Non-submodular model for group profit maximization problem in social networks
In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group...
Saved in:
| Published in: | Computational social networks Vol. 8; no. 1 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
07.01.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2197-4314, 2197-4314 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called
activated
if
β
percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost.
Group profit maximization
(GPM) problem aims to pick
k
seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods. |
|---|---|
| AbstractList | In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if β percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods. In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if $$\beta$$ β percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods. In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if β percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods. |
| ArticleNumber | 2 |
| Author | Gao, Chuangen Ghosh, Smita Zhu, Jianming Wu, Weili |
| Author_xml | – sequence: 1 givenname: Jianming orcidid: 0000-0002-8147-8254 surname: Zhu fullname: Zhu, Jianming email: jmzhu@ucas.ac.cn organization: School of Engineering Science, University of Chinese Academy of Sciences – sequence: 2 givenname: Smita surname: Ghosh fullname: Ghosh, Smita organization: Department of Computer Science, University of Texas at Dallas – sequence: 3 givenname: Weili surname: Wu fullname: Wu, Weili organization: Department of Computer Science, University of Texas at Dallas – sequence: 4 givenname: Chuangen surname: Gao fullname: Gao, Chuangen organization: Shandong University |
| BookMark | eNp9kMlOwzAURS1UJErpD7CyxDrwPMRJlqhikgpsYG05iV25JHaxEzF8PS5FArHo6g265w33GE2cdxqhUwLnhJTiInIQvMqAQgYAZZ6JAzSlpCoyzgif_MmP0DzGdRIRwTgpiim6f_Aui2Pd-3bsVMAp6g4bH_Aq-HGDN8EbO-BevdvefqrBerft1Z3usXU4-saqDjs9vPnwEk_QoVFd1POfOEPP11dPi9ts-Xhzt7hcZg2ruMiaxojSQCkIbyvNmNGiLnSeSsILCowCNQYUqVrCa5XXTSsMZ5Bznrg6BzZDZ7u56ZTXUcdBrv0YXFopKS8EcFpCnlTlTtUEH2PQRjZ2-H5hCMp2koDc-id3_snkn_z2T4qE0n_oJthehY_9ENtBMYndSoffq_ZQX3CZhE8 |
| CitedBy_id | crossref_primary_10_1109_TCSS_2024_3383241 crossref_primary_10_1109_TCSS_2024_3395627 |
| Cites_doi | 10.1145/2723372.2723734 10.1109/TCSS.2019.2938575 10.1145/2661829.2662077 10.1007/978-3-319-71924-5_26 10.1609/aaai.v28i1.8726 10.1109/TKDE.2017.2787757 10.1145/1281192.1281239 10.1561/2200000039 10.1137/1.9781611973402.70 10.1109/ICDM.2012.145 10.1145/956750.956769 10.1109/TCSS.2017.2719056 10.1007/978-3-030-34980-6_13 10.1145/2588555.2593670 10.1109/ICDM.2013.40 10.1145/1835804.1835934 10.1007/BF01588971 10.1109/INFOCOM.2018.8485975 10.1137/S0097539797315306 10.1007/978-3-030-34980-6 10.1007/s11280-020-00841-8 10.1109/TNSE.2018.2873759 10.1145/2882903.2915207 10.1145/3159652.3162007 10.1016/j.socnet.2011.07.001 10.1073/pnas.98.2.404 10.1109/ACCESS.2019.2944207 10.1109/ICDM.2011.132 10.14778/2850578.2850581 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1186/s40649-020-00085-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 2197-4314 |
| ExternalDocumentID | 10_1186_s40649_020_00085_6 |
| GrantInformation_xml | – fundername: Project of Promoting Scientific Research Ability of Excellent Young Teachers in University of Chinese Academy of Sciences – fundername: National Science Foundation (US) grantid: 1747818 |
| GroupedDBID | 3V. 5VS 8FE 8FG AAFWJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K6V K7- KQ8 M0N M~E OK1 P62 PIMPY PQQKQ PROAC RSV SOJ AAYXX AFFHD CITATION EBLON PHGZM PHGZT PQGLB 7XB 8AL 8FK JQ2 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c3946-ccf68f08614d9e33fe6b7e5614147203202ff0a19d14ba5bcd6f430544f68b503 |
| IEDL.DBID | C24 |
| ISSN | 2197-4314 |
| IngestDate | Sun Nov 09 08:11:55 EST 2025 Sat Nov 29 06:46:29 EST 2025 Tue Nov 18 21:43:05 EST 2025 Fri Feb 21 02:34:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Group profit maximization Social networks Submodular–modular algorithm Non-submodular |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3946-ccf68f08614d9e33fe6b7e5614147203202ff0a19d14ba5bcd6f430544f68b503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8147-8254 |
| OpenAccessLink | https://link.springer.com/10.1186/s40649-020-00085-6 |
| PQID | 2476042805 |
| PQPubID | 2046142 |
| ParticipantIDs | proquest_journals_2476042805 crossref_citationtrail_10_1186_s40649_020_00085_6 crossref_primary_10_1186_s40649_020_00085_6 springer_journals_10_1186_s40649_020_00085_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20210107 |
| PublicationDateYYYYMMDD | 2021-01-07 |
| PublicationDate_xml | – month: 1 year: 2021 text: 20210107 day: 7 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Computational social networks |
| PublicationTitleAbbrev | Comput Soc Netw |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Iyer R, Bilmes J. Algorithms for approximate minimization of the difference between submodular functions, with applications. arXiv preprint arXiv:1207.0560. 2012. Tagarelli A., Tong H, editors. Computational data and social networks. CSoNet 2019. Lecture notes in computer science, vol. 11917. Berlin: Springer. pp. 108–19. Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K-i. Fast and accurate influence maximization on large networks with pruned monte-carlo simulations. In: AAAI. 2014. pp. 138–44. BachFLearning with submodular functions: a convex optimization perspectiveFound Trends ® Mach Learn201362–31453731280.6800110.1561/2200000039 ZhuJGhoshSWuWGroup influence maximization problem in social networksIEEE Trans Comput Soc Syst201910.1109/TCSS.2019.2938575 Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2003. pp. 137–46. Borgs C, Brautbar M, Chayes J, Lucier B. Maximizing social influence in nearly optimal time. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. SIAM. 2014. pp. 946–57. NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functionsMath Program19781412652945038660374.9004510.1007/BF01588971 Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N. Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2007. pp. 420–9. ZhuJZhuJGhoshSWuWYuanJSocial influence maximization in hypergraph in social networksIEEE Trans Netw Sci Eng201810.1109/TNSE.2018.2873759 Fujishige S. Submodular functions and optimization. In: Of Annals Of discrete mathematics, vol. 47. 2008. OpsahlTTriadic closure in two-mode networks: redefining the global and local clustering coefficientsSoc Netw201335215916710.1016/j.socnet.2011.07.001 Tang Y, Shi Y, Xiao X. Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, ACM. 2015. pp. 1539–54. Schoenebeck G, Tao B. Beyond worst-case (in)approximability of nonsubmodular influence maximization. In: International conference on web and internet economics. 2017. Zhu Y, Lu Z, Bi Y, Wu W, Jiang Y, Li D. Influence and profit: two sides of the coin. In: Data mining (ICDM), 2013 IEEE 13th international conference on, IEEE. 2013. pp. 1301–6. Lu W, Lakshmanan LV. Profit maximization over social networks. In: Data mining (ICDM), 2012 IEEE 12th international conference on, IEEE. 2012. pp. 479–88. LuWChenWLakshmananLVFrom competition to complementarity: comparative influence diffusion and maximizationProc VLDB Endow201592607110.14778/2850578.2850581 ZhuJGhoshSWuWRobust rumor blocking problem with uncertain rumor sources in social networksWorld Wide Web202010.1007/s11280-020-00841-8 ZhuJGhoshSZhuJWuWNear-optimal convergent approach for composed influence maximization problem in social networksIEEE Access2019714248814249710.1109/ACCESS.2019.2944207 Tang J, Tang X, Yuan J. Towards profit maximization for online social network providers. arXiv preprint arXiv:1712.08963. 2017. Nguyen HT, Thai MT, Dinh TN. Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the 2016 international conference on management of data, ACM. 2016. pp. 695–710. Tang Y, Xiao X, Shi Y. Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data, ACM. 2014. pp. 75–86. DagumPKarpRLubyMRossSAn optimal algorithm for monte carlo estimationSIAM J Comput20002951484149617448331112.6530010.1137/S0097539797315306 DuNLiangYBalcanM-FGomez-RodriguezMZhaHSongLScalable influence maximization for multiple products in continuous-time diffusion networksJ Mach Learn Res201718214536257061433.91114 Zhu J, Ghosh S, Wu W, Gao C. Profit maximization under group influence model in social networks. In: International conference on computational data and social networks. Springer. 2019. pp. 108–19. Goyal A, Lu W, Lakshmanan LV. Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: Data Mining (ICDM), 2011 IEEE 11th international conference on, IEEE. 2011. pp. 211–20. WuWLZhangZDuDZSet function optimizationJ Oper Res Soc China20183111 TangJTangXYuanJProfit maximization for viral marketing in online social networks: algorithms and analysisIEEE Trans Knowl Data Eng20183061095110810.1109/TKDE.2017.2787757 YangYLuZLiVOXuKNoncooperative information diffusion in online social networks under the independent cascade modelIEEE Trans Comput Soc Syst20174315016210.1109/TCSS.2017.2719056 Meeker M. Internet trends 2018-code conference. Glokalde. 2018;1(3). Chen W, Wang C, Wang Y. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2010. pp. 1029–38. Cohen E, Delling D, Pajor T, Werneck RF. Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management, ACM. 2014. pp. 629–38. Aslay C, Lakshmanan LV, Lu W, Xiao X. Influence maximization in online social networks. In: Proceedings of the eleventh ACM international conference on web search and data mining, ACM. 2018. pp. 775–6. Forsyth DR. Group dynamics. 2018. p. 1. Narasimhan M, Bilmes JA. A submodular-supermodular procedure with applications to discriminative structure learning. arXiv preprint arXiv:1207.1404. 2012. NewmanMEThe structure of scientific collaboration networksProc Nat Acad Sci200198240440918126101065.0051810.1073/pnas.98.2.404 85_CR7 85_CR8 85_CR5 85_CR6 85_CR4 85_CR1 85_CR2 J Tang (85_CR16) 2018; 30 85_CR20 WL Wu (85_CR28) 2018; 3 J Zhu (85_CR13) 2018 85_CR9 W Lu (85_CR27) 2015; 9 Y Yang (85_CR11) 2017; 4 85_CR21 GL Nemhauser (85_CR31) 1978; 14 T Opsahl (85_CR34) 2013; 35 85_CR22 85_CR23 85_CR24 85_CR25 ME Newman (85_CR35) 2001; 98 N Du (85_CR10) 2017; 18 J Zhu (85_CR3) 2019 85_CR30 F Bach (85_CR26) 2013; 6 P Dagum (85_CR32) 2000; 29 85_CR18 85_CR19 J Zhu (85_CR29) 2020 85_CR33 85_CR12 85_CR36 J Zhu (85_CR14) 2019; 7 85_CR15 85_CR17 |
| References_xml | – reference: Aslay C, Lakshmanan LV, Lu W, Xiao X. Influence maximization in online social networks. In: Proceedings of the eleventh ACM international conference on web search and data mining, ACM. 2018. pp. 775–6. – reference: Lu W, Lakshmanan LV. Profit maximization over social networks. In: Data mining (ICDM), 2012 IEEE 12th international conference on, IEEE. 2012. pp. 479–88. – reference: Narasimhan M, Bilmes JA. A submodular-supermodular procedure with applications to discriminative structure learning. arXiv preprint arXiv:1207.1404. 2012. – reference: Zhu J, Ghosh S, Wu W, Gao C. Profit maximization under group influence model in social networks. In: International conference on computational data and social networks. Springer. 2019. pp. 108–19. – reference: ZhuJGhoshSWuWGroup influence maximization problem in social networksIEEE Trans Comput Soc Syst201910.1109/TCSS.2019.2938575 – reference: DuNLiangYBalcanM-FGomez-RodriguezMZhaHSongLScalable influence maximization for multiple products in continuous-time diffusion networksJ Mach Learn Res201718214536257061433.91114 – reference: Tang Y, Shi Y, Xiao X. Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, ACM. 2015. pp. 1539–54. – reference: Tagarelli A., Tong H, editors. Computational data and social networks. CSoNet 2019. Lecture notes in computer science, vol. 11917. Berlin: Springer. pp. 108–19. – reference: Tang Y, Xiao X, Shi Y. Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data, ACM. 2014. pp. 75–86. – reference: Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N. Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2007. pp. 420–9. – reference: Fujishige S. Submodular functions and optimization. In: Of Annals Of discrete mathematics, vol. 47. 2008. – reference: DagumPKarpRLubyMRossSAn optimal algorithm for monte carlo estimationSIAM J Comput20002951484149617448331112.6530010.1137/S0097539797315306 – reference: Schoenebeck G, Tao B. Beyond worst-case (in)approximability of nonsubmodular influence maximization. In: International conference on web and internet economics. 2017. – reference: Borgs C, Brautbar M, Chayes J, Lucier B. Maximizing social influence in nearly optimal time. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. SIAM. 2014. pp. 946–57. – reference: LuWChenWLakshmananLVFrom competition to complementarity: comparative influence diffusion and maximizationProc VLDB Endow201592607110.14778/2850578.2850581 – reference: Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2003. pp. 137–46. – reference: OpsahlTTriadic closure in two-mode networks: redefining the global and local clustering coefficientsSoc Netw201335215916710.1016/j.socnet.2011.07.001 – reference: TangJTangXYuanJProfit maximization for viral marketing in online social networks: algorithms and analysisIEEE Trans Knowl Data Eng20183061095110810.1109/TKDE.2017.2787757 – reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functionsMath Program19781412652945038660374.9004510.1007/BF01588971 – reference: Goyal A, Lu W, Lakshmanan LV. Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: Data Mining (ICDM), 2011 IEEE 11th international conference on, IEEE. 2011. pp. 211–20. – reference: YangYLuZLiVOXuKNoncooperative information diffusion in online social networks under the independent cascade modelIEEE Trans Comput Soc Syst20174315016210.1109/TCSS.2017.2719056 – reference: WuWLZhangZDuDZSet function optimizationJ Oper Res Soc China20183111 – reference: Meeker M. Internet trends 2018-code conference. Glokalde. 2018;1(3). – reference: NewmanMEThe structure of scientific collaboration networksProc Nat Acad Sci200198240440918126101065.0051810.1073/pnas.98.2.404 – reference: Cohen E, Delling D, Pajor T, Werneck RF. Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management, ACM. 2014. pp. 629–38. – reference: ZhuJZhuJGhoshSWuWYuanJSocial influence maximization in hypergraph in social networksIEEE Trans Netw Sci Eng201810.1109/TNSE.2018.2873759 – reference: Chen W, Wang C, Wang Y. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2010. pp. 1029–38. – reference: ZhuJGhoshSWuWRobust rumor blocking problem with uncertain rumor sources in social networksWorld Wide Web202010.1007/s11280-020-00841-8 – reference: BachFLearning with submodular functions: a convex optimization perspectiveFound Trends ® Mach Learn201362–31453731280.6800110.1561/2200000039 – reference: Iyer R, Bilmes J. Algorithms for approximate minimization of the difference between submodular functions, with applications. arXiv preprint arXiv:1207.0560. 2012. – reference: Zhu Y, Lu Z, Bi Y, Wu W, Jiang Y, Li D. Influence and profit: two sides of the coin. In: Data mining (ICDM), 2013 IEEE 13th international conference on, IEEE. 2013. pp. 1301–6. – reference: ZhuJGhoshSZhuJWuWNear-optimal convergent approach for composed influence maximization problem in social networksIEEE Access2019714248814249710.1109/ACCESS.2019.2944207 – reference: Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K-i. Fast and accurate influence maximization on large networks with pruned monte-carlo simulations. In: AAAI. 2014. pp. 138–44. – reference: Nguyen HT, Thai MT, Dinh TN. Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the 2016 international conference on management of data, ACM. 2016. pp. 695–710. – reference: Forsyth DR. Group dynamics. 2018. p. 1. – reference: Tang J, Tang X, Yuan J. Towards profit maximization for online social network providers. arXiv preprint arXiv:1712.08963. 2017. – ident: 85_CR2 – ident: 85_CR33 – ident: 85_CR22 doi: 10.1145/2723372.2723734 – year: 2019 ident: 85_CR3 publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2019.2938575 – ident: 85_CR8 doi: 10.1145/2661829.2662077 – ident: 85_CR24 doi: 10.1007/978-3-319-71924-5_26 – ident: 85_CR9 doi: 10.1609/aaai.v28i1.8726 – volume: 30 start-page: 1095 issue: 6 year: 2018 ident: 85_CR16 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2787757 – ident: 85_CR5 doi: 10.1145/1281192.1281239 – volume: 6 start-page: 145 issue: 2–3 year: 2013 ident: 85_CR26 publication-title: Found Trends ® Mach Learn doi: 10.1561/2200000039 – ident: 85_CR20 doi: 10.1137/1.9781611973402.70 – ident: 85_CR17 doi: 10.1109/ICDM.2012.145 – ident: 85_CR4 doi: 10.1145/956750.956769 – volume: 4 start-page: 150 issue: 3 year: 2017 ident: 85_CR11 publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2017.2719056 – ident: 85_CR15 doi: 10.1007/978-3-030-34980-6_13 – ident: 85_CR21 doi: 10.1145/2588555.2593670 – ident: 85_CR18 doi: 10.1109/ICDM.2013.40 – ident: 85_CR6 doi: 10.1145/1835804.1835934 – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 85_CR31 publication-title: Math Program doi: 10.1007/BF01588971 – ident: 85_CR19 doi: 10.1109/INFOCOM.2018.8485975 – volume: 29 start-page: 1484 issue: 5 year: 2000 ident: 85_CR32 publication-title: SIAM J Comput doi: 10.1137/S0097539797315306 – ident: 85_CR36 doi: 10.1007/978-3-030-34980-6 – volume: 3 start-page: 1 year: 2018 ident: 85_CR28 publication-title: J Oper Res Soc China – year: 2020 ident: 85_CR29 publication-title: World Wide Web doi: 10.1007/s11280-020-00841-8 – ident: 85_CR1 – ident: 85_CR30 – volume: 18 start-page: 1 issue: 2 year: 2017 ident: 85_CR10 publication-title: J Mach Learn Res – year: 2018 ident: 85_CR13 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2018.2873759 – ident: 85_CR23 doi: 10.1145/2882903.2915207 – ident: 85_CR12 doi: 10.1145/3159652.3162007 – volume: 35 start-page: 159 issue: 2 year: 2013 ident: 85_CR34 publication-title: Soc Netw doi: 10.1016/j.socnet.2011.07.001 – volume: 98 start-page: 404 issue: 2 year: 2001 ident: 85_CR35 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.98.2.404 – volume: 7 start-page: 142488 year: 2019 ident: 85_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944207 – ident: 85_CR25 – ident: 85_CR7 doi: 10.1109/ICDM.2011.132 – volume: 9 start-page: 60 issue: 2 year: 2015 ident: 85_CR27 publication-title: Proc VLDB Endow doi: 10.14778/2850578.2850581 |
| SSID | ssj0001634177 |
| Score | 2.1300578 |
| Snippet | In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Data-driven Science Database Management Election results Elections Industrial and Production Engineering Industrial Organization Lower bounds Mathematical Models of Cognitive Processes and Neural Networks Mathematics Mathematics and Statistics Maximization Media Sociology Modeling and Theory Building Optimization Presidential elections Profit maximization Social networks Upper bounds |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9ODF-YnTKTl407B-pEl6EhGHF8cOCsNLaNMEBq6b6xT_fJM0tSi4i-c2ofR9v7z8fgCXUWL8vgokznIWYCKNH8ySgmBu9ClTEbeUO45sgo1GfDJJx77hVvmxysYnOkddzKXtkQ8iwqjN74PkZvGGLWuUPV31FBqbsGVREix1wzh5aXss1Phoxpq7MpwOKhO_SIptzeSyDUx_xqM2yfx1LurCzbD73w_dg12faKLbWjP2YUOVB9BtSByQt-lDeBzNS1yZqDgv7EQqctQ4yKSyyF34QI7Ue4Vm2ed05u9sIs9Cg6YlqnvuqKynyasjeB7eP909YM-xgGWcEoql1JRrU9eEpEhVHGtFc6YsPGhIWM2urnWQhWkRkjxLcllQbVHCCDHr8iSIj6FTzkt1AijnIdF5EfMo0yQJtTVwHRMHIE91HvcgbP60kB6A3PJgvApXiHAqaukIIx3hpCNoD66-1yxq-I21b_cbkQhvipVo5dGD60ao7eO_dztdv9sZ7ER2vsW2Y1gfOqvluzqHbfmxmlbLC6eIX8QO4wQ priority: 102 providerName: ProQuest |
| Title | Non-submodular model for group profit maximization problem in social networks |
| URI | https://link.springer.com/article/10.1186/s40649-020-00085-6 https://www.proquest.com/docview/2476042805 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2197-4314 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0001634177 issn: 2197-4314 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2197-4314 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001634177 issn: 2197-4314 databaseCode: P5Z dateStart: 20141001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2197-4314 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001634177 issn: 2197-4314 databaseCode: K7- dateStart: 20141001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2197-4314 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001634177 issn: 2197-4314 databaseCode: BENPR dateStart: 20141001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2197-4314 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001634177 issn: 2197-4314 databaseCode: PIMPY dateStart: 20141001 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2197-4314 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001634177 issn: 2197-4314 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o5kEPTqfidI4cvGmwH2mSHnVsKLJSRGF6Kf0KDFwn6xT_fJM03VBU0EsuySvlJe8ree_9AE4dT-r93EpxnDALk1TqwdjLCObyPMW5wxXkjgabYEHAx2M_NEVhZZ3tXj9Jak2txZrTi1KaHuJjFe5oRwHTdWh6NvdVIl_f1DjomxUqNTNjdYXMt6SfrdDKtfzyGqqNzLD1v9_bgW3jVKLL6hTswlpetKFVAzYgI79t2Botm7SWezAKZgUupT2cZSoXFWlQHCSdWKRLPZCG816gafw-mZpqTWTwZ9CkQNVtOyqqPPJyHx6Gg_v-NTboCjh1fUJxmgrKhYxobJL5ueuKnCYsV41BbcIqXHUhrNj2M5sksZekGRWqPxghki7xLPcAGsWsyA8BJdwmIslc7sSCeLZQoi1colvHU5G4HbBrbkepaT2uEDCeIx2CcBpV3Isk9yLNvYh24GxJ81I13vh1dbfexMgIYRk5hFEVElpeB87rTVtN__y1o78tP4ZNR2W6qIsZ1oXGYv6an8BG-raYlPMeNK8GQXjX04dUjrcMyzH0nuRMeDMKHz8AC3biGw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VRYILO6KsPsAJLLI4tnNACLGoVaHiUCRuJnFsqRKkQMr2U3wjtpNQgQQ3DpwTj5T4-c3YnpkHsB1EhveVJ3GSMg8TaXgwiTKCucFTogJuJXec2ATrdvn1dXzZgPe6FsamVdac6Ig6G0h7Rr4fEEZtfO9Fh_cP2KpG2dvVWkKjhEVHvb2YLVtx0D4x87sTBGenveMWrlQFsAxjQrGUmnJtInmfZLEKQ61oypRtiOkTVuqJa-0lfpz5JE2iVGZU275YhJhxaeSFxu4YTJCQM7uuOgyPznSo8QmM1bU5nO4Xxl-SGNs9motuMP3q_0ZB7bd7WOfezmb_24-Zg5kqkEZHJfLnoaHyBZitRSpQxVmLcNEd5LgwXn-Q2Yxb5KR_kAnVkStoQU60fIjuktf-XVWTiiqVHdTPUXmngPIyW75Ygqs_-ahlGM8HuVoBlHKf6DQLeZBoEvnaEpgOiWuQT3UaNsGvZ1bIqsG61fm4FW6jxako0SAMGoRDg6BN2P0cc1-2F_n17fUaAqKimkKM5r8JezWIRo9_trb6u7UtmGr1Ls7FebvbWYPpwOby2KMntg7jw8cntQGT8nnYLx433SJAcPPX4PoAuJk9cA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4nZoH3zSsH2maPsp0KLqyB4W9hX4FBq4baxX_fJM03VRUEJ-bhHK5y90ld78fwLnjyXM_sxIcxb6FSSLPwchLCWZSn6LMYYpyR5NN-GHIRqNg-KGLX1e710-SVU-DQmnKy-4sFZWJM9otpBsiAVapjw4aMF2FNfUipXS8Z_od9C0Llae079fdMt9O_eyRlmHml5dR7XD6zf__6g5sm2ATXVXasQsrWd6CZk3kgIxdt2BrsABvLfZgEE5zXEg_OU1VjSrSZDlIBrdIt4AgTfNdokn0Np6YLk5keGnQOEfVLTzKq_ryYh-e-jePvVtsWBdw4gaE4iQRlAmZ6dgkDTLXFRmN_UwBhtrEr_jWhbAiO0htEkdenKRUKNwwQuS82LPcA2jk0zw7BBQzm4g4dZkTCeLZQpm8cImGlKcidttg15LniYEkV8wYz1ynJozySnpcSo9r6XHahovFnFkFyPHr6E69odwYZ8Ed4lOVKlpeGy7rDVx-_nm1o78NP4ON4XWfP9yF98ew6ahiGHV343egUc5fshNYT17LcTE_1Tr7DogX6Mg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-submodular+model+for+group+profit+maximization+problem+in+social+networks&rft.jtitle=Computational+social+networks&rft.au=Zhu%2C+Jianming&rft.au=Ghosh%2C+Smita&rft.au=Wu%2C+Weili&rft.au=Gao%2C+Chuangen&rft.date=2021-01-07&rft.pub=Springer+International+Publishing&rft.eissn=2197-4314&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs40649-020-00085-6&rft.externalDocID=10_1186_s40649_020_00085_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4314&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4314&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4314&client=summon |