A Scalable Computing Resources System for Remote Sensing Big Data Processing Using GeoPySpark Based on Spark on K8s
As a result of Earth observation (EO) entering the era of big data, a significant challenge relating to by the storage, analysis, and visualization of a massive amount of remote sensing (RS) data must be addressed. In this paper, we proposed a novel scalable computing resources system to achieve hig...
Gespeichert in:
| Veröffentlicht in: | Remote sensing (Basel, Switzerland) Jg. 14; H. 3; S. 521 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2022
|
| Schlagworte: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As a result of Earth observation (EO) entering the era of big data, a significant challenge relating to by the storage, analysis, and visualization of a massive amount of remote sensing (RS) data must be addressed. In this paper, we proposed a novel scalable computing resources system to achieve high-speed processing of RS big data in a parallel distributed architecture. To reduce data movement among computing nodes, the Hadoop Distributed File System (HDFS) is established on nodes of K8s, which are also used for computing. In the process of RS data analysis, we innovatively use the tile-oriented programming model instead of the traditional strip-oriented or pixel-oriented approach to better implement parallel computing in a Spark on Kubernetes (K8s) cluster. A large RS raster layer can be abstracted as a user-defined tile format of any size, so that a whole computing task can be divided into multiple distributed parallel tasks. The computing resources applied by users would be immediately assigned in the Spark on K8s cluster by simply configuring and initializing SparkContext through a web-based Jupyter notebook console. Users can easily query, write, or visualize data in any box size from the catalog module in GeoPySpark. In summary, the system proposed in this study can provide a distributed scalable resources system for assembling big data storage, parallel computing, and real-time visualization. |
|---|---|
| AbstractList | As a result of Earth observation (EO) entering the era of big data, a significant challenge relating to by the storage, analysis, and visualization of a massive amount of remote sensing (RS) data must be addressed. In this paper, we proposed a novel scalable computing resources system to achieve high-speed processing of RS big data in a parallel distributed architecture. To reduce data movement among computing nodes, the Hadoop Distributed File System (HDFS) is established on nodes of K8s, which are also used for computing. In the process of RS data analysis, we innovatively use the tile-oriented programming model instead of the traditional strip-oriented or pixel-oriented approach to better implement parallel computing in a Spark on Kubernetes (K8s) cluster. A large RS raster layer can be abstracted as a user-defined tile format of any size, so that a whole computing task can be divided into multiple distributed parallel tasks. The computing resources applied by users would be immediately assigned in the Spark on K8s cluster by simply configuring and initializing SparkContext through a web-based Jupyter notebook console. Users can easily query, write, or visualize data in any box size from the catalog module in GeoPySpark. In summary, the system proposed in this study can provide a distributed scalable resources system for assembling big data storage, parallel computing, and real-time visualization. |
| Author | Guo, Jifu Huang, Chunlin Hou, Jinliang |
| Author_xml | – sequence: 1 givenname: Jifu orcidid: 0000-0003-2329-5668 surname: Guo fullname: Guo, Jifu – sequence: 2 givenname: Chunlin orcidid: 0000-0002-1366-5170 surname: Huang fullname: Huang, Chunlin – sequence: 3 givenname: Jinliang surname: Hou fullname: Hou, Jinliang |
| BookMark | eNptkU1vGyEQhlGVSE3SXPoLkHqJIrnha1k4Jk6bRomUqG7OiIVZC3d3cQAf_O-L7aqtonKA4dXDO8PMKTqa4gQIfaTkM-eaXKVMBeGkYfQdOmGkZTPBNDv6J36PznNekbo4p5qIE5Sv8cLZwXYD4Hkc15sSpiX-DjlukoOMF9tcYMR9TFUcYwG8gCnvmJuwxLe2WPycYiX32st-v4P4vF2sbfqJb2wGj-OED9caPKj8AR33dshw_vs8Qy9fv_yYf5s9Pt3dz68fZ45rUWaUCiE73fSOacec11IoSkCqXnHGOyKcgEY7L70WtJWaNb6TTCvNlWu4Z_wM3R98fbQrs05htGlrog1mL8S0NDaV4AYwtpdMSt_wlhNBlOiI4rQmZ60GXztXvS4OXusUXzeQixlDdjAMdoK4yYbV4pSklOzSfnqDrmozp_rTSrFWsZbwHXV5oFyKOSfo_xRIidmN0_wdZ4XJG9iFYkuIU0k2DP978gun8J_u |
| CitedBy_id | crossref_primary_10_1109_LGRS_2024_3378696 crossref_primary_10_1016_j_jisa_2024_103786 crossref_primary_10_3390_app122211508 crossref_primary_10_7717_peerj_cs_2871 crossref_primary_10_1007_s12145_024_01242_5 crossref_primary_10_3390_electronics14132626 crossref_primary_10_3390_rs14091977 crossref_primary_10_3390_ijgi13080276 |
| Cites_doi | 10.1109/JSTARS.2016.2603120 10.3390/rs11060629 10.1016/j.future.2014.10.029 10.1145/2602622.2602625 10.1016/j.ins.2014.01.015 10.1080/01431161.2019.1688419 10.1109/JSTARS.2011.2106332 10.1007/s10766-017-0513-2 10.1109/JSTARS.2016.2547020 10.1007/978-3-642-02279-1_24 10.1145/800248.807383 10.1109/CCGrid.2012.42 10.1016/j.future.2016.06.009 10.5334/jors.148 10.1109/HPEC.2017.8091086 10.3390/rs12081253 10.1007/978-3-540-74831-1_5 10.1109/CLOUD.2018.00030 10.3390/rs11050591 10.3390/ijgi7100399 10.1155/2018/2075057 10.14778/2536274.2536283 10.5220/0009816003180325 10.1109/MCSE.2007.55 10.1007/978-3-319-24474-7_17 10.1145/3006386.3006393 10.1016/j.cag.2015.03.003 10.1109/TII.2020.3022843 10.5623/cig2017-203 10.3390/rs12010076 10.3390/s21092971 10.1016/j.future.2017.11.007 10.6028/NIST.SP.800-145 10.14778/2536222.2536227 10.1145/3341325.3341995 10.1111/j.1467-9671.2010.01205.x |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14030521 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_af6266d537304084b08316b9279ed429 10_3390_rs14030521 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-11446b95fc29c2cd964810e68f8323b04c4e59cd6d94176925db6298938c53d23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000756548900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:53:30 EDT 2025 Fri Sep 05 06:20:41 EDT 2025 Fri Jul 25 09:48:56 EDT 2025 Sat Nov 29 07:19:36 EST 2025 Tue Nov 18 21:41:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-11446b95fc29c2cd964810e68f8323b04c4e59cd6d94176925db6298938c53d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2329-5668 0000-0002-1366-5170 |
| OpenAccessLink | https://doaj.org/article/af6266d537304084b08316b9279ed429 |
| PQID | 2627827032 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_af6266d537304084b08316b9279ed429 proquest_miscellaneous_2648861102 proquest_journals_2627827032 crossref_primary_10_3390_rs14030521 crossref_citationtrail_10_3390_rs14030521 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Rouse (ref_59) 1974; 351 Ghatge (ref_23) 2016; 4 Gazul (ref_60) 2020; 20 Hoyer (ref_37) 2017; 5 Lan (ref_21) 2018; 2018 ref_58 ref_13 ref_57 ref_12 ref_56 ref_11 ref_10 Sollfrank (ref_29) 2020; 17 ref_54 ref_53 ref_51 ref_16 Rathore (ref_24) 2018; 46 Deren (ref_1) 2014; 43 Giachetta (ref_15) 2015; 49 Huang (ref_18) 2016; 10 ref_61 ref_25 ref_20 ref_62 ref_28 ref_27 ref_26 Stefanakis (ref_44) 2017; 71 ref_36 ref_35 Eldawy (ref_14) 2013; 6 ref_34 ref_33 Ma (ref_2) 2015; 51 ref_32 ref_31 ref_30 Bernard (ref_6) 2010; 14 ref_39 Quirita (ref_17) 2016; 10 Wang (ref_19) 2018; 78 Jonnalagadda (ref_22) 2016; 4 Gamba (ref_4) 2011; 4 Ghaderpour (ref_55) 2020; 41 ref_47 ref_46 ref_45 ref_43 ref_42 ref_41 ref_40 Hunter (ref_52) 2007; 9 ref_3 Chen (ref_50) 2014; 275 Soille (ref_38) 2018; 81 ref_49 ref_48 ref_9 ref_8 ref_5 ref_7 |
| References_xml | – ident: ref_49 – volume: 10 start-page: 409 year: 2016 ident: ref_17 article-title: A new cloud computing architecture for the classification of remote sensing data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2603120 – ident: ref_25 doi: 10.3390/rs11060629 – ident: ref_51 – volume: 51 start-page: 47 year: 2015 ident: ref_2 article-title: Remote sensing big data computing: Challenges and opportunities publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2014.10.029 – ident: ref_40 doi: 10.1145/2602622.2602625 – ident: ref_39 – volume: 275 start-page: 314 year: 2014 ident: ref_50 article-title: Data-intensive applications, challenges, techniques and technologies: A survey on Big Data publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.01.015 – volume: 43 start-page: 1211 year: 2014 ident: ref_1 article-title: Automatic analysis and mining of remote sensing big data publication-title: Acta Geod. Cartogr. Sin. – ident: ref_42 – volume: 41 start-page: 2374 year: 2020 ident: ref_55 article-title: Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1688419 – ident: ref_61 – volume: 4 start-page: 5 year: 2011 ident: ref_4 article-title: Foreword to the special issue on “human settlements: A global remote sensing challenge” publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2011.2106332 – volume: 46 start-page: 630 year: 2018 ident: ref_24 article-title: Real-time big data stream processing using GPU with spark over hadoop ecosystem publication-title: Int. J. Parallel Program. doi: 10.1007/s10766-017-0513-2 – ident: ref_58 – volume: 10 start-page: 3 year: 2016 ident: ref_18 article-title: In-memory parallel processing of massive remotely sensed data using an apache spark on hadoop yarn model publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2547020 – ident: ref_13 doi: 10.1007/978-3-642-02279-1_24 – ident: ref_31 – ident: ref_45 doi: 10.1145/800248.807383 – ident: ref_56 – ident: ref_27 – ident: ref_48 – ident: ref_36 doi: 10.1109/CCGrid.2012.42 – volume: 78 start-page: 353 year: 2018 ident: ref_19 article-title: pipsCloud: High performance cloud computing for remote sensing big data management and processing publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2016.06.009 – volume: 5 start-page: 10 year: 2017 ident: ref_37 article-title: xarray: ND labeled arrays and datasets in Python publication-title: J. Open Res. Softw. doi: 10.5334/jors.148 – ident: ref_41 – ident: ref_28 doi: 10.1109/HPEC.2017.8091086 – ident: ref_62 – ident: ref_8 doi: 10.3390/rs12081253 – volume: 4 start-page: 301 year: 2016 ident: ref_23 article-title: Apache spark and big data analytics for solving real world problems publication-title: Int. J. Comput. Sci. Trends Technol. – ident: ref_20 doi: 10.1007/978-3-540-74831-1_5 – ident: ref_30 doi: 10.1109/CLOUD.2018.00030 – ident: ref_10 doi: 10.3390/rs11050591 – ident: ref_12 doi: 10.3390/ijgi7100399 – ident: ref_53 – ident: ref_3 – volume: 2018 start-page: 2075057 year: 2018 ident: ref_21 article-title: Spark Sensing: A Cloud Computing Framework to Unfold Processing Efficiencies for Large and Multiscale Remotely Sensed Data, with Examples on Landsat 8 and MODIS Data publication-title: J. Sens. doi: 10.1155/2018/2075057 – volume: 4 start-page: 93 year: 2016 ident: ref_22 article-title: A review study of apache spark in big data processing publication-title: Int. J. Comput. Sci. Trends Technol. IJCST – ident: ref_34 – volume: 20 start-page: 357 year: 2020 ident: ref_60 article-title: The conceptual model of the hybrid geographic information system based on kubernetes containers and cloud computing publication-title: Int. Multidiscip. Sci. GeoConference SGEM – ident: ref_47 – ident: ref_11 – volume: 6 start-page: 1230 year: 2013 ident: ref_14 article-title: A demonstration of spatialhadoop: An efficient mapreduce framework for spatial data publication-title: Proc. VLDB Endow. doi: 10.14778/2536274.2536283 – volume: 351 start-page: 309 year: 1974 ident: ref_59 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: NASA Spec. Publ. – ident: ref_33 doi: 10.5220/0009816003180325 – volume: 9 start-page: 90 year: 2007 ident: ref_52 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – ident: ref_26 doi: 10.1007/978-3-319-24474-7_17 – ident: ref_7 doi: 10.1145/3006386.3006393 – ident: ref_54 – volume: 49 start-page: 37 year: 2015 ident: ref_15 article-title: A framework for processing large scale geospatial and remote sensing data in MapReduce environment publication-title: Comput. Graph. doi: 10.1016/j.cag.2015.03.003 – ident: ref_46 – volume: 17 start-page: 3566 year: 2020 ident: ref_29 article-title: Evaluating docker for lightweight virtualization of distributed and time-sensitive applications in industrial automation publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3022843 – volume: 71 start-page: 100 year: 2017 ident: ref_44 article-title: Web Mercator and raster tile maps: Two cornerstones of online map service providers publication-title: Geomatica doi: 10.5623/cig2017-203 – ident: ref_5 doi: 10.3390/rs12010076 – ident: ref_35 doi: 10.3390/s21092971 – volume: 81 start-page: 30 year: 2018 ident: ref_38 article-title: A versatile data-intensive computing platform for information retrieval from big geospatial data publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.11.007 – ident: ref_9 doi: 10.6028/NIST.SP.800-145 – ident: ref_16 doi: 10.14778/2536222.2536227 – ident: ref_43 – ident: ref_57 – ident: ref_32 doi: 10.1145/3341325.3341995 – volume: 14 start-page: 101 year: 2010 ident: ref_6 article-title: Moving code in spatial data infrastructures–web service based deployment of geoprocessing algorithms publication-title: Trans. GIS doi: 10.1111/j.1467-9671.2010.01205.x |
| SSID | ssj0000331904 |
| Score | 2.3504198 |
| Snippet | As a result of Earth observation (EO) entering the era of big data, a significant challenge relating to by the storage, analysis, and visualization of a... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 521 |
| SubjectTerms | Algorithms Batch processing Big Data Climate change Cloud computing Clusters computer software Containerization Data analysis Data processing Data storage Datasets Earth science GeoPySpark HDFS on K8s information storage Internet Nodes Open source software parallel computing Remote sensing Spark on K8s Spatial data Unmanned aerial vehicles Visualization Web portals Workloads |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoVCoXSh-oWyhy1V56iHBsx7FPiG1BSK1Wq25bcYsc2wFElSzJUol_z0ziXVS14sItcUaWo288Dz--IeSjlLlVTFQJc5olUrAqsaXUiQjcOJNDkNGX8_n1LZ9M9NmZmcYFty4eq1zaxN5Q-8bhGvkBVxycGegnP5xfJ1g1CndXYwmNJ2QDmcpAzzfGx5Pp99UqCxOgYkwOvKQC8vuDtkOGOryy-pcn6gn7_7HHvZM5ef7Y4W2TrRhe0qNBH16QtVC_JM9ipfOL21ekO6IzgAUvTNGhogP4LrpcxO_owGBOIZSFRoAx0BkecQeZ8eU5_WIXlsa7BdjWHzig0P30dja37RUdg1P0tKnp8AoPX3X3mvw8Of7x-TSJhRcSJ4xcJCkmiaXJKgeAceeNkjplQekK5r8omXQyZMZ55Y1Mc2V45kuFVO5Cu0x4LnbIet3U4Q2hHsLHPLO8srmXJkDCZNLMZkyWzPvUihH5tAShcJGVHItj_C4gO0HAinvARuTDSnY-cHH8V2qMWK4kkD-7b2ja8yJOx8JWkMgpnwkwcJJpGI0WKfwyz03w4KJHZG8JcxEndVfcYzwi71efYTriHoutQ3ODMmARFcRU_O3DXeySTY43KfoD4HtkfdHehHfkqfuzuOza_ajHd9W0-Z0 priority: 102 providerName: ProQuest |
| Title | A Scalable Computing Resources System for Remote Sensing Big Data Processing Using GeoPySpark Based on Spark on K8s |
| URI | https://www.proquest.com/docview/2627827032 https://www.proquest.com/docview/2648861102 https://doaj.org/article/af6266d537304084b08316b9279ed429 |
| Volume | 14 |
| WOSCitedRecordID | wos000756548900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kCvVF_Kh4Wo-V9sWH0M1-JfvY0yuKegTPltaXsNndaFFy5XIV-uLf7kySO1sUfPElJLtDWGZn5yOZ-Q3AvlKZM1zWCfc5T5TkdeIqlScyCutthk5G187n5H02m-Wnp7a41uqLcsJ6eOCecQeuRpfbBC1RFBXPVUWtsUxlRWZjQGVK2pdn9low1elgiaLFVY9HKjGuP1i2hExHpao3LFAH1P-HHu6My9F9uDd4heywX80DuBWbh7A9NCj_evUI2kM2R25SnRPrGzGgyWHrb-8t64HHGXqgOIjcj2xOmelIMzn_wl67lWNDSQCNdXkCDF9fXM0v3PIbm6AtC2zRsP4Rb97l7Q4cH00_vXqTDP0SEi-tWiUpxXaV1bVHPgsfrFF5yqPJazy2suLKq6itDyZYlWbGCh0qQwjsMvdaBiEfw1azaOITYAG9vkw7UbssKBsxzrGpdpoj-0NInRzByzUPSz-AiVNPi-8lBhXE7_I3v0ewt6G96CE0_ko1oa3YUBDsdTeAwlAOwlD-SxhGsLveyHI4i20pjEA3CDWbGMGLzTSeIvo14pq4uCQaVGQGXSHx9H-s4xncFVQm0WV378LWankZn8Md_2N13i7HcHsynRUfx53IjinbdE7Xn1O8FvozzhdvPxRnvwBube8E |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW6Ry4Y1YKGAEHDhEdWzHiQ8IdSlVV7tdrbQFlVNwbKdUoGRJtqD9U_xGxnlshUDceuCWOCMrjr98M2N7ZgBeCBFrSXkeUJPQQHCaBzoTScAdU0bFaGQ05Xw-TOPZLDk9VfMt-NnHwvhjlT0nNkRtS-PXyPeYZKjMEJ_szfJb4KtG-d3VvoRGC4uJW_9Al61-PT7A-X3J2OG7k7dHQVdVIDBciVUQeg8oU1Fu8G2YsUqKJKROJjmCm2dUGOEiZay0SoSxVCyymfR5ynliIm59ogOk_G2BYKcD2J6Pj-cfN6s6lCOkqWjzoHKu6F5V-4x4PkT2N83XFAj4g_8bpXZ483_7HLfgRmc-k_0W77dhyxV3YKer5P55fRfqfbJA2PmAMNJWrEDdTPpNipq0GdoJmurYiDB1ZOGP8KPM6PyMHOiVJl3shG9rDlQQ7H6-Xix19YWMUOlbUhakvcWLSVLfg_dXMub7MCjKwj0AYtE8jiPNch1boRw6hCqMdERFRq0NNR_Cq37SU9NlXffFP76m6H15gKSXABnC843sss018lepkcfORsLnB28ayuos7egm1Tk6qtJGHAlc0ATfJuEhDpnFylk0QYaw28Mq7UirTi8xNYRnm8dIN34PSReuvPAyyPgSbUb28N9dPIWdo5PjaTodzyaP4DrzUSPNYfddGKyqC_cYrpnvq_O6etL9QwQ-XTVOfwECy1OA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tugi48EYUFjACDhyiOraT2AeEtnQrVl1VFQW0t6xjO8sKlJSkC-pf49cxzqMrBOK2B26JM7Ly-DyPeOYbgBdCJDqmPA-okTQQnOaBzoQMuGPKqASdjKadz6ejZD6Xx8dqsQM_-1oYn1bZ68RGUdvS-H_kIxYzNGaITzbKu7SIxWT6ZvUt8B2k_E5r306jhcjMbX5g-Fa_Ppzgt37J2PTgw9t3QddhIDBciXUQ-mgoU1Fu8M6YsSoWMqQuljkCnWdUGOEiZWxslQiTWLHIZrHnLOfSRNx60gNU_7sJx6BnALvjg_ni_fYPD-UIbypaTlTOFR1VtWfH8-Wyv1nBplnAH7agMXDTm__zq7kFNzq3muy36-A27LjiDlzrOrx_3tyFep8sEY6-UIy0nSzQZpN-86ImLXM7QRceBxG-jix9aj_KjM9OyUSvNelqKvxYk2hBcPrFZrnS1RcyRmfAkrIg7SkezGR9Dz5eyjPfh0FRFu4BEItucxJpluvECuUwUFRhpCMqMmptqPkQXvUASE3Hxu6bgnxNMSrzYEkvwDKE51vZVctB8lepscfRVsLzhjcDZXWadmoo1TkGsLGNOCp2QSXejeQhPjJLlLPomgxhr4dY2imzOr3A1xCebS-jGvJ7S7pw5bmXQUsQoy_JHv57iqdwFcGZHh3OZ4_gOvPFJE0O_B4M1tW5ewxXzPf1WV096ZYTgZPLhukvd7tcGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Scalable+Computing+Resources+System+for+Remote+Sensing+Big+Data+Processing+Using+GeoPySpark+Based+on+Spark+on+K8s&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jifu+Guo&rft.au=Chunlin+Huang&rft.au=Jinliang+Hou&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=521&rft_id=info:doi/10.3390%2Frs14030521&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_af6266d537304084b08316b9279ed429 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |