Robot Control Optimization Using Reinforcement Learning

Conventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various uncertainties in task execution. This paper proposes a reinforcement learning control approach for overcoming such drawbacks. An artificial ne...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of intelligent & robotic systems Ročník 21; číslo 3; s. 221 - 238
Hlavní autori: Song, Kai-Tai, Sun, Wen-Yu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Kluwer 01.03.1998
Springer Nature B.V
Predmet:
ISSN:0921-0296, 1573-0409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Conventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various uncertainties in task execution. This paper proposes a reinforcement learning control approach for overcoming such drawbacks. An artificial neural network (ANN) serves as the learning structure, and an applied stochastic real-valued (SRV) unit as the learning method. Initially, force tracking control of a two-link robot arm is simulated to verify the control design. The simulation results confirm that even without information related to the robot dynamic model and environment states, operation rules for simultaneous controlling force and velocity are achievable by repetitive exploration. Hitherto, however, an acceptable performance has demanded many learning iterations and the learning speed proved too slow for practical applications. The approach herein, therefore, improves the tracking performance by combining a conventional controller with a reinforcement learning strategy. Experimental results demonstrate improved trajectory tracking performance of a two-link direct-drive robot manipulator using the proposed method.
AbstractList Conventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various uncertainties in task execution. This paper proposes a reinforcement learning control approach for overcoming such drawbacks. An artificial neural network (ANN) serves as the learning structure, and an applied stochastic real-valued (SRV) unit as the learning method. Initially, force tracking control of a two-link robot arm is simulated to verify the control design. The simulation results confirm that even without information related to the robot dynamic model and environment states, operation rules for simultaneous controlling force and velocity are achievable by repetitive exploration. Hitherto, however, an acceptable performance has demanded many learning iterations and the learning speed proved too slow for practical applications. The approach herein, therefore, improves the tracking performance by combining a conventional controller with a reinforcement learning strategy. Experimental results demonstrate improved trajectory tracking performance of a two-link direct-drive robot manipulator using the proposed method.
Author Sun, Wen-Yu
Song, Kai-Tai
Author_xml – sequence: 1
  givenname: Kai-Tai
  surname: Song
  fullname: Song, Kai-Tai
– sequence: 2
  givenname: Wen-Yu
  surname: Sun
  fullname: Sun, Wen-Yu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2185282$$DView record in Pascal Francis
BookMark eNp1kEtLAzEUhYMo2FbXbgcRXI3NexJ3pfiCQqHYdcikGUmZJjVJF_rrjbYIFrybC_d-53A4Q3Dqg7cAXCF4hyAm48k9grCRkFIkMGcnYIBYQ2pIoTwFAygxqiGW_BwMU1pDCKVgcgCaRWhDrqbB5xj6ar7NbuM-dXbBV8vk_Fu1sM53IRq7sT5XM6ujL-cLcNbpPtnLwx6B5ePD6_S5ns2fXqaTWW2IJLnuVobClgmiW8yp5JaUYYhyhAjRlArdacZJebYr1FJpiNZWao47ySAjLRmB273vNob3nU1ZbVwytu-1t2GXlCxeVDaoKeT1EbkOu-hLOCUE4g3lghfo5gDpZHTfRe2NS2ob3UbHD4WRYFjggo33mIkhpWi7XwJB9d22mqg_bRcFO1IYl39qzFG7_l_dF0Orgjs
CitedBy_id crossref_primary_10_1002_2475_8876_12059
crossref_primary_10_1109_TNNLS_2022_3190973
crossref_primary_10_1109_JRFID_2022_3213895
crossref_primary_10_1007_s10846_010_9396_9
Cites_doi 10.1109/37.257890
10.1109/ICSMC.1991.169893
10.1109/TSMC.1974.5408453
10.1109/TSMC.1985.6313371
10.1109/70.88112
10.7551/mitpress/5236.001.0001
10.1016/0893-6080(88)90007-X
10.1016/0893-6080(90)90056-Q
10.1115/1.3139652
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright Springer Nature B.V. Mar 1998
Copyright_xml – notice: 1998 INIST-CNRS
– notice: Copyright Springer Nature B.V. Mar 1998
DBID AAYXX
CITATION
IQODW
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
F28
DOI 10.1023/A:1007904418265
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1573-0409
EndPage 238
ExternalDocumentID 2420164571
2185282
10_1023_A_1007904418265
GroupedDBID -Y2
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFWJ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AASML
AATVU
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABEEZ
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACSTC
ACULB
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFEXP
AFFHD
AFFNX
AFGCZ
AFGXO
AFHIU
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CITATION
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
ICD
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
AAUYE
AAYZH
AESKC
IQODW
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
Q9U
F28
ID FETCH-LOGICAL-c393t-fdc40b583ab26496e333351461133a448afa563b26bd1b49c3aae9a62f95053b3
IEDL.DBID BENPR
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000072494900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-0296
IngestDate Sun Nov 09 09:37:00 EST 2025
Sat Oct 18 22:43:02 EDT 2025
Mon Jul 21 09:14:18 EDT 2025
Tue Nov 18 21:31:35 EST 2025
Sat Nov 29 07:49:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Learning
Experimental result
Simulation
Reinforcement learning
Control synthesis
Tracking task
Neural network
Trajectory
Artificial intelligence
Robotics
Language English
License https://www.springernature.com/gp/researchers/text-and-data-mining
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-fdc40b583ab26496e333351461133a448afa563b26bd1b49c3aae9a62f95053b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 881674686
PQPubID 326251
PageCount 18
ParticipantIDs proquest_miscellaneous_914649717
proquest_journals_881674686
pascalfrancis_primary_2185282
crossref_primary_10_1023_A_1007904418265
crossref_citationtrail_10_1023_A_1007904418265
PublicationCentury 1900
PublicationDate 1998-03-01
PublicationDateYYYYMMDD 1998-03-01
PublicationDate_xml – month: 03
  year: 1998
  text: 1998-03-01
  day: 01
PublicationDecade 1990
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of intelligent & robotic systems
PublicationYear 1998
Publisher Kluwer
Springer Nature B.V
Publisher_xml – name: Kluwer
– name: Springer Nature B.V
References 150354_CR16
K. S. Narendra (150354_CR10) 1974; 14
R. S. Sutton (150354_CR15) 1988; 3
150354_CR13
150354_CR6
150354_CR14
B. Widrow (150354_CR17) 1985
A. G. Barto (150354_CR4) 1985; 15
V. Gullapalli (150354_CR5) 1994; 14
D. E. Rumelhart (150354_CR12) 1986
M. H. Raibert (150354_CR11) 1981; 102
150354_CR8
W. T. Miller (150354_CR9) 1990; 6
J. S. Albus (150354_CR2) 1975; 97
C. H. An (150354_CR1) 1988
A. G. Barto (150354_CR3) 1990
V. Gullapalli (150354_CR7) 1990; 3
References_xml – volume: 3
  start-page: 9
  issue: 1
  year: 1988
  ident: 150354_CR15
  publication-title: Machine Learning
– volume-title: Neural Networks for Control
  year: 1990
  ident: 150354_CR3
– volume: 14
  start-page: 13
  issue: 1
  year: 1994
  ident: 150354_CR5
  publication-title: IEEE Control Systems
  doi: 10.1109/37.257890
– ident: 150354_CR6
  doi: 10.1109/ICSMC.1991.169893
– volume: 14
  start-page: 323
  year: 1974
  ident: 150354_CR10
  publication-title: IEEE Trans. Systems Man Cybernet.
  doi: 10.1109/TSMC.1974.5408453
– volume-title: Adaptive Signal Processing
  year: 1985
  ident: 150354_CR17
– volume: 15
  start-page: 360
  issue: 3
  year: 1985
  ident: 150354_CR4
  publication-title: IEEE Trans. Systems Man Cybernet.
  doi: 10.1109/TSMC.1985.6313371
– volume-title: Model Based Control of a Robot Manipulator
  year: 1988
  ident: 150354_CR1
– volume: 6
  start-page: 1
  issue: 1
  year: 1990
  ident: 150354_CR9
  publication-title: IEEE Trans. Robot. Automat.
  doi: 10.1109/70.88112
– volume-title: Parallel Distributed Processing
  year: 1986
  ident: 150354_CR12
  doi: 10.7551/mitpress/5236.001.0001
– ident: 150354_CR13
– ident: 150354_CR16
  doi: 10.1016/0893-6080(88)90007-X
– ident: 150354_CR8
– ident: 150354_CR14
– volume: 3
  start-page: 671
  year: 1990
  ident: 150354_CR7
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(90)90056-Q
– volume: 102
  start-page: 126
  year: 1981
  ident: 150354_CR11
  publication-title: Trans. ASME J. Dyn. Systems Meas. Control
  doi: 10.1115/1.3139652
– volume: 97
  start-page: 220
  issue: 3
  year: 1975
  ident: 150354_CR2
  publication-title: Trans. of ASME, Series G
SSID ssj0009859
Score 1.5103939
Snippet Conventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 221
SubjectTerms Applied sciences
Artificial intelligence
Artificial neural networks
Computer science; control theory; systems
Computer simulation
Connectionism. Neural networks
Control theory. Systems
Dynamic models
Exact sciences and technology
Learning
Learning theory
Machine learning
Mathematical models
Neural networks
Reinforcement
Robot arms
Robot control
Robot dynamics
Robot learning
Robotics
Robots
Studies
Tracking
Tracking control
Title Robot Control Optimization Using Reinforcement Learning
URI https://www.proquest.com/docview/881674686
https://www.proquest.com/docview/914649717
Volume 21
WOSCitedRecordID wos000072494900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 20051231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-iwGFogq0bWvmofOCwSyC182GfJqhaISF1Vcekikvk-AMhsaQjZX__nhOno0xwIYp8sRNZfn7P79nPvx_AicWQi1Gbo35LFUQpFsKaMKADw6WOmdSprskm0smEz-di6nNzKp9W2drE2lDrUrk98jPOXb58wpNvi9-BI41yh6ueQaMDWw6oDKf51sVoMp39Q93lcQO2RzFmpiJ5hu0TpiJEdwA97HhtWXq_kBWOkG2oLf6z0vXSM957Y6c_wK73Ocl5M0k-woYpurDX8jkQr95d2HkCTvgJ0lmZl0sybHLZyXe0Lb_8pU1SJxqQmalhV1W9w0g8UuvtZ_g5Hl0PLwNPsxAoJtgysFpFYR5zJnP0jkRiGD6x4_vG-FVi-CatjBOGlbke5JFQTEojZEKtQPeJ5WwfNouyMF-AUMulsomSVumIM4uviUOrmOaa5ZHtwWk7ypnyGOSOCuM-q8_CKcvOszWx9ODr6oNFA7_xctPjNbGt2lN3P5zTHhy2Msq8nlbZSkA9IKtaVDB3aiILUz5WmcCRiARGvQev_uAQ3rXXFcPBEWwuHx7NMWyrP8u76qHvJ2YfOldp0HcJpj-wnMY3fwGFA-3R
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5RqFQqRNqUigChPrRSLwsbex_2ASEEjYiSplVEpdwWrx9VpTYb2FDEj-I_Mt5HaIraGwdWq73Yu9LaM-MZe-b7AN5bDLkYtSnqt1ReEONDWON7tGO41CGTOtYF2UQ8HPLxWHxdgtu6FsalVdY2sTDUOlNuj3yfc5cvH_HocHrhOdIod7haM2iUUtE3N9cYseUHvROc3g-Udj-dHZ96FamAp5hgM89qFfhpyJlM0RcQkWF4hY7dGqM1icGKtDKMGDamupMGQjEpjZARtQKdBZYy_O4zWAkYj5xC9WPvHuOXhyW0H8UInYroLyQhPxY-Oh_oz4cLi-DaVOY4H7Yk0niwJhQLXbfxxIboFaxXHjU5KlXgNSyZSRMaNVsFqYxXE17-Ab34BuJRlmYzclxm6pMvaDl_VSWppEijICNTgMqqYv-UVDi03zfg26P8zFtYnmQTswmEWi6VjZS0SgecWbxN6FvFNNcsDWwL9upZTVSFsO6IPn4mxUk_ZclRsiAGLfg4f2Fagov8u2t7QUzm_amrfue0Bdu1TCSVFcqTuUC0gMxb0Xy4MyE5MdlVnggciUBgTL_13w-8gxenZ58HyaA37G_Dal2Y6Xd2YHl2eWXa8Fz9nv3IL3cLlSBw_tgCdgda8UTM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RBVWgqlAKYqG0PlCJS0rWzsM-VBUFVkVUy2pVJG7B8QMhwWYhC6g_rf-OceJsu63KjQNRlIsdS7bH4xl75vsAtiy6XIzaHNe3VEGU4kdYEwa0Y7jUMZM61RXZRNrr8dNT0Z-BX00ujAurbHRipah1odwZ-Q7nLl4-4cmO9VER_f3ul9F14Aik3EVrw6ZRS8iR-XmP3lv5-XAfp_ojpd2DH3vfAk8wECgm2DiwWkVhHnMmc7QLRGIYPrFjukbPTaLjIq2ME4aFue7kkVBMSiNkQq1Aw4HlDNt9AbMpQ5-nBbNfD3r9wW_EXx7XQH8U_XUqkr9whcJUhGiKoHUfT22Jr0ayxNmxNa3GPztEte11F5_xgC3Ba29rk916cbyBGTNchsWGx4J4tbYMC3-AMr6FdFDkxZjs1TH85Bh16pVPViVVgAUZmApuVlUnq8Qj1J6vwMmTdGYVWsNiaNaAUMulsomSVumIM4uviUOrmOaa5ZFtw6dmhjPlsdcdBchlVsUAUJbtZlMi0YbtyQ-jGnbk_1U3p0RmUp-6vHhO27DRyEfm9VOZTYSjDWRSiorF3RbJoSluy0zgSEQCvf31Rxv4AC9RrrLvh72jDZhvMjbDzjtojW9uzSbMqbvxRXnz3q8PAmdPLWEPVyZPHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robot+Control+Optimization+Using+Reinforcement+Learning&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Song%2C+Kai-Tai&rft.au=Sun%2C+Wen-Yu&rft.date=1998-03-01&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=21&rft.issue=3&rft.spage=221&rft.epage=238&rft_id=info:doi/10.1023%2FA%3A1007904418265&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon