A Scalable Computing Resources System for Remote Sensing Big Data Processing Using GeoPySpark Based on Spark on K8s

As a result of Earth observation (EO) entering the era of big data, a significant challenge relating to by the storage, analysis, and visualization of a massive amount of remote sensing (RS) data must be addressed. In this paper, we proposed a novel scalable computing resources system to achieve hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 14; H. 3; S. 521
Hauptverfasser: Guo, Jifu, Huang, Chunlin, Hou, Jinliang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.02.2022
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a result of Earth observation (EO) entering the era of big data, a significant challenge relating to by the storage, analysis, and visualization of a massive amount of remote sensing (RS) data must be addressed. In this paper, we proposed a novel scalable computing resources system to achieve high-speed processing of RS big data in a parallel distributed architecture. To reduce data movement among computing nodes, the Hadoop Distributed File System (HDFS) is established on nodes of K8s, which are also used for computing. In the process of RS data analysis, we innovatively use the tile-oriented programming model instead of the traditional strip-oriented or pixel-oriented approach to better implement parallel computing in a Spark on Kubernetes (K8s) cluster. A large RS raster layer can be abstracted as a user-defined tile format of any size, so that a whole computing task can be divided into multiple distributed parallel tasks. The computing resources applied by users would be immediately assigned in the Spark on K8s cluster by simply configuring and initializing SparkContext through a web-based Jupyter notebook console. Users can easily query, write, or visualize data in any box size from the catalog module in GeoPySpark. In summary, the system proposed in this study can provide a distributed scalable resources system for assembling big data storage, parallel computing, and real-time visualization.
AbstractList As a result of Earth observation (EO) entering the era of big data, a significant challenge relating to by the storage, analysis, and visualization of a massive amount of remote sensing (RS) data must be addressed. In this paper, we proposed a novel scalable computing resources system to achieve high-speed processing of RS big data in a parallel distributed architecture. To reduce data movement among computing nodes, the Hadoop Distributed File System (HDFS) is established on nodes of K8s, which are also used for computing. In the process of RS data analysis, we innovatively use the tile-oriented programming model instead of the traditional strip-oriented or pixel-oriented approach to better implement parallel computing in a Spark on Kubernetes (K8s) cluster. A large RS raster layer can be abstracted as a user-defined tile format of any size, so that a whole computing task can be divided into multiple distributed parallel tasks. The computing resources applied by users would be immediately assigned in the Spark on K8s cluster by simply configuring and initializing SparkContext through a web-based Jupyter notebook console. Users can easily query, write, or visualize data in any box size from the catalog module in GeoPySpark. In summary, the system proposed in this study can provide a distributed scalable resources system for assembling big data storage, parallel computing, and real-time visualization.
Author Guo, Jifu
Huang, Chunlin
Hou, Jinliang
Author_xml – sequence: 1
  givenname: Jifu
  orcidid: 0000-0003-2329-5668
  surname: Guo
  fullname: Guo, Jifu
– sequence: 2
  givenname: Chunlin
  orcidid: 0000-0002-1366-5170
  surname: Huang
  fullname: Huang, Chunlin
– sequence: 3
  givenname: Jinliang
  surname: Hou
  fullname: Hou, Jinliang
BookMark eNptkU1vGyEQhlGVSE3SXPoLkHqJIrnha1k4Jk6bRomUqG7OiIVZC3d3cQAf_O-L7aqtonKA4dXDO8PMKTqa4gQIfaTkM-eaXKVMBeGkYfQdOmGkZTPBNDv6J36PznNekbo4p5qIE5Sv8cLZwXYD4Hkc15sSpiX-DjlukoOMF9tcYMR9TFUcYwG8gCnvmJuwxLe2WPycYiX32st-v4P4vF2sbfqJb2wGj-OED9caPKj8AR33dshw_vs8Qy9fv_yYf5s9Pt3dz68fZ45rUWaUCiE73fSOacec11IoSkCqXnHGOyKcgEY7L70WtJWaNb6TTCvNlWu4Z_wM3R98fbQrs05htGlrog1mL8S0NDaV4AYwtpdMSt_wlhNBlOiI4rQmZ60GXztXvS4OXusUXzeQixlDdjAMdoK4yYbV4pSklOzSfnqDrmozp_rTSrFWsZbwHXV5oFyKOSfo_xRIidmN0_wdZ4XJG9iFYkuIU0k2DP978gun8J_u
CitedBy_id crossref_primary_10_1109_LGRS_2024_3378696
crossref_primary_10_1016_j_jisa_2024_103786
crossref_primary_10_3390_app122211508
crossref_primary_10_7717_peerj_cs_2871
crossref_primary_10_1007_s12145_024_01242_5
crossref_primary_10_3390_electronics14132626
crossref_primary_10_3390_rs14091977
crossref_primary_10_3390_ijgi13080276
Cites_doi 10.1109/JSTARS.2016.2603120
10.3390/rs11060629
10.1016/j.future.2014.10.029
10.1145/2602622.2602625
10.1016/j.ins.2014.01.015
10.1080/01431161.2019.1688419
10.1109/JSTARS.2011.2106332
10.1007/s10766-017-0513-2
10.1109/JSTARS.2016.2547020
10.1007/978-3-642-02279-1_24
10.1145/800248.807383
10.1109/CCGrid.2012.42
10.1016/j.future.2016.06.009
10.5334/jors.148
10.1109/HPEC.2017.8091086
10.3390/rs12081253
10.1007/978-3-540-74831-1_5
10.1109/CLOUD.2018.00030
10.3390/rs11050591
10.3390/ijgi7100399
10.1155/2018/2075057
10.14778/2536274.2536283
10.5220/0009816003180325
10.1109/MCSE.2007.55
10.1007/978-3-319-24474-7_17
10.1145/3006386.3006393
10.1016/j.cag.2015.03.003
10.1109/TII.2020.3022843
10.5623/cig2017-203
10.3390/rs12010076
10.3390/s21092971
10.1016/j.future.2017.11.007
10.6028/NIST.SP.800-145
10.14778/2536222.2536227
10.1145/3341325.3341995
10.1111/j.1467-9671.2010.01205.x
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14030521
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_af6266d537304084b08316b9279ed429
10_3390_rs14030521
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-11446b95fc29c2cd964810e68f8323b04c4e59cd6d94176925db6298938c53d23
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000756548900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:53:30 EDT 2025
Fri Sep 05 06:20:41 EDT 2025
Fri Jul 25 09:48:56 EDT 2025
Sat Nov 29 07:19:36 EST 2025
Tue Nov 18 21:41:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-11446b95fc29c2cd964810e68f8323b04c4e59cd6d94176925db6298938c53d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2329-5668
0000-0002-1366-5170
OpenAccessLink https://doaj.org/article/af6266d537304084b08316b9279ed429
PQID 2627827032
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_af6266d537304084b08316b9279ed429
proquest_miscellaneous_2648861102
proquest_journals_2627827032
crossref_primary_10_3390_rs14030521
crossref_citationtrail_10_3390_rs14030521
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rouse (ref_59) 1974; 351
Ghatge (ref_23) 2016; 4
Gazul (ref_60) 2020; 20
Hoyer (ref_37) 2017; 5
Lan (ref_21) 2018; 2018
ref_58
ref_13
ref_57
ref_12
ref_56
ref_11
ref_10
Sollfrank (ref_29) 2020; 17
ref_54
ref_53
ref_51
ref_16
Rathore (ref_24) 2018; 46
Deren (ref_1) 2014; 43
Giachetta (ref_15) 2015; 49
Huang (ref_18) 2016; 10
ref_61
ref_25
ref_20
ref_62
ref_28
ref_27
ref_26
Stefanakis (ref_44) 2017; 71
ref_36
ref_35
Eldawy (ref_14) 2013; 6
ref_34
ref_33
Ma (ref_2) 2015; 51
ref_32
ref_31
ref_30
Bernard (ref_6) 2010; 14
ref_39
Quirita (ref_17) 2016; 10
Wang (ref_19) 2018; 78
Jonnalagadda (ref_22) 2016; 4
Gamba (ref_4) 2011; 4
Ghaderpour (ref_55) 2020; 41
ref_47
ref_46
ref_45
ref_43
ref_42
ref_41
ref_40
Hunter (ref_52) 2007; 9
ref_3
Chen (ref_50) 2014; 275
Soille (ref_38) 2018; 81
ref_49
ref_48
ref_9
ref_8
ref_5
ref_7
References_xml – ident: ref_49
– volume: 10
  start-page: 409
  year: 2016
  ident: ref_17
  article-title: A new cloud computing architecture for the classification of remote sensing data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2603120
– ident: ref_25
  doi: 10.3390/rs11060629
– ident: ref_51
– volume: 51
  start-page: 47
  year: 2015
  ident: ref_2
  article-title: Remote sensing big data computing: Challenges and opportunities
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2014.10.029
– ident: ref_40
  doi: 10.1145/2602622.2602625
– ident: ref_39
– volume: 275
  start-page: 314
  year: 2014
  ident: ref_50
  article-title: Data-intensive applications, challenges, techniques and technologies: A survey on Big Data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.01.015
– volume: 43
  start-page: 1211
  year: 2014
  ident: ref_1
  article-title: Automatic analysis and mining of remote sensing big data
  publication-title: Acta Geod. Cartogr. Sin.
– ident: ref_42
– volume: 41
  start-page: 2374
  year: 2020
  ident: ref_55
  article-title: Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1688419
– ident: ref_61
– volume: 4
  start-page: 5
  year: 2011
  ident: ref_4
  article-title: Foreword to the special issue on “human settlements: A global remote sensing challenge”
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2011.2106332
– volume: 46
  start-page: 630
  year: 2018
  ident: ref_24
  article-title: Real-time big data stream processing using GPU with spark over hadoop ecosystem
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-017-0513-2
– ident: ref_58
– volume: 10
  start-page: 3
  year: 2016
  ident: ref_18
  article-title: In-memory parallel processing of massive remotely sensed data using an apache spark on hadoop yarn model
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2547020
– ident: ref_13
  doi: 10.1007/978-3-642-02279-1_24
– ident: ref_31
– ident: ref_45
  doi: 10.1145/800248.807383
– ident: ref_56
– ident: ref_27
– ident: ref_48
– ident: ref_36
  doi: 10.1109/CCGrid.2012.42
– volume: 78
  start-page: 353
  year: 2018
  ident: ref_19
  article-title: pipsCloud: High performance cloud computing for remote sensing big data management and processing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.06.009
– volume: 5
  start-page: 10
  year: 2017
  ident: ref_37
  article-title: xarray: ND labeled arrays and datasets in Python
  publication-title: J. Open Res. Softw.
  doi: 10.5334/jors.148
– ident: ref_41
– ident: ref_28
  doi: 10.1109/HPEC.2017.8091086
– ident: ref_62
– ident: ref_8
  doi: 10.3390/rs12081253
– volume: 4
  start-page: 301
  year: 2016
  ident: ref_23
  article-title: Apache spark and big data analytics for solving real world problems
  publication-title: Int. J. Comput. Sci. Trends Technol.
– ident: ref_20
  doi: 10.1007/978-3-540-74831-1_5
– ident: ref_30
  doi: 10.1109/CLOUD.2018.00030
– ident: ref_10
  doi: 10.3390/rs11050591
– ident: ref_12
  doi: 10.3390/ijgi7100399
– ident: ref_53
– ident: ref_3
– volume: 2018
  start-page: 2075057
  year: 2018
  ident: ref_21
  article-title: Spark Sensing: A Cloud Computing Framework to Unfold Processing Efficiencies for Large and Multiscale Remotely Sensed Data, with Examples on Landsat 8 and MODIS Data
  publication-title: J. Sens.
  doi: 10.1155/2018/2075057
– volume: 4
  start-page: 93
  year: 2016
  ident: ref_22
  article-title: A review study of apache spark in big data processing
  publication-title: Int. J. Comput. Sci. Trends Technol. IJCST
– ident: ref_34
– volume: 20
  start-page: 357
  year: 2020
  ident: ref_60
  article-title: The conceptual model of the hybrid geographic information system based on kubernetes containers and cloud computing
  publication-title: Int. Multidiscip. Sci. GeoConference SGEM
– ident: ref_47
– ident: ref_11
– volume: 6
  start-page: 1230
  year: 2013
  ident: ref_14
  article-title: A demonstration of spatialhadoop: An efficient mapreduce framework for spatial data
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536274.2536283
– volume: 351
  start-page: 309
  year: 1974
  ident: ref_59
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
– ident: ref_33
  doi: 10.5220/0009816003180325
– volume: 9
  start-page: 90
  year: 2007
  ident: ref_52
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– ident: ref_26
  doi: 10.1007/978-3-319-24474-7_17
– ident: ref_7
  doi: 10.1145/3006386.3006393
– ident: ref_54
– volume: 49
  start-page: 37
  year: 2015
  ident: ref_15
  article-title: A framework for processing large scale geospatial and remote sensing data in MapReduce environment
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2015.03.003
– ident: ref_46
– volume: 17
  start-page: 3566
  year: 2020
  ident: ref_29
  article-title: Evaluating docker for lightweight virtualization of distributed and time-sensitive applications in industrial automation
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3022843
– volume: 71
  start-page: 100
  year: 2017
  ident: ref_44
  article-title: Web Mercator and raster tile maps: Two cornerstones of online map service providers
  publication-title: Geomatica
  doi: 10.5623/cig2017-203
– ident: ref_5
  doi: 10.3390/rs12010076
– ident: ref_35
  doi: 10.3390/s21092971
– volume: 81
  start-page: 30
  year: 2018
  ident: ref_38
  article-title: A versatile data-intensive computing platform for information retrieval from big geospatial data
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.11.007
– ident: ref_9
  doi: 10.6028/NIST.SP.800-145
– ident: ref_16
  doi: 10.14778/2536222.2536227
– ident: ref_43
– ident: ref_57
– ident: ref_32
  doi: 10.1145/3341325.3341995
– volume: 14
  start-page: 101
  year: 2010
  ident: ref_6
  article-title: Moving code in spatial data infrastructures–web service based deployment of geoprocessing algorithms
  publication-title: Trans. GIS
  doi: 10.1111/j.1467-9671.2010.01205.x
SSID ssj0000331904
Score 2.3504198
Snippet As a result of Earth observation (EO) entering the era of big data, a significant challenge relating to by the storage, analysis, and visualization of a...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 521
SubjectTerms Algorithms
Batch processing
Big Data
Climate change
Cloud computing
Clusters
computer software
Containerization
Data analysis
Data processing
Data storage
Datasets
Earth science
GeoPySpark
HDFS on K8s
information storage
Internet
Nodes
Open source software
parallel computing
Remote sensing
Spark on K8s
Spatial data
Unmanned aerial vehicles
Visualization
Web portals
Workloads
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoVCoXSh-oWyhy1V56iHBsx7FPiG1BSK1Wq25bcYsc2wFElSzJUol_z0ziXVS14sItcUaWo288Dz--IeSjlLlVTFQJc5olUrAqsaXUiQjcOJNDkNGX8_n1LZ9M9NmZmcYFty4eq1zaxN5Q-8bhGvkBVxycGegnP5xfJ1g1CndXYwmNJ2QDmcpAzzfGx5Pp99UqCxOgYkwOvKQC8vuDtkOGOryy-pcn6gn7_7HHvZM5ef7Y4W2TrRhe0qNBH16QtVC_JM9ipfOL21ekO6IzgAUvTNGhogP4LrpcxO_owGBOIZSFRoAx0BkecQeZ8eU5_WIXlsa7BdjWHzig0P30dja37RUdg1P0tKnp8AoPX3X3mvw8Of7x-TSJhRcSJ4xcJCkmiaXJKgeAceeNkjplQekK5r8omXQyZMZ55Y1Mc2V45kuFVO5Cu0x4LnbIet3U4Q2hHsLHPLO8srmXJkDCZNLMZkyWzPvUihH5tAShcJGVHItj_C4gO0HAinvARuTDSnY-cHH8V2qMWK4kkD-7b2ja8yJOx8JWkMgpnwkwcJJpGI0WKfwyz03w4KJHZG8JcxEndVfcYzwi71efYTriHoutQ3ODMmARFcRU_O3DXeySTY43KfoD4HtkfdHehHfkqfuzuOza_ajHd9W0-Z0
  priority: 102
  providerName: ProQuest
Title A Scalable Computing Resources System for Remote Sensing Big Data Processing Using GeoPySpark Based on Spark on K8s
URI https://www.proquest.com/docview/2627827032
https://www.proquest.com/docview/2648861102
https://doaj.org/article/af6266d537304084b08316b9279ed429
Volume 14
WOSCitedRecordID wos000756548900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kCvVF_Kh4Wo-V9sWH0M1-JfvY0yuKegTPltaXsNndaFFy5XIV-uLf7kySO1sUfPElJLtDWGZn5yOZ-Q3AvlKZM1zWCfc5T5TkdeIqlScyCutthk5G187n5H02m-Wnp7a41uqLcsJ6eOCecQeuRpfbBC1RFBXPVUWtsUxlRWZjQGVK2pdn9low1elgiaLFVY9HKjGuP1i2hExHpao3LFAH1P-HHu6My9F9uDd4heywX80DuBWbh7A9NCj_evUI2kM2R25SnRPrGzGgyWHrb-8t64HHGXqgOIjcj2xOmelIMzn_wl67lWNDSQCNdXkCDF9fXM0v3PIbm6AtC2zRsP4Rb97l7Q4cH00_vXqTDP0SEi-tWiUpxXaV1bVHPgsfrFF5yqPJazy2suLKq6itDyZYlWbGCh0qQwjsMvdaBiEfw1azaOITYAG9vkw7UbssKBsxzrGpdpoj-0NInRzByzUPSz-AiVNPi-8lBhXE7_I3v0ewt6G96CE0_ko1oa3YUBDsdTeAwlAOwlD-SxhGsLveyHI4i20pjEA3CDWbGMGLzTSeIvo14pq4uCQaVGQGXSHx9H-s4xncFVQm0WV378LWankZn8Md_2N13i7HcHsynRUfx53IjinbdE7Xn1O8FvozzhdvPxRnvwBube8E
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW6Ry4Y1YKGAEHDhEdWzHiQ8IdSlVV7tdrbQFlVNwbKdUoGRJtqD9U_xGxnlshUDceuCWOCMrjr98M2N7ZgBeCBFrSXkeUJPQQHCaBzoTScAdU0bFaGQ05Xw-TOPZLDk9VfMt-NnHwvhjlT0nNkRtS-PXyPeYZKjMEJ_szfJb4KtG-d3VvoRGC4uJW_9Al61-PT7A-X3J2OG7k7dHQVdVIDBciVUQeg8oU1Fu8G2YsUqKJKROJjmCm2dUGOEiZay0SoSxVCyymfR5ynliIm59ogOk_G2BYKcD2J6Pj-cfN6s6lCOkqWjzoHKu6F5V-4x4PkT2N83XFAj4g_8bpXZ483_7HLfgRmc-k_0W77dhyxV3YKer5P55fRfqfbJA2PmAMNJWrEDdTPpNipq0GdoJmurYiDB1ZOGP8KPM6PyMHOiVJl3shG9rDlQQ7H6-Xix19YWMUOlbUhakvcWLSVLfg_dXMub7MCjKwj0AYtE8jiPNch1boRw6hCqMdERFRq0NNR_Cq37SU9NlXffFP76m6H15gKSXABnC843sss018lepkcfORsLnB28ayuos7egm1Tk6qtJGHAlc0ATfJuEhDpnFylk0QYaw28Mq7UirTi8xNYRnm8dIN34PSReuvPAyyPgSbUb28N9dPIWdo5PjaTodzyaP4DrzUSPNYfddGKyqC_cYrpnvq_O6etL9QwQ-XTVOfwECy1OA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tugi48EYUFjACDhyiOraT2AeEtnQrVl1VFQW0t6xjO8sKlJSkC-pf49cxzqMrBOK2B26JM7Ly-DyPeOYbgBdCJDqmPA-okTQQnOaBzoQMuGPKqASdjKadz6ejZD6Xx8dqsQM_-1oYn1bZ68RGUdvS-H_kIxYzNGaITzbKu7SIxWT6ZvUt8B2k_E5r306jhcjMbX5g-Fa_Ppzgt37J2PTgw9t3QddhIDBciXUQ-mgoU1Fu8M6YsSoWMqQuljkCnWdUGOEiZWxslQiTWLHIZrHnLOfSRNx60gNU_7sJx6BnALvjg_ni_fYPD-UIbypaTlTOFR1VtWfH8-Wyv1nBplnAH7agMXDTm__zq7kFNzq3muy36-A27LjiDlzrOrx_3tyFep8sEY6-UIy0nSzQZpN-86ImLXM7QRceBxG-jix9aj_KjM9OyUSvNelqKvxYk2hBcPrFZrnS1RcyRmfAkrIg7SkezGR9Dz5eyjPfh0FRFu4BEItucxJpluvECuUwUFRhpCMqMmptqPkQXvUASE3Hxu6bgnxNMSrzYEkvwDKE51vZVctB8lepscfRVsLzhjcDZXWadmoo1TkGsLGNOCp2QSXejeQhPjJLlLPomgxhr4dY2imzOr3A1xCebS-jGvJ7S7pw5bmXQUsQoy_JHv57iqdwFcGZHh3OZ4_gOvPFJE0O_B4M1tW5ewxXzPf1WV096ZYTgZPLhukvd7tcGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Scalable+Computing+Resources+System+for+Remote+Sensing+Big+Data+Processing+Using+GeoPySpark+Based+on+Spark+on+K8s&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jifu+Guo&rft.au=Chunlin+Huang&rft.au=Jinliang+Hou&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=521&rft_id=info:doi/10.3390%2Frs14030521&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_af6266d537304084b08316b9279ed429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon