An extended model of coordination of an all‐terrain vehicle and a multivisit drone

In this paper, a model that combines the movement of a multivisit drone with a limited endurance and a base vehicle that can move freely in the continuous space is considered. The mothership is used to charge the battery of the drone, whereas the drone performs the task of visiting multiple targets...

Full description

Saved in:
Bibliographic Details
Published in:International transactions in operational research Vol. 31; no. 2; pp. 780 - 806
Main Authors: Amorosi, Lavinia, Puerto, Justo, Valverde, Carlos
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.03.2024
Subjects:
ISSN:0969-6016, 1475-3995
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a model that combines the movement of a multivisit drone with a limited endurance and a base vehicle that can move freely in the continuous space is considered. The mothership is used to charge the battery of the drone, whereas the drone performs the task of visiting multiple targets of distinct shapes: points and polygonal chains. For polygonal chains, it is required to traverse a given fraction of its lengths that represent surveillance/inspection activities. The goal of the problem is to minimize the overall weighted distance traveled by both vehicles. A mixed integer second‐order cone program is developed and strengthened using valid inequalities and giving good bounds for the Big‐M constants that appear in the model. A refined matheuristic that provides reasonable solutions in short computing time is also established. The quality of the solutions provided by both approaches is compared and analyzed on an extensive battery of instances with different number and shapes of targets, which shows the usefulness of our approach and its applicability in different situations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0969-6016
1475-3995
DOI:10.1111/itor.13179