking account of the alternance properties of the sought optimum solutions based on which the algorithm of computation of the optimum values of the sought parameters is reduced to a system (closed for these unknowns) of equations fixing minimax deviations of the calculated values of temperature from those observed on the time interval of identification. The obtained results confirm the efficiency of the proposed method for solution of a certain range of applied problems. The authors have studied the influence of the coordinate of a point of temperature measurement on the exactness of solution of the inverse problem.
AbstractList Consideration has been given to the inverse problem on identification of a temperature-dependent thermal-conductivity coefficient. The problem was formulated in an extremum statement as a problem of search for a quantity considered as the optimum control of an object with distributed parameters, which is described by a nonlinear homogeneous spatially one-dimensional Fourier partial equation with boundary conditions of the second kind. As the optimality criterion, the authors used the error (minimized on the time interval of observation) of uniform approximation of the temperature computed on the object's model at an assigned point of the segment of variation in the spatial variable to its directly measured value. Pre-parametrization of the sought control action, which a priori records its description accurate to assigning parameters of representation in the class of polynomial temperature functions, ensured the reduction of the problem under study to a problem of parametric optimization. To solve the formulated problem, the authors used an analytical minimax-optimization method taking account of the alternance properties of the sought optimum solutions based on which the algorithm of computation of the optimum values of the sought parameters is reduced to a system (closed for these unknowns) of equations fixing minimax deviations of the calculated values of temperature from those observed on the time interval of identification. The obtained results confirm the efficiency of the proposed method for solution of a certain range of applied problems. The authors have studied the influence of the coordinate of a point of temperature measurement on the exactness of solution of the inverse problem.
Consideration has been given to the inverse problem on identification of a temperature-dependent thermal-conductivity coefficient. The problem was formulated in an extremum statement as a problem of search for a quantity considered as the optimum control of an object with distributed parameters, which is described by a nonlinear homogeneous spatially one-dimensional Fourier partial equation with boundary conditions of the second kind. As the optimality criterion, the authors used the error (minimized on the time interval of observation) of uniform approximation of the temperature computed on the object's model at an assigned point of the segment of variation in the spatial variable to its directly measured value. Pre-parametrization of the sought control action, which a priori records its description accurate to assigning parameters of representation in the class of polynomial temperature functions, ensured the reduction of the problem under study to a problem of parametric optimization. To solve the formulated problem, the authors used an analytical minimax-optimization method taking account of the alternance properties of the sought optimum solutions based on which the algorithm of computation of the optimum values of the sought parameters is reduced to a system (closed for these unknowns) of equations fixing minimax deviations of the calculated values of temperature from those observed on the time interval of identification. The obtained results confirm the efficiency of the proposed method for solution of a certain range of applied problems. The authors have studied the influence of the coordinate of a point of temperature measurement on the exactness of solution of the inverse problem. Keywords: coefficient inverse heat-conduction problem, parametric optimization, minimax-optimization method.
Audience Academic
Author Rapoport, É. Ya
Diligenskaya, A. N.
Author_xml – sequence: 1
  givenname: A. N.
  surname: Diligenskaya
  fullname: Diligenskaya, A. N.
  email: adiligenskaya@mail.ru
  organization: Samara State Technical University
– sequence: 2
  givenname: É. Ya
  surname: Rapoport
  fullname: Rapoport, É. Ya
  organization: Samara State Technical University
BookMark eNp9kUtv3CAURlGVSs2jP6A7L5OFU65f4GU0ymOkRGn6kLpDgC8TIhsmgKO0v75M3E2yiFiArs65SN93QPacd0jIF6CnQCn7GoHyHkoKXQlNV5X0A9mHltUlZ_B7L7_pbghV-4kcxPhAKe15U--TuxtM934ovClurLOTfC5ut8lO9q9M1rvCuiLdY7HyaIzVFl0q1u4JQ8TiCmUqV94Ns35BvwWvRpyOyEcjx4if_9-H5NfF-c_VVXl9e7lenV2Xuu6bVFasRaawwU4BUqMUV2xAJpuedcBr2ipsjdJGs0Yp5FD1mmlu2ACdBK6gPiTHy95t8I8zxiQmGzWOo3To5yjykrajtOvajJ4u6EaOKKwzPgWp8xlwsjoHaWyenzV929e8oTvh5JWQmYTPaSPnGMX6x_fXLFtYHXyMAY3QNr2Elz-xowAqdg2JpSGRGxK7hgTNJrwxtyE3EP6861SLEzPrNhjEg5-Dy0G_I_0D8hekmQ
CitedBy_id crossref_primary_10_1007_s10891_021_02440_4
crossref_primary_10_1134_S0018151X21030032
Cites_doi 10.1007/s10891-014-1114-1
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
COPYRIGHT 2016 Springer
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: COPYRIGHT 2016 Springer
DBID AAYXX
CITATION
ISR
7TB
7U5
8FD
FR3
KR7
L7M
DOI 10.1007/s10891-016-1462-0
DatabaseName CrossRef
Gale In Context: Science
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList


Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-871X
EndPage 1013
ExternalDocumentID A495938405
10_1007_s10891_016_1462_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBD
EBLON
EBS
EIOEI
EJD
EMK
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
S0W
7TB
7U5
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c394t-275e7be4e6b1e0fbb8b7de7a497618305be5fbcfc74bbe8129c7c8f7d16a18b13
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384842900025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1062-0125
IngestDate Thu Sep 04 20:25:03 EDT 2025
Sun Nov 23 08:52:20 EST 2025
Wed Nov 26 10:28:02 EST 2025
Sat Nov 29 04:08:26 EST 2025
Tue Nov 18 22:14:16 EST 2025
Fri Feb 21 02:38:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords coefficient inverse heat-conduction problem
parametric optimization
minimax-optimization method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-275e7be4e6b1e0fbb8b7de7a497618305be5fbcfc74bbe8129c7c8f7d16a18b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835600665
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1835600665
gale_infotracacademiconefile_A495938405
gale_incontextgauss_ISR_A495938405
crossref_citationtrail_10_1007_s10891_016_1462_0
crossref_primary_10_1007_s10891_016_1462_0
springer_journals_10_1007_s10891_016_1462_0
PublicationCentury 2000
PublicationDate 20160700
2016-7-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 7
  year: 2016
  text: 20160700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of engineering physics and thermophysics
PublicationTitleAbbrev J Eng Phys Thermophy
PublicationYear 2016
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References AlifanovOMArtyukhinEARumyantsevSVExtremum Methods of Solution of Ill-Posed Problems and Their Application to Inverse Heat-Transfer Problems [in Russian]1988MoscowNauka0657.35003
StolovichNNMinitskayaNSTemperature Dependences of Thermophysical Properties of Certain Materials [in Russian]1973MinskNauka i Tekhnika
TikhonovANArseninVYMethods for Solution of Ill-Posed Problems [in Russian]1979MoscowNauka0499.65030
RapoportEPleshivtsevaYOptimal Control of Induction Heating Processes2007London, New YorkCRC Press, Taylor & Francis Group1308.49022
Yu. Matsevity and S. Lushpenko, An estimation of thermal properties by means of solving internal inverse heat transfer problems, Proc. 2nd Int. Conf. on Inverse Problems in Engineering, June 9–14, 1996, Le Croisic, France; United Engineering Center, New York (1998), pp. 677–685.
MorozovVARegular Methods of Solution of Ill-Posed Problems [in Russian]1974MoscowIzd. MGU
IvanovVKVasinVVTananaVPThe Theory of Linear Ill-Posed Problems and Its Applications [in Russian]1978MoscowNauka0489.65035
DiligenskayaANRapoportÉYAnalytical methods of parametric optimization in inverse heat-conduction problems with internal heat releaseJ. Eng. Phys. Thermophys.20148751126113410.1007/s10891-014-1114-1
RapoportÉYThe Alternance Method in Applied Optimization Problems [in Russian]2000MoscowNauka1050.90570
AlifanovOMIdentification of the Processes of Heat Transfer of Aircraft and Spacecraft [in Russian]1979MoscowMashinostroenie
É. Ya. Rapoport and Ye. É. Pleshivtseva, Special optimization methods in inverse heat-conduction problems, Izv. Ross. Akad. Nauk, Énergetika, No. 5, 144–155 (2002).
ButkovskiiAGMalyiSAAndreevYNOptimum Control of Heating of a Metal [in Russian]1972MoscowMetallurgiya
ButkovskiiAGMethods for Control of Systems with Distributed Parameters [in Russian]1975MoscowNauka
Yu. M. Matsevityi, Inverse Heat-Transfer Problems, in 2 Volumes [in Russian], Naukova Dumka, Kiev (2002).
Ye. É. Pleshivtseva and É. Ya. Rapoport, Method of successive parameterization of control actions in boundary-value problems of optimum control of systems with distributed parameters, Izv. Ross. Akad. Nauk, Teor. Sistemy Upravl., No. 3, 22–33 (2009).
AlifanovOMInverse Heat-Transfer Problems [in Russian]1988MoscowMashinostroenie0979.80003
AG Butkovskii (1462_CR9) 1972
ÉY Rapoport (1462_CR14) 2000
OM Alifanov (1462_CR1) 1988
1462_CR12
AN Diligenskaya (1462_CR13) 2014; 87
E Rapoport (1462_CR16) 2007
VA Morozov (1462_CR7) 1974
OM Alifanov (1462_CR5) 1979
VK Ivanov (1462_CR8) 1978
1462_CR2
1462_CR3
AN Tikhonov (1462_CR6) 1979
OM Alifanov (1462_CR4) 1988
AG Butkovskii (1462_CR10) 1975
1462_CR11
NN Stolovich (1462_CR15) 1973
References_xml – reference: MorozovVARegular Methods of Solution of Ill-Posed Problems [in Russian]1974MoscowIzd. MGU
– reference: AlifanovOMInverse Heat-Transfer Problems [in Russian]1988MoscowMashinostroenie0979.80003
– reference: Ye. É. Pleshivtseva and É. Ya. Rapoport, Method of successive parameterization of control actions in boundary-value problems of optimum control of systems with distributed parameters, Izv. Ross. Akad. Nauk, Teor. Sistemy Upravl., No. 3, 22–33 (2009).
– reference: AlifanovOMArtyukhinEARumyantsevSVExtremum Methods of Solution of Ill-Posed Problems and Their Application to Inverse Heat-Transfer Problems [in Russian]1988MoscowNauka0657.35003
– reference: RapoportÉYThe Alternance Method in Applied Optimization Problems [in Russian]2000MoscowNauka1050.90570
– reference: TikhonovANArseninVYMethods for Solution of Ill-Posed Problems [in Russian]1979MoscowNauka0499.65030
– reference: ButkovskiiAGMalyiSAAndreevYNOptimum Control of Heating of a Metal [in Russian]1972MoscowMetallurgiya
– reference: StolovichNNMinitskayaNSTemperature Dependences of Thermophysical Properties of Certain Materials [in Russian]1973MinskNauka i Tekhnika
– reference: Yu. Matsevity and S. Lushpenko, An estimation of thermal properties by means of solving internal inverse heat transfer problems, Proc. 2nd Int. Conf. on Inverse Problems in Engineering, June 9–14, 1996, Le Croisic, France; United Engineering Center, New York (1998), pp. 677–685.
– reference: ButkovskiiAGMethods for Control of Systems with Distributed Parameters [in Russian]1975MoscowNauka
– reference: RapoportEPleshivtsevaYOptimal Control of Induction Heating Processes2007London, New YorkCRC Press, Taylor & Francis Group1308.49022
– reference: Yu. M. Matsevityi, Inverse Heat-Transfer Problems, in 2 Volumes [in Russian], Naukova Dumka, Kiev (2002).
– reference: DiligenskayaANRapoportÉYAnalytical methods of parametric optimization in inverse heat-conduction problems with internal heat releaseJ. Eng. Phys. Thermophys.20148751126113410.1007/s10891-014-1114-1
– reference: AlifanovOMIdentification of the Processes of Heat Transfer of Aircraft and Spacecraft [in Russian]1979MoscowMashinostroenie
– reference: IvanovVKVasinVVTananaVPThe Theory of Linear Ill-Posed Problems and Its Applications [in Russian]1978MoscowNauka0489.65035
– reference: É. Ya. Rapoport and Ye. É. Pleshivtseva, Special optimization methods in inverse heat-conduction problems, Izv. Ross. Akad. Nauk, Énergetika, No. 5, 144–155 (2002).
– volume-title: Temperature Dependences of Thermophysical Properties of Certain Materials [in Russian]
  year: 1973
  ident: 1462_CR15
– volume-title: Identification of the Processes of Heat Transfer of Aircraft and Spacecraft [in Russian]
  year: 1979
  ident: 1462_CR5
– volume-title: Optimal Control of Induction Heating Processes
  year: 2007
  ident: 1462_CR16
– volume-title: Extremum Methods of Solution of Ill-Posed Problems and Their Application to Inverse Heat-Transfer Problems [in Russian]
  year: 1988
  ident: 1462_CR4
– volume-title: Methods for Control of Systems with Distributed Parameters [in Russian]
  year: 1975
  ident: 1462_CR10
– volume-title: The Theory of Linear Ill-Posed Problems and Its Applications [in Russian]
  year: 1978
  ident: 1462_CR8
– ident: 1462_CR3
– volume: 87
  start-page: 1126
  issue: 5
  year: 2014
  ident: 1462_CR13
  publication-title: J. Eng. Phys. Thermophys.
  doi: 10.1007/s10891-014-1114-1
– volume-title: The Alternance Method in Applied Optimization Problems [in Russian]
  year: 2000
  ident: 1462_CR14
– ident: 1462_CR2
– volume-title: Optimum Control of Heating of a Metal [in Russian]
  year: 1972
  ident: 1462_CR9
– volume-title: Regular Methods of Solution of Ill-Posed Problems [in Russian]
  year: 1974
  ident: 1462_CR7
– ident: 1462_CR12
– volume-title: Inverse Heat-Transfer Problems [in Russian]
  year: 1988
  ident: 1462_CR1
– volume-title: Methods for Solution of Ill-Posed Problems [in Russian]
  year: 1979
  ident: 1462_CR6
– ident: 1462_CR11
SSID ssj0009843
Score 2.0455377
Snippet Consideration has been given to the inverse problem on identification of a temperature-dependent thermal-conductivity coefficient. The problem was formulated...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1008
SubjectTerms Analysis
Classical Mechanics
Coefficients
Complex Systems
Electric properties
Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Intervals
Inverse problems
Mathematical analysis
Mathematical models
Methods
Minimax technique
Optimization
Parameters
Thermal conductivity
Thermodynamics
Title Method of Minimax Optimization in the Coefficient Inverse Heat-Conduction Problem
URI https://link.springer.com/article/10.1007/s10891-016-1462-0
https://www.proquest.com/docview/1835600665
Volume 89
WOSCitedRecordID wos000384842900025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-871X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009843
  issn: 1062-0125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEF-KtqAfbGuVnrZlWwqFykKS22Q3H-VQLPiqtuK3ZXczKwc1kctd6Z_vTG7jqw-w3yfJZnaezMxvGPtYuCrXQ2cFRaNCai9R53wuyswXmXQ5lN3c2tm-OjzU5-flcZzjbvtu974k2VnqO8Numrp00kKgdmcC8_RF9HaatPHk9OwWaVfHrnqiQffdlzL_9Ip7zuihSf6tNtq5nN3n_3XYF2wlRph8ey4SL9kTqFfZ8h3cwVX2rOv79O0r9vWg2yDNm8APxvX40v7iR2hELuN0Jh_XHCNEPmqgg5pAD8UJmWPSAt9DKy5GTV3N8Wf58Xw1zRr7vrvzbbQn4pYF4YelnIpM5aAcSChcCklwTjtVgbISAxXU9yR3kAfng1fSOcB4oPTK66CqtLCpdulwnS3UTQ2vGc9TDUgXhtKC1InHq6CEJ1QBwJZaDVjSs9v4CEFOmzB-mFvwZOKbobYz4ptJBuzzzSNXc_yNfxF_oDs0hGtRU-PMhZ21rflyemK2JSEwYzabD9inSBQa_Li3cQ4Bf4GgsO5Rvu9lwaDSUSXF1tDMWoN8oUixKJBmqxcAE7W__fsBNx5FvcmWMpKgrjn4DVuYTmbwlj31P6fjdvKuk_prYdz6Vg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfQAAEfeAwmCgMMQkICWUpSJ3Y-ThVTJ9oytjHtm2U756kSS1DTIv587lJnD14SfL8kzvle1v3uZ8ZeF67K9dBZQdWokNpL9DmfizLzRSZdDmU3t3Y8UbOZPjkp9-Mcd9uj3fuWZBepLw27aULppIVA784EntOvS0xYhOM7ODy-YNrVEVVPMpi--1bm715xJRn9HJJ_6Y12KWf33n8t9j67GytMvrM2iQfsGtSb7M4l3sFNdrPDffr2Ifs07W6Q5k3g03k9P7Pf-UcMImdxOpPPa44VIh810FFNYIbixMyxaIGPMYqLUVNXa_5Zvr--muYR-7z7_mg0FvGWBeGHpVyKTOWgHEgoXApJcE47VYGyEgsV9Pckd5AH54NX0jnAeqD0yuugqrSwqXbpcItt1E0NjxnPUw0oF4bSgtSJx62gA0-oAoAttRqwpFe38ZGCnG7C-GIuyJNJb4ZgZ6Q3kwzY2_NHvq75N_4m_Ir20BCvRU3AmVO7aluzd3hgdiQxMONpNh-wN1EoNPhxb-McAv4CUWFdkXzZ24JBp6NOiq2hWbUG9UKVYlGgzLveAEz0_vbPC3zyT9Iv2K3x0XRiJnuzD0_Z7YysqQMKb7ON5WIFz9gN_205bxfPOw_4ASR9_To
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9QwDI_QeAg-8BggjmdASEigaG0vbdKP08FpE9txMJj2LUpSB53E2ul6h_jzsduUbbwkxHe3dR3bsWX7Z8aeF67K9dhZQdGokNpLtDmfizLzRSZdDmU3t3a4p2YzfXRUzuOe03bodh9Kkv1MA6E01autkypsnRl809SxkxYCLT0TmLNflLQziNL1g8NT1F0dO-yJBq_yoaz5u1ecu5h-ds-_1Em762d6478Zv8mux8iTb_eqcotdgHqTXTuDR7jJLnf9oL69zd7vd5uleRP4_qJeHNtv_B06l-M4tckXNcfIkU8a6CAokAFOiB3LFvgOencxaeqqx6Xl835lzR32afrm42RHxO0Lwo9LuRKZykE5kFC4FJLgnHaqAmUlBjDoB5LcQR6cD15J5wDjhNIrr4Oq0sKm2qXju2yjbmq4x3ieakC6MJYWpE48HgslQqEKALbUasSSQfTGR2hy2pDxxZyCKpPcDLWjkdxMMmIvfzxy0uNy_I34GZ2nIbyLmhpqPtt125rdgw9mWxIyM2a5-Yi9iEShwY97G-cT8BcIIusc5dNBLwwaI1VYbA3NujUoF4ogiwJpXg3KYKJXaP_M4P1_on7CrsxfT83e7uztA3Y1I2Xq-ocfso3Vcg2P2CX_dbVol487Y_gOnMMGLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+of+minimax+optimization+in+the+coefficient+inverse+heat-conduction+problem&rft.jtitle=Journal+of+engineering+physics+and+thermophysics&rft.au=Diligenskaya%2C+A.N&rft.au=Rapoport%2C+E.Ya&rft.date=2016-07-01&rft.pub=Springer&rft.issn=1062-0125&rft.volume=89&rft.issue=4&rft_id=info:doi/10.1007%2Fs10891-016-1462-0&rft.externalDocID=A495938405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-0125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-0125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-0125&client=summon