Non-submodular model for group profit maximization problem in social networks

In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group...

Full description

Saved in:
Bibliographic Details
Published in:Computational social networks Vol. 8; no. 1
Main Authors: Zhu, Jianming, Ghosh, Smita, Wu, Weili, Gao, Chuangen
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 07.01.2021
Springer Nature B.V
Subjects:
ISSN:2197-4314, 2197-4314
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if β percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods.
AbstractList In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if β percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods.
In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if $$\beta$$ β percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods.
In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if β percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods.
ArticleNumber 2
Author Gao, Chuangen
Ghosh, Smita
Zhu, Jianming
Wu, Weili
Author_xml – sequence: 1
  givenname: Jianming
  orcidid: 0000-0002-8147-8254
  surname: Zhu
  fullname: Zhu, Jianming
  email: jmzhu@ucas.ac.cn
  organization: School of Engineering Science, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Smita
  surname: Ghosh
  fullname: Ghosh, Smita
  organization: Department of Computer Science, University of Texas at Dallas
– sequence: 3
  givenname: Weili
  surname: Wu
  fullname: Wu, Weili
  organization: Department of Computer Science, University of Texas at Dallas
– sequence: 4
  givenname: Chuangen
  surname: Gao
  fullname: Gao, Chuangen
  organization: Shandong University
BookMark eNp9kMlOwzAURS1UJErpD7CyxDrwPMRJlqhikgpsYG05iV25JHaxEzF8PS5FArHo6g265w33GE2cdxqhUwLnhJTiInIQvMqAQgYAZZ6JAzSlpCoyzgif_MmP0DzGdRIRwTgpiim6f_Aui2Pd-3bsVMAp6g4bH_Aq-HGDN8EbO-BevdvefqrBerft1Z3usXU4-saqDjs9vPnwEk_QoVFd1POfOEPP11dPi9ts-Xhzt7hcZg2ruMiaxojSQCkIbyvNmNGiLnSeSsILCowCNQYUqVrCa5XXTSsMZ5Bznrg6BzZDZ7u56ZTXUcdBrv0YXFopKS8EcFpCnlTlTtUEH2PQRjZ2-H5hCMp2koDc-id3_snkn_z2T4qE0n_oJthehY_9ENtBMYndSoffq_ZQX3CZhE8
CitedBy_id crossref_primary_10_1109_TCSS_2024_3383241
crossref_primary_10_1109_TCSS_2024_3395627
Cites_doi 10.1145/2723372.2723734
10.1109/TCSS.2019.2938575
10.1145/2661829.2662077
10.1007/978-3-319-71924-5_26
10.1609/aaai.v28i1.8726
10.1109/TKDE.2017.2787757
10.1145/1281192.1281239
10.1561/2200000039
10.1137/1.9781611973402.70
10.1109/ICDM.2012.145
10.1145/956750.956769
10.1109/TCSS.2017.2719056
10.1007/978-3-030-34980-6_13
10.1145/2588555.2593670
10.1109/ICDM.2013.40
10.1145/1835804.1835934
10.1007/BF01588971
10.1109/INFOCOM.2018.8485975
10.1137/S0097539797315306
10.1007/978-3-030-34980-6
10.1007/s11280-020-00841-8
10.1109/TNSE.2018.2873759
10.1145/2882903.2915207
10.1145/3159652.3162007
10.1016/j.socnet.2011.07.001
10.1073/pnas.98.2.404
10.1109/ACCESS.2019.2944207
10.1109/ICDM.2011.132
10.14778/2850578.2850581
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1186/s40649-020-00085-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 2197-4314
ExternalDocumentID 10_1186_s40649_020_00085_6
GrantInformation_xml – fundername: Project of Promoting Scientific Research Ability of Excellent Young Teachers in University of Chinese Academy of Sciences
– fundername: National Science Foundation (US)
  grantid: 1747818
GroupedDBID 3V.
5VS
8FE
8FG
AAFWJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
RSV
SOJ
AAYXX
AFFHD
CITATION
EBLON
PHGZM
PHGZT
PQGLB
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c3946-ccf68f08614d9e33fe6b7e5614147203202ff0a19d14ba5bcd6f430544f68b503
IEDL.DBID C24
ISSN 2197-4314
IngestDate Sun Nov 09 08:11:55 EST 2025
Sat Nov 29 06:46:29 EST 2025
Tue Nov 18 21:43:05 EST 2025
Fri Feb 21 02:34:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Group profit maximization
Social networks
Submodular–modular algorithm
Non-submodular
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3946-ccf68f08614d9e33fe6b7e5614147203202ff0a19d14ba5bcd6f430544f68b503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8147-8254
OpenAccessLink https://link.springer.com/10.1186/s40649-020-00085-6
PQID 2476042805
PQPubID 2046142
ParticipantIDs proquest_journals_2476042805
crossref_citationtrail_10_1186_s40649_020_00085_6
crossref_primary_10_1186_s40649_020_00085_6
springer_journals_10_1186_s40649_020_00085_6
PublicationCentury 2000
PublicationDate 20210107
PublicationDateYYYYMMDD 2021-01-07
PublicationDate_xml – month: 1
  year: 2021
  text: 20210107
  day: 7
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational social networks
PublicationTitleAbbrev Comput Soc Netw
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Iyer R, Bilmes J. Algorithms for approximate minimization of the difference between submodular functions, with applications. arXiv preprint arXiv:1207.0560. 2012.
Tagarelli A., Tong H, editors. Computational data and social networks. CSoNet 2019. Lecture notes in computer science, vol. 11917. Berlin: Springer. pp. 108–19.
Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K-i. Fast and accurate influence maximization on large networks with pruned monte-carlo simulations. In: AAAI. 2014. pp. 138–44.
BachFLearning with submodular functions: a convex optimization perspectiveFound Trends ® Mach Learn201362–31453731280.6800110.1561/2200000039
ZhuJGhoshSWuWGroup influence maximization problem in social networksIEEE Trans Comput Soc Syst201910.1109/TCSS.2019.2938575
Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2003. pp. 137–46.
Borgs C, Brautbar M, Chayes J, Lucier B. Maximizing social influence in nearly optimal time. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. SIAM. 2014. pp. 946–57.
NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functionsMath Program19781412652945038660374.9004510.1007/BF01588971
Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N. Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2007. pp. 420–9.
ZhuJZhuJGhoshSWuWYuanJSocial influence maximization in hypergraph in social networksIEEE Trans Netw Sci Eng201810.1109/TNSE.2018.2873759
Fujishige S. Submodular functions and optimization. In: Of Annals Of discrete mathematics, vol. 47. 2008.
OpsahlTTriadic closure in two-mode networks: redefining the global and local clustering coefficientsSoc Netw201335215916710.1016/j.socnet.2011.07.001
Tang Y, Shi Y, Xiao X. Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, ACM. 2015. pp. 1539–54.
Schoenebeck G, Tao B. Beyond worst-case (in)approximability of nonsubmodular influence maximization. In: International conference on web and internet economics. 2017.
Zhu Y, Lu Z, Bi Y, Wu W, Jiang Y, Li D. Influence and profit: two sides of the coin. In: Data mining (ICDM), 2013 IEEE 13th international conference on, IEEE. 2013. pp. 1301–6.
Lu W, Lakshmanan LV. Profit maximization over social networks. In: Data mining (ICDM), 2012 IEEE 12th international conference on, IEEE. 2012. pp. 479–88.
LuWChenWLakshmananLVFrom competition to complementarity: comparative influence diffusion and maximizationProc VLDB Endow201592607110.14778/2850578.2850581
ZhuJGhoshSWuWRobust rumor blocking problem with uncertain rumor sources in social networksWorld Wide Web202010.1007/s11280-020-00841-8
ZhuJGhoshSZhuJWuWNear-optimal convergent approach for composed influence maximization problem in social networksIEEE Access2019714248814249710.1109/ACCESS.2019.2944207
Tang J, Tang X, Yuan J. Towards profit maximization for online social network providers. arXiv preprint arXiv:1712.08963. 2017.
Nguyen HT, Thai MT, Dinh TN. Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the 2016 international conference on management of data, ACM. 2016. pp. 695–710.
Tang Y, Xiao X, Shi Y. Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data, ACM. 2014. pp. 75–86.
DagumPKarpRLubyMRossSAn optimal algorithm for monte carlo estimationSIAM J Comput20002951484149617448331112.6530010.1137/S0097539797315306
DuNLiangYBalcanM-FGomez-RodriguezMZhaHSongLScalable influence maximization for multiple products in continuous-time diffusion networksJ Mach Learn Res201718214536257061433.91114
Zhu J, Ghosh S, Wu W, Gao C. Profit maximization under group influence model in social networks. In: International conference on computational data and social networks. Springer. 2019. pp. 108–19.
Goyal A, Lu W, Lakshmanan LV. Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: Data Mining (ICDM), 2011 IEEE 11th international conference on, IEEE. 2011. pp. 211–20.
WuWLZhangZDuDZSet function optimizationJ Oper Res Soc China20183111
TangJTangXYuanJProfit maximization for viral marketing in online social networks: algorithms and analysisIEEE Trans Knowl Data Eng20183061095110810.1109/TKDE.2017.2787757
YangYLuZLiVOXuKNoncooperative information diffusion in online social networks under the independent cascade modelIEEE Trans Comput Soc Syst20174315016210.1109/TCSS.2017.2719056
Meeker M. Internet trends 2018-code conference. Glokalde. 2018;1(3).
Chen W, Wang C, Wang Y. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2010. pp. 1029–38.
Cohen E, Delling D, Pajor T, Werneck RF. Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management, ACM. 2014. pp. 629–38.
Aslay C, Lakshmanan LV, Lu W, Xiao X. Influence maximization in online social networks. In: Proceedings of the eleventh ACM international conference on web search and data mining, ACM. 2018. pp. 775–6.
Forsyth DR. Group dynamics. 2018. p. 1.
Narasimhan M, Bilmes JA. A submodular-supermodular procedure with applications to discriminative structure learning. arXiv preprint arXiv:1207.1404. 2012.
NewmanMEThe structure of scientific collaboration networksProc Nat Acad Sci200198240440918126101065.0051810.1073/pnas.98.2.404
85_CR7
85_CR8
85_CR5
85_CR6
85_CR4
85_CR1
85_CR2
J Tang (85_CR16) 2018; 30
85_CR20
WL Wu (85_CR28) 2018; 3
J Zhu (85_CR13) 2018
85_CR9
W Lu (85_CR27) 2015; 9
Y Yang (85_CR11) 2017; 4
85_CR21
GL Nemhauser (85_CR31) 1978; 14
T Opsahl (85_CR34) 2013; 35
85_CR22
85_CR23
85_CR24
85_CR25
ME Newman (85_CR35) 2001; 98
N Du (85_CR10) 2017; 18
J Zhu (85_CR3) 2019
85_CR30
F Bach (85_CR26) 2013; 6
P Dagum (85_CR32) 2000; 29
85_CR18
85_CR19
J Zhu (85_CR29) 2020
85_CR33
85_CR12
85_CR36
J Zhu (85_CR14) 2019; 7
85_CR15
85_CR17
References_xml – reference: Aslay C, Lakshmanan LV, Lu W, Xiao X. Influence maximization in online social networks. In: Proceedings of the eleventh ACM international conference on web search and data mining, ACM. 2018. pp. 775–6.
– reference: Lu W, Lakshmanan LV. Profit maximization over social networks. In: Data mining (ICDM), 2012 IEEE 12th international conference on, IEEE. 2012. pp. 479–88.
– reference: Narasimhan M, Bilmes JA. A submodular-supermodular procedure with applications to discriminative structure learning. arXiv preprint arXiv:1207.1404. 2012.
– reference: Zhu J, Ghosh S, Wu W, Gao C. Profit maximization under group influence model in social networks. In: International conference on computational data and social networks. Springer. 2019. pp. 108–19.
– reference: ZhuJGhoshSWuWGroup influence maximization problem in social networksIEEE Trans Comput Soc Syst201910.1109/TCSS.2019.2938575
– reference: DuNLiangYBalcanM-FGomez-RodriguezMZhaHSongLScalable influence maximization for multiple products in continuous-time diffusion networksJ Mach Learn Res201718214536257061433.91114
– reference: Tang Y, Shi Y, Xiao X. Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, ACM. 2015. pp. 1539–54.
– reference: Tagarelli A., Tong H, editors. Computational data and social networks. CSoNet 2019. Lecture notes in computer science, vol. 11917. Berlin: Springer. pp. 108–19.
– reference: Tang Y, Xiao X, Shi Y. Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data, ACM. 2014. pp. 75–86.
– reference: Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N. Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2007. pp. 420–9.
– reference: Fujishige S. Submodular functions and optimization. In: Of Annals Of discrete mathematics, vol. 47. 2008.
– reference: DagumPKarpRLubyMRossSAn optimal algorithm for monte carlo estimationSIAM J Comput20002951484149617448331112.6530010.1137/S0097539797315306
– reference: Schoenebeck G, Tao B. Beyond worst-case (in)approximability of nonsubmodular influence maximization. In: International conference on web and internet economics. 2017.
– reference: Borgs C, Brautbar M, Chayes J, Lucier B. Maximizing social influence in nearly optimal time. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. SIAM. 2014. pp. 946–57.
– reference: LuWChenWLakshmananLVFrom competition to complementarity: comparative influence diffusion and maximizationProc VLDB Endow201592607110.14778/2850578.2850581
– reference: Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2003. pp. 137–46.
– reference: OpsahlTTriadic closure in two-mode networks: redefining the global and local clustering coefficientsSoc Netw201335215916710.1016/j.socnet.2011.07.001
– reference: TangJTangXYuanJProfit maximization for viral marketing in online social networks: algorithms and analysisIEEE Trans Knowl Data Eng20183061095110810.1109/TKDE.2017.2787757
– reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functionsMath Program19781412652945038660374.9004510.1007/BF01588971
– reference: Goyal A, Lu W, Lakshmanan LV. Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: Data Mining (ICDM), 2011 IEEE 11th international conference on, IEEE. 2011. pp. 211–20.
– reference: YangYLuZLiVOXuKNoncooperative information diffusion in online social networks under the independent cascade modelIEEE Trans Comput Soc Syst20174315016210.1109/TCSS.2017.2719056
– reference: WuWLZhangZDuDZSet function optimizationJ Oper Res Soc China20183111
– reference: Meeker M. Internet trends 2018-code conference. Glokalde. 2018;1(3).
– reference: NewmanMEThe structure of scientific collaboration networksProc Nat Acad Sci200198240440918126101065.0051810.1073/pnas.98.2.404
– reference: Cohen E, Delling D, Pajor T, Werneck RF. Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management, ACM. 2014. pp. 629–38.
– reference: ZhuJZhuJGhoshSWuWYuanJSocial influence maximization in hypergraph in social networksIEEE Trans Netw Sci Eng201810.1109/TNSE.2018.2873759
– reference: Chen W, Wang C, Wang Y. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, ACM. 2010. pp. 1029–38.
– reference: ZhuJGhoshSWuWRobust rumor blocking problem with uncertain rumor sources in social networksWorld Wide Web202010.1007/s11280-020-00841-8
– reference: BachFLearning with submodular functions: a convex optimization perspectiveFound Trends ® Mach Learn201362–31453731280.6800110.1561/2200000039
– reference: Iyer R, Bilmes J. Algorithms for approximate minimization of the difference between submodular functions, with applications. arXiv preprint arXiv:1207.0560. 2012.
– reference: Zhu Y, Lu Z, Bi Y, Wu W, Jiang Y, Li D. Influence and profit: two sides of the coin. In: Data mining (ICDM), 2013 IEEE 13th international conference on, IEEE. 2013. pp. 1301–6.
– reference: ZhuJGhoshSZhuJWuWNear-optimal convergent approach for composed influence maximization problem in social networksIEEE Access2019714248814249710.1109/ACCESS.2019.2944207
– reference: Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K-i. Fast and accurate influence maximization on large networks with pruned monte-carlo simulations. In: AAAI. 2014. pp. 138–44.
– reference: Nguyen HT, Thai MT, Dinh TN. Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the 2016 international conference on management of data, ACM. 2016. pp. 695–710.
– reference: Forsyth DR. Group dynamics. 2018. p. 1.
– reference: Tang J, Tang X, Yuan J. Towards profit maximization for online social network providers. arXiv preprint arXiv:1712.08963. 2017.
– ident: 85_CR2
– ident: 85_CR33
– ident: 85_CR22
  doi: 10.1145/2723372.2723734
– year: 2019
  ident: 85_CR3
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2019.2938575
– ident: 85_CR8
  doi: 10.1145/2661829.2662077
– ident: 85_CR24
  doi: 10.1007/978-3-319-71924-5_26
– ident: 85_CR9
  doi: 10.1609/aaai.v28i1.8726
– volume: 30
  start-page: 1095
  issue: 6
  year: 2018
  ident: 85_CR16
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2787757
– ident: 85_CR5
  doi: 10.1145/1281192.1281239
– volume: 6
  start-page: 145
  issue: 2–3
  year: 2013
  ident: 85_CR26
  publication-title: Found Trends ® Mach Learn
  doi: 10.1561/2200000039
– ident: 85_CR20
  doi: 10.1137/1.9781611973402.70
– ident: 85_CR17
  doi: 10.1109/ICDM.2012.145
– ident: 85_CR4
  doi: 10.1145/956750.956769
– volume: 4
  start-page: 150
  issue: 3
  year: 2017
  ident: 85_CR11
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2017.2719056
– ident: 85_CR15
  doi: 10.1007/978-3-030-34980-6_13
– ident: 85_CR21
  doi: 10.1145/2588555.2593670
– ident: 85_CR18
  doi: 10.1109/ICDM.2013.40
– ident: 85_CR6
  doi: 10.1145/1835804.1835934
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 85_CR31
  publication-title: Math Program
  doi: 10.1007/BF01588971
– ident: 85_CR19
  doi: 10.1109/INFOCOM.2018.8485975
– volume: 29
  start-page: 1484
  issue: 5
  year: 2000
  ident: 85_CR32
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539797315306
– ident: 85_CR36
  doi: 10.1007/978-3-030-34980-6
– volume: 3
  start-page: 1
  year: 2018
  ident: 85_CR28
  publication-title: J Oper Res Soc China
– year: 2020
  ident: 85_CR29
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00841-8
– ident: 85_CR1
– ident: 85_CR30
– volume: 18
  start-page: 1
  issue: 2
  year: 2017
  ident: 85_CR10
  publication-title: J Mach Learn Res
– year: 2018
  ident: 85_CR13
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2018.2873759
– ident: 85_CR23
  doi: 10.1145/2882903.2915207
– ident: 85_CR12
  doi: 10.1145/3159652.3162007
– volume: 35
  start-page: 159
  issue: 2
  year: 2013
  ident: 85_CR34
  publication-title: Soc Netw
  doi: 10.1016/j.socnet.2011.07.001
– volume: 98
  start-page: 404
  issue: 2
  year: 2001
  ident: 85_CR35
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.98.2.404
– volume: 7
  start-page: 142488
  year: 2019
  ident: 85_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944207
– ident: 85_CR25
– ident: 85_CR7
  doi: 10.1109/ICDM.2011.132
– volume: 9
  start-page: 60
  issue: 2
  year: 2015
  ident: 85_CR27
  publication-title: Proc VLDB Endow
  doi: 10.14778/2850578.2850581
SSID ssj0001634177
Score 2.1300578
Snippet In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Data-driven Science
Database Management
Election results
Elections
Industrial and Production Engineering
Industrial Organization
Lower bounds
Mathematical Models of Cognitive Processes and Neural Networks
Mathematics
Mathematics and Statistics
Maximization
Media Sociology
Modeling and Theory Building
Optimization
Presidential elections
Profit maximization
Social networks
Upper bounds
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9ODF-YnTKTl407B-pEl6EhGHF8cOCsNLaNMEBq6b6xT_fJM0tSi4i-c2ofR9v7z8fgCXUWL8vgokznIWYCKNH8ySgmBu9ClTEbeUO45sgo1GfDJJx77hVvmxysYnOkddzKXtkQ8iwqjN74PkZvGGLWuUPV31FBqbsGVREix1wzh5aXss1Phoxpq7MpwOKhO_SIptzeSyDUx_xqM2yfx1LurCzbD73w_dg12faKLbWjP2YUOVB9BtSByQt-lDeBzNS1yZqDgv7EQqctQ4yKSyyF34QI7Ue4Vm2ed05u9sIs9Cg6YlqnvuqKynyasjeB7eP909YM-xgGWcEoql1JRrU9eEpEhVHGtFc6YsPGhIWM2urnWQhWkRkjxLcllQbVHCCDHr8iSIj6FTzkt1AijnIdF5EfMo0yQJtTVwHRMHIE91HvcgbP60kB6A3PJgvApXiHAqaukIIx3hpCNoD66-1yxq-I21b_cbkQhvipVo5dGD60ao7eO_dztdv9sZ7ER2vsW2Y1gfOqvluzqHbfmxmlbLC6eIX8QO4wQ
  priority: 102
  providerName: ProQuest
Title Non-submodular model for group profit maximization problem in social networks
URI https://link.springer.com/article/10.1186/s40649-020-00085-6
https://www.proquest.com/docview/2476042805
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2197-4314
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0001634177
  issn: 2197-4314
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2197-4314
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001634177
  issn: 2197-4314
  databaseCode: P5Z
  dateStart: 20141001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2197-4314
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001634177
  issn: 2197-4314
  databaseCode: K7-
  dateStart: 20141001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2197-4314
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001634177
  issn: 2197-4314
  databaseCode: BENPR
  dateStart: 20141001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2197-4314
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001634177
  issn: 2197-4314
  databaseCode: PIMPY
  dateStart: 20141001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2197-4314
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001634177
  issn: 2197-4314
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o5kEPTqfidI4cvGmwH2mSHnVsKLJSRGF6Kf0KDFwn6xT_fJM03VBU0EsuySvlJe8ree_9AE4dT-r93EpxnDALk1TqwdjLCObyPMW5wxXkjgabYEHAx2M_NEVhZZ3tXj9Jak2txZrTi1KaHuJjFe5oRwHTdWh6NvdVIl_f1DjomxUqNTNjdYXMt6SfrdDKtfzyGqqNzLD1v9_bgW3jVKLL6hTswlpetKFVAzYgI79t2Botm7SWezAKZgUupT2cZSoXFWlQHCSdWKRLPZCG816gafw-mZpqTWTwZ9CkQNVtOyqqPPJyHx6Gg_v-NTboCjh1fUJxmgrKhYxobJL5ueuKnCYsV41BbcIqXHUhrNj2M5sksZekGRWqPxghki7xLPcAGsWsyA8BJdwmIslc7sSCeLZQoi1colvHU5G4HbBrbkepaT2uEDCeIx2CcBpV3Isk9yLNvYh24GxJ81I13vh1dbfexMgIYRk5hFEVElpeB87rTVtN__y1o78tP4ZNR2W6qIsZ1oXGYv6an8BG-raYlPMeNK8GQXjX04dUjrcMyzH0nuRMeDMKHz8AC3biGw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VRYILO6KsPsAJLLI4tnNACLGoVaHiUCRuJnFsqRKkQMr2U3wjtpNQgQQ3DpwTj5T4-c3YnpkHsB1EhveVJ3GSMg8TaXgwiTKCucFTogJuJXec2ATrdvn1dXzZgPe6FsamVdac6Ig6G0h7Rr4fEEZtfO9Fh_cP2KpG2dvVWkKjhEVHvb2YLVtx0D4x87sTBGenveMWrlQFsAxjQrGUmnJtInmfZLEKQ61oypRtiOkTVuqJa-0lfpz5JE2iVGZU275YhJhxaeSFxu4YTJCQM7uuOgyPznSo8QmM1bU5nO4Xxl-SGNs9motuMP3q_0ZB7bd7WOfezmb_24-Zg5kqkEZHJfLnoaHyBZitRSpQxVmLcNEd5LgwXn-Q2Yxb5KR_kAnVkStoQU60fIjuktf-XVWTiiqVHdTPUXmngPIyW75Ygqs_-ahlGM8HuVoBlHKf6DQLeZBoEvnaEpgOiWuQT3UaNsGvZ1bIqsG61fm4FW6jxako0SAMGoRDg6BN2P0cc1-2F_n17fUaAqKimkKM5r8JezWIRo9_trb6u7UtmGr1Ls7FebvbWYPpwOby2KMntg7jw8cntQGT8nnYLx433SJAcPPX4PoAuJk9cA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4nZoH3zSsH2maPsp0KLqyB4W9hX4FBq4baxX_fJM03VRUEJ-bhHK5y90ld78fwLnjyXM_sxIcxb6FSSLPwchLCWZSn6LMYYpyR5NN-GHIRqNg-KGLX1e710-SVU-DQmnKy-4sFZWJM9otpBsiAVapjw4aMF2FNfUipXS8Z_od9C0Llae079fdMt9O_eyRlmHml5dR7XD6zf__6g5sm2ATXVXasQsrWd6CZk3kgIxdt2BrsABvLfZgEE5zXEg_OU1VjSrSZDlIBrdIt4AgTfNdokn0Np6YLk5keGnQOEfVLTzKq_ryYh-e-jePvVtsWBdw4gaE4iQRlAmZ6dgkDTLXFRmN_UwBhtrEr_jWhbAiO0htEkdenKRUKNwwQuS82LPcA2jk0zw7BBQzm4g4dZkTCeLZQpm8cImGlKcidttg15LniYEkV8wYz1ynJozySnpcSo9r6XHahovFnFkFyPHr6E69odwYZ8Ed4lOVKlpeGy7rDVx-_nm1o78NP4ON4XWfP9yF98ew6ahiGHV343egUc5fshNYT17LcTE_1Tr7DogX6Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-submodular+model+for+group+profit+maximization+problem+in+social+networks&rft.jtitle=Computational+social+networks&rft.au=Zhu%2C+Jianming&rft.au=Ghosh%2C+Smita&rft.au=Wu%2C+Weili&rft.au=Gao%2C+Chuangen&rft.date=2021-01-07&rft.pub=Springer+International+Publishing&rft.eissn=2197-4314&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs40649-020-00085-6&rft.externalDocID=10_1186_s40649_020_00085_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-4314&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-4314&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-4314&client=summon