Influence of feature scaling on convergence of gradient iterative algorithm
Feature scaling is a method to unify self-variables or feature ranges in data. In data processing, it is usually used in data pre-processing. Because in the original data, the range of variables is very different. Feature scaling is a necessary step in the calculation of stochastic gradient descent....
Uloženo v:
| Vydáno v: | Journal of physics. Conference series Ročník 1213; číslo 3; s. 32021 - 32025 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bristol
IOP Publishing
01.06.2019
|
| Témata: | |
| ISSN: | 1742-6588, 1742-6596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Feature scaling is a method to unify self-variables or feature ranges in data. In data processing, it is usually used in data pre-processing. Because in the original data, the range of variables is very different. Feature scaling is a necessary step in the calculation of stochastic gradient descent. This paper takes the computer hardware data set maintained by UCI as an example, and compares the influence of normalization method and interval scaling method on the convergence of stochastic gradient descent by algorithm simulation. The result of study has a certain value on feature scaling. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1742-6588 1742-6596 |
| DOI: | 10.1088/1742-6596/1213/3/032021 |