Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform

The aim of this study is to detect epileptic seizure in EEG signals using a hybrid system based on decision tree classifier and fast Fourier transform (FFT). The present study proposes a hybrid system with two stages: feature extraction using FFT and decision making using decision tree classifier. T...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 187; číslo 2; s. 1017 - 1026
Hlavní autori: Polat, Kemal, Güneş, Salih
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 15.04.2007
Elsevier
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of this study is to detect epileptic seizure in EEG signals using a hybrid system based on decision tree classifier and fast Fourier transform (FFT). The present study proposes a hybrid system with two stages: feature extraction using FFT and decision making using decision tree classifier. The detection of epileptiform discharges in the electroencephalogram (EEG) is an important part in the diagnosis of epilepsy. All data set were obtained from EEG signals of healthy subjects and subjects suffering from epilepsy diseases. For healthy subjects is background EEG (scalp) with open eyes and for epileptic patients correspond to a seizure recorded in hippocampus (epileptic focus) with depth electrodes. The evolution of proposed system was conducted using k-fold cross-validation, classification accuracy, and sensitivity and specificity values. We have obtained 98.68% and 98.72% classification accuracies using 5- and 10-fold cross-validation. The stated results show that the proposed method could point out the ability of design of a new intelligent assistance diagnosis system.
AbstractList The aim of this study is to detect epileptic seizure in EEG signals using a hybrid system based on decision tree classifier and fast Fourier transform (FFT). The present study proposes a hybrid system with two stages: feature extraction using FFT and decision making using decision tree classifier. The detection of epileptiform discharges in the electroencephalogram (EEG) is an important part in the diagnosis of epilepsy. All data set were obtained from EEG signals of healthy subjects and subjects suffering from epilepsy diseases. For healthy subjects is background EEG (scalp) with open eyes and for epileptic patients correspond to a seizure recorded in hippocampus (epileptic focus) with depth electrodes. The evolution of proposed system was conducted using k-fold cross-validation, classification accuracy, and sensitivity and specificity values. We have obtained 98.68% and 98.72% classification accuracies using 5- and 10-fold cross-validation. The stated results show that the proposed method could point out the ability of design of a new intelligent assistance diagnosis system.
Author Güneş, Salih
Polat, Kemal
Author_xml – sequence: 1
  givenname: Kemal
  surname: Polat
  fullname: Polat, Kemal
  email: kpolat@selcuk.edu.tr
– sequence: 2
  givenname: Salih
  surname: Güneş
  fullname: Güneş, Salih
  email: sgunes@selcuk.edu.tr
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18739071$$DView record in Pascal Francis
BookMark eNp9kE1LAzEQhoNUsFZ_gLdcPO46yX41eJLSVqHgRc8hm0w0ZbtbklTovzdriwcPHkIgM887k-eaTPqhR0LuGOQMWP2wzdVO5xygzkHkwPkFmbJ5U2RVXYoJmQKIOisAiityHcIWAJqalVNyWHQqBGedVtENPR0sxb3rcB-dHfyOLpdregiu_6CKfh5b7wwNxxBxR1sV0NCEGNQujGz0iFSf89BT1RtqVYh0NRz8-BC96sMYe0MureoC3p7vGXlfLd8Wz9nmdf2yeNpkuhBFzAxW0GJpRD2eynDFhTKVbQXy0mqsDKBplOBzprDSLTKLFW9LXkKTKraYkftT7l4FrTqb5qdd5d67nfJHOQoS0LDU15z6tB9C8GildvFHSFrZdZKBHC3LrUyW5WhZgpDJciLZH_I3_B_m8cRg-vpXEiODdthrNM6jjtIM7h_6G011mg0
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1016_j_artmed_2014_10_002
crossref_primary_10_1016_j_patrec_2017_05_021
crossref_primary_10_1109_ACCESS_2020_2996946
crossref_primary_10_1007_s13246_015_0414_x
crossref_primary_10_1007_s00221_023_06572_2
crossref_primary_10_1186_1687_6180_2012_117
crossref_primary_10_1109_TIM_2025_3569362
crossref_primary_10_1155_2007_80510
crossref_primary_10_1016_j_cie_2015_02_022
crossref_primary_10_1016_j_bspc_2019_101787
crossref_primary_10_1007_s11760_018_1304_y
crossref_primary_10_1007_s11571_010_9120_2
crossref_primary_10_1109_TIM_2025_3558236
crossref_primary_10_1016_j_eswa_2017_05_052
crossref_primary_10_1007_s40846_016_0214_0
crossref_primary_10_1109_TBCAS_2024_3456825
crossref_primary_10_1109_TCDS_2020_3040438
crossref_primary_10_1109_JBHI_2019_2910566
crossref_primary_10_1007_s11042_019_7359_0
crossref_primary_10_1016_j_bspc_2021_103450
crossref_primary_10_1016_j_eswa_2013_04_025
crossref_primary_10_1109_ACCESS_2021_3126065
crossref_primary_10_1016_j_bspc_2021_102598
crossref_primary_10_1016_j_eplepsyres_2013_07_001
crossref_primary_10_1016_j_neucom_2016_08_050
crossref_primary_10_3233_BME_171663
crossref_primary_10_1186_1475_925X_13_123
crossref_primary_10_1155_2022_8724536
crossref_primary_10_1016_j_clinph_2015_06_004
crossref_primary_10_3390_brainsci9050115
crossref_primary_10_1080_17455030_2018_1554926
crossref_primary_10_1007_s13534_012_0066_7
crossref_primary_10_1155_2022_2016598
crossref_primary_10_1016_j_bbe_2020_12_004
crossref_primary_10_1016_j_cmpb_2015_10_001
crossref_primary_10_3390_e19020072
crossref_primary_10_1016_j_bspc_2014_03_007
crossref_primary_10_1016_j_neucom_2018_08_045
crossref_primary_10_1186_s12911_020_01369_7
crossref_primary_10_1016_j_knosys_2016_11_023
crossref_primary_10_1016_j_procir_2021_11_279
crossref_primary_10_1109_TBCAS_2021_3090995
crossref_primary_10_3390_math8122125
crossref_primary_10_1109_ACCESS_2020_2976751
crossref_primary_10_3390_s18051372
crossref_primary_10_1016_j_eswa_2018_03_022
crossref_primary_10_1088_1741_2552_adce33
crossref_primary_10_1109_JSEN_2019_2899645
crossref_primary_10_1016_j_bspc_2022_103774
crossref_primary_10_1109_ACCESS_2019_2956018
crossref_primary_10_3390_brainsci9020024
crossref_primary_10_1016_j_knosys_2014_03_015
crossref_primary_10_1109_TCE_2019_2917895
crossref_primary_10_1109_TITB_2009_2017939
crossref_primary_10_1109_TNSRE_2023_3257306
crossref_primary_10_1016_j_eswa_2016_02_040
crossref_primary_10_1016_j_jneumeth_2010_08_030
crossref_primary_10_3389_fninf_2021_642766
crossref_primary_10_1016_j_cmpb_2010_11_014
crossref_primary_10_3389_fgene_2020_00075
crossref_primary_10_1007_s00521_020_05330_7
crossref_primary_10_1016_j_clinph_2018_10_010
crossref_primary_10_1088_1742_6596_1569_3_032070
crossref_primary_10_1007_s42452_020_04035_9
crossref_primary_10_1016_j_eswa_2013_09_037
crossref_primary_10_1016_j_bbe_2018_11_004
crossref_primary_10_1016_j_chemolab_2021_104256
crossref_primary_10_1109_ACCESS_2019_2890895
crossref_primary_10_1109_TNSRE_2015_2441835
crossref_primary_10_1007_s11600_020_00443_y
crossref_primary_10_1016_j_ins_2018_09_057
crossref_primary_10_1080_00038628_2018_1523129
crossref_primary_10_3390_s21020612
crossref_primary_10_1002_int_23040
crossref_primary_10_1016_j_jneumeth_2010_05_020
crossref_primary_10_1109_TBME_2014_2360101
crossref_primary_10_1016_j_eswa_2017_07_020
crossref_primary_10_2478_acss_2019_0015
crossref_primary_10_1016_j_bspc_2013_06_004
crossref_primary_10_1016_j_eswa_2016_09_037
crossref_primary_10_1080_03091902_2017_1394390
crossref_primary_10_1016_j_bbe_2021_01_001
crossref_primary_10_1016_j_compeleceng_2015_09_001
crossref_primary_10_1155_2021_6644365
crossref_primary_10_1080_01616412_2018_1508544
crossref_primary_10_1007_s13042_018_0867_9
crossref_primary_10_1016_j_asoc_2016_12_009
crossref_primary_10_1016_j_asoc_2021_107639
crossref_primary_10_1186_s12911_018_0613_y
crossref_primary_10_1016_j_bspc_2014_08_014
crossref_primary_10_1016_j_dsp_2014_12_015
crossref_primary_10_1080_1331677X_2021_1875866
crossref_primary_10_1111_exsy_12897
crossref_primary_10_1016_j_jneumeth_2018_11_014
crossref_primary_10_1109_ACCESS_2019_2939623
crossref_primary_10_1109_TBME_2018_2809798
crossref_primary_10_14253_acn_2020_22_2_82
crossref_primary_10_1049_iet_smt_2016_0443
crossref_primary_10_1515_bmt_2018_0249
crossref_primary_10_1007_s00521_019_04544_8
crossref_primary_10_1007_s11517_012_0967_8
crossref_primary_10_1016_j_bspc_2022_103708
crossref_primary_10_1109_TCYB_2018_2821764
crossref_primary_10_1016_j_cmpb_2014_04_001
crossref_primary_10_1109_LSENS_2021_3086755
crossref_primary_10_3390_s20216378
crossref_primary_10_1016_j_jpi_2022_100128
crossref_primary_10_32604_cmc_2021_015524
crossref_primary_10_1016_j_bspc_2020_102268
crossref_primary_10_1109_JBHI_2022_3230793
crossref_primary_10_1016_j_ijinfomgt_2019_02_003
crossref_primary_10_1109_JBHI_2014_2387795
crossref_primary_10_3390_app8112243
crossref_primary_10_1016_j_compbiomed_2015_04_034
crossref_primary_10_1109_JBHI_2025_3541058
crossref_primary_10_1080_23302674_2015_1116637
crossref_primary_10_1109_ACCESS_2019_2904400
crossref_primary_10_1016_j_cmpb_2014_04_012
crossref_primary_10_1007_s13755_020_00129_1
crossref_primary_10_1109_LSENS_2023_3332392
crossref_primary_10_1109_JSEN_2023_3339727
crossref_primary_10_1016_j_procs_2012_09_016
crossref_primary_10_1080_03091902_2017_1394389
crossref_primary_10_1109_JETCAS_2018_2797313
crossref_primary_10_3390_e22101092
crossref_primary_10_1016_j_jneumeth_2012_07_004
crossref_primary_10_1016_j_eswa_2014_12_009
crossref_primary_10_3389_fnins_2017_00550
crossref_primary_10_1016_j_bspc_2015_01_002
crossref_primary_10_1016_j_chaos_2021_110939
crossref_primary_10_1016_j_knosys_2015_08_004
crossref_primary_10_1088_2057_1976_aa5199
crossref_primary_10_1016_j_neulet_2018_10_062
crossref_primary_10_1016_j_irbm_2014_07_005
crossref_primary_10_1080_0954898X_2017_1325527
crossref_primary_10_1155_2021_5561974
crossref_primary_10_1155_2021_7231126
crossref_primary_10_1016_j_bbe_2016_12_005
crossref_primary_10_1016_j_cmpb_2016_05_002
crossref_primary_10_3390_e19060222
crossref_primary_10_1007_s00521_020_05675_z
crossref_primary_10_1109_ACCESS_2020_2969054
crossref_primary_10_1109_ACCESS_2016_2585661
crossref_primary_10_1109_TNSRE_2022_3166517
crossref_primary_10_1016_j_neucom_2013_11_009
crossref_primary_10_3389_fnins_2021_647393
crossref_primary_10_1155_2018_3145947
crossref_primary_10_1016_j_eswa_2011_02_110
crossref_primary_10_1109_ACCESS_2024_3415716
crossref_primary_10_1155_2015_986736
crossref_primary_10_1109_TAI_2021_3097307
crossref_primary_10_1007_s00521_014_1753_3
crossref_primary_10_1155_2014_419308
crossref_primary_10_1016_j_bbe_2015_10_006
crossref_primary_10_1049_iet_spr_2013_0288
crossref_primary_10_1016_j_eswa_2016_08_020
crossref_primary_10_1108_JQME_06_2019_0058
crossref_primary_10_1007_s11042_023_14995_w
crossref_primary_10_1016_j_eswa_2011_02_118
crossref_primary_10_1016_j_cogsys_2018_05_005
crossref_primary_10_1016_j_bspc_2016_09_008
crossref_primary_10_1016_j_knosys_2019_105333
crossref_primary_10_3389_fnhum_2024_1386168
crossref_primary_10_1109_TCYB_2014_2322310
crossref_primary_10_1109_TSMCA_2011_2116006
crossref_primary_10_1007_s12539_025_00741_3
crossref_primary_10_1016_j_eswa_2021_116414
crossref_primary_10_3389_fninf_2020_00029
crossref_primary_10_1016_j_eswa_2014_08_030
crossref_primary_10_1007_s40846_017_0286_5
crossref_primary_10_1007_s40708_015_0029_8
crossref_primary_10_1016_j_knosys_2013_02_014
crossref_primary_10_1016_j_jmsy_2018_04_001
crossref_primary_10_1007_s00521_013_1510_z
crossref_primary_10_1016_j_neunet_2016_03_004
crossref_primary_10_1109_TNSRE_2022_3156931
crossref_primary_10_1155_2015_576437
crossref_primary_10_3390_e21040385
crossref_primary_10_1007_s12553_019_00363_y
crossref_primary_10_1007_s41870_021_00650_w
crossref_primary_10_1109_ACCESS_2018_2833746
crossref_primary_10_1109_JBHI_2017_2654479
crossref_primary_10_1109_TNSRE_2018_2850308
crossref_primary_10_1109_TNSRE_2023_3317093
crossref_primary_10_1088_1741_2552_ac3cc4
crossref_primary_10_1109_ACCESS_2020_3011877
crossref_primary_10_3389_fncom_2015_00038
crossref_primary_10_1002_for_2827
crossref_primary_10_1109_ACCESS_2018_2867078
crossref_primary_10_1515_bmt_2018_0012
crossref_primary_10_1016_j_dsp_2014_02_007
crossref_primary_10_1016_j_amc_2014_05_128
crossref_primary_10_1515_bmt_2019_0233
crossref_primary_10_1016_j_eswa_2020_113676
crossref_primary_10_1016_j_cmpb_2013_12_020
crossref_primary_10_1109_TITB_2011_2181403
crossref_primary_10_1088_1361_6579_ab3e2e
crossref_primary_10_7555_JBR_34_20190026
crossref_primary_10_1109_JLT_2023_3273576
crossref_primary_10_1016_j_irbm_2021_12_001
crossref_primary_10_1186_1687_6180_2014_59
crossref_primary_10_1016_j_biosystemseng_2021_11_002
crossref_primary_10_1016_j_irbm_2018_12_002
crossref_primary_10_1080_03091902_2018_1513576
crossref_primary_10_3389_fphys_2016_00136
crossref_primary_10_1016_j_bbr_2024_115070
crossref_primary_10_1109_JSEN_2020_3038660
crossref_primary_10_3389_fnins_2021_774857
crossref_primary_10_1007_s00521_014_1786_7
crossref_primary_10_1016_j_bspc_2013_08_006
crossref_primary_10_1155_2019_5173589
crossref_primary_10_1109_TFUZZ_2015_2501438
crossref_primary_10_1515_bmt_2019_0001
crossref_primary_10_1049_el_2020_2526
crossref_primary_10_1109_ACCESS_2020_3044732
crossref_primary_10_1155_2010_853434
crossref_primary_10_1080_01616412_2018_1532481
crossref_primary_10_1016_j_bspc_2021_103138
crossref_primary_10_1016_j_bspc_2021_102963
crossref_primary_10_1016_j_eswa_2011_05_096
crossref_primary_10_3389_fnins_2020_00870
crossref_primary_10_1016_j_bspc_2021_102603
crossref_primary_10_1016_j_bspc_2021_102728
crossref_primary_10_1155_2020_2598140
crossref_primary_10_3109_03091902_2014_890677
crossref_primary_10_1049_iet_smt_2018_5358
crossref_primary_10_1109_JBHI_2025_3545265
crossref_primary_10_1007_s00034_021_01789_4
crossref_primary_10_3390_electronics8060607
crossref_primary_10_1109_JBHI_2021_3102247
crossref_primary_10_1007_s00521_018_3797_2
crossref_primary_10_1016_j_cmpb_2014_01_016
crossref_primary_10_1016_j_cmpb_2013_11_014
crossref_primary_10_1109_TMTT_2019_2934413
crossref_primary_10_1155_2021_1972662
crossref_primary_10_1007_s11063_018_9919_0
crossref_primary_10_1016_j_bspc_2023_104738
crossref_primary_10_1155_2014_365101
crossref_primary_10_1007_s12559_022_10033_3
crossref_primary_10_3390_s20185283
crossref_primary_10_1109_RBME_2020_3008792
crossref_primary_10_3389_fnhum_2019_00052
crossref_primary_10_1007_s11760_012_0362_9
crossref_primary_10_1080_2326263X_2020_1736453
crossref_primary_10_1109_TFUZZ_2022_3215566
crossref_primary_10_1016_j_bspc_2021_103281
crossref_primary_10_1007_s00034_018_0829_1
crossref_primary_10_1049_iet_its_2018_5290
crossref_primary_10_1088_1742_6596_2024_1_012044
crossref_primary_10_1007_s13246_021_01006_1
crossref_primary_10_1016_j_eswa_2020_114031
crossref_primary_10_1049_iet_spr_2018_5258
crossref_primary_10_1109_TETCI_2022_3147030
crossref_primary_10_1186_s12938_016_0181_2
crossref_primary_10_1016_j_bspc_2017_02_008
crossref_primary_10_1016_j_scs_2021_103505
crossref_primary_10_1016_j_neucom_2014_05_044
crossref_primary_10_1080_17455030_2021_1971325
crossref_primary_10_1007_s10489_023_04582_9
crossref_primary_10_1109_TNSRE_2023_3294909
crossref_primary_10_3389_fnins_2022_867480
crossref_primary_10_1007_s11517_019_01951_w
crossref_primary_10_1016_j_cmpb_2016_09_008
crossref_primary_10_1016_j_eswa_2021_115551
crossref_primary_10_1016_j_bspc_2023_104833
crossref_primary_10_1155_2022_6486570
crossref_primary_10_1007_s13246_018_0697_9
crossref_primary_10_1016_j_seizure_2017_07_001
crossref_primary_10_1109_JETCAS_2017_2789278
crossref_primary_10_1049_iet_rpg_2020_0224
crossref_primary_10_1080_03091902_2019_1572236
crossref_primary_10_1109_JBHI_2022_3223970
crossref_primary_10_1155_2017_5109530
Cites_doi 10.1016/0013-4694(92)90086-W
10.1016/S0301-5629(00)00153-8
10.1016/S0165-0270(02)00340-0
10.1016/S0165-1684(97)00038-8
10.1016/0301-5629(88)90024-5
10.1016/S0370-1573(99)00096-4
10.1097/00004691-200101000-00010
10.1016/0013-4694(93)90149-P
10.1007/BF00116251
10.1016/S0010-4825(02)00036-7
10.1103/PhysRevE.64.061907
10.1016/j.cmpb.2005.06.012
10.1179/016164104773026534
10.1016/j.eswa.2005.04.011
10.1007/BF02350993
10.1016/j.jneumeth.2005.04.013
10.1023/A:1007442505281
10.1109/10.24253
ContentType Journal Article
Copyright 2006 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2006.09.022
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 1026
ExternalDocumentID 18739071
10_1016_j_amc_2006_09_022
S0096300306012380
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c393t-de50be4d964d965d2a29ad5fb9e24fce5d0ed7a9281ae5cbe1fe52b424070edf3
ISICitedReferencesCount 503
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000248545300048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:12:53 EDT 2025
Tue Nov 18 21:05:50 EST 2025
Sat Nov 29 06:12:11 EST 2025
Fri Feb 23 02:19:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Decision tree classifier
k-Fold cross-validation
Electroencephalogram (EEG)
FFT
Epileptic seizure
Disease
Fast Fourier transformation
Cross validation
Classifier
Decision tree
Depth
Hybrid system
Design
Electrodes
Accuracy
Classification
Evolution
Diagnosis
Intelligent system
Decision making
Cross classification
Sensitivity
Numerical analysis
Applied mathematics
Experimental design
Feature extraction
Detection
Hippocampus
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-de50be4d964d965d2a29ad5fb9e24fce5d0ed7a9281ae5cbe1fe52b424070edf3
PageCount 10
ParticipantIDs pascalfrancis_primary_18739071
crossref_citationtrail_10_1016_j_amc_2006_09_022
crossref_primary_10_1016_j_amc_2006_09_022
elsevier_sciencedirect_doi_10_1016_j_amc_2006_09_022
PublicationCentury 2000
PublicationDate 2007-04-15
PublicationDateYYYYMMDD 2007-04-15
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2007
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Glass, Michel, Mackey, Shrier (bib3) 1983; 13
A. Subasi, EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Systems with Applications, in press.
Guler, Ubeyli (bib14) 2005; 148
Adeli, Zhou, Dadmehr (bib7) 2003; 123
Evans (bib17) 2000; 26
Duke, Pritchard (bib1) 1991
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib15) 2001; 64
Guler, Hardalac, Kaymaz (bib19) 2002; 32
Boccaletti, Grebogi, Lai, Mancini, Mazaet (bib2) 2000; 329
Guler, Ubeyli, Guler (bib23) 2005; 29
Jaeseung, Jeong-Ho, Kim, Seol-Heui (bib4) 2001; 18
Philippe, Henri (bib5) 2001; 324
Nigam, Graupe (bib13) 2004; 26
Hazarika, Chen, Tsoi, Sergejew (bib8) 1997; 59
Mitchell (bib20) 1997
Quinlan (bib21) 1986; 1
Glover, Raghaven, Ktonas, Frost (bib10) 1989; 36
Webber, Litt, Lesser, Fisher, Bankman (bib12) 1993; 87
Kannathal, Choo, Rajendra Acharya, Sadasivana (bib6) 2005; 80
R. Kohavi, F. Provost, Glossary of terms. Editorial for the Special Issue on Applications of Machine Learning and the Knowledge Discovery Process, 30(2/3) (1998).
Gabor, Seyal (bib11) 1992; 83
Rosso, Figliola, Creso, Serrano (bib9) 2004; 42
Vaitkus, Cobbold, Johnston (bib18) 1988; 14
10.1016/j.amc.2006.09.022_bib16
Rosso (10.1016/j.amc.2006.09.022_bib9) 2004; 42
Evans (10.1016/j.amc.2006.09.022_bib17) 2000; 26
Kannathal (10.1016/j.amc.2006.09.022_bib6) 2005; 80
Quinlan (10.1016/j.amc.2006.09.022_bib21) 1986; 1
10.1016/j.amc.2006.09.022_bib22
Mitchell (10.1016/j.amc.2006.09.022_bib20) 1997
Glass (10.1016/j.amc.2006.09.022_bib3) 1983; 13
Glover (10.1016/j.amc.2006.09.022_bib10) 1989; 36
Guler (10.1016/j.amc.2006.09.022_bib14) 2005; 148
Webber (10.1016/j.amc.2006.09.022_bib12) 1993; 87
Jaeseung (10.1016/j.amc.2006.09.022_bib4) 2001; 18
Gabor (10.1016/j.amc.2006.09.022_bib11) 1992; 83
Duke (10.1016/j.amc.2006.09.022_bib1) 1991
Nigam (10.1016/j.amc.2006.09.022_bib13) 2004; 26
Philippe (10.1016/j.amc.2006.09.022_bib5) 2001; 324
Andrzejak (10.1016/j.amc.2006.09.022_bib15) 2001; 64
Guler (10.1016/j.amc.2006.09.022_bib19) 2002; 32
Vaitkus (10.1016/j.amc.2006.09.022_bib18) 1988; 14
Guler (10.1016/j.amc.2006.09.022_bib23) 2005; 29
Adeli (10.1016/j.amc.2006.09.022_bib7) 2003; 123
Hazarika (10.1016/j.amc.2006.09.022_bib8) 1997; 59
Boccaletti (10.1016/j.amc.2006.09.022_bib2) 2000; 329
References_xml – year: 1991
  ident: bib1
  article-title: Measuring Chaos in the Human Brain
– volume: 14
  start-page: 673
  year: 1988
  end-page: 688
  ident: bib18
  article-title: A comparative study and assessment of Doppler ultrasound spectral estimation techniques part II: methods and results
  publication-title: Ultrasound Med. Biol.
– volume: 80
  start-page: 187
  year: 2005
  end-page: 194
  ident: bib6
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Programs Biomed.
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib21
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– volume: 324
  start-page: 773
  year: 2001
  end-page: 793
  ident: bib5
  article-title: Is there chaos in the brain? Concepts of nonlinear dynamics and methods of investigation
  publication-title: Life Sci.
– volume: 26
  start-page: 55
  year: 2004
  end-page: 60
  ident: bib13
  article-title: A neural-network-based detection of epilepsy
  publication-title: Neurol. Res.
– reference: R. Kohavi, F. Provost, Glossary of terms. Editorial for the Special Issue on Applications of Machine Learning and the Knowledge Discovery Process, 30(2/3) (1998).
– volume: 329
  start-page: 108
  year: 2000
  end-page: 109
  ident: bib2
  article-title: The control of chaos: theory and applications
  publication-title: Phys. Rep.
– volume: 36
  start-page: 519
  year: 1989
  end-page: 527
  ident: bib10
  article-title: Context-based automated detection of epileptogenic sharp transients in the EEG: elimination of false positives
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 148
  start-page: 113
  year: 2005
  end-page: 121
  ident: bib14
  article-title: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
  publication-title: J. Neurosci. Methods
– year: 1997
  ident: bib20
  article-title: Machine Learning
– volume: 64
  start-page: 061907
  year: 2001
  ident: bib15
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
– reference: A. Subasi, EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Systems with Applications, in press.
– volume: 13
  start-page: 790
  year: 1983
  end-page: 798
  ident: bib3
  article-title: Chaos in neurobiology
  publication-title: IEEE Trans. Syst. Man Cybern. SMC
– volume: 42
  start-page: 516
  year: 2004
  end-page: 523
  ident: bib9
  article-title: Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings
  publication-title: Med. Biol. Eng. Comput.
– volume: 123
  start-page: 69
  year: 2003
  end-page: 87
  ident: bib7
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Methods
– volume: 59
  start-page: 61
  year: 1997
  end-page: 72
  ident: bib8
  article-title: Classification of EEG signals using the wavelet transform
  publication-title: Signal Process.
– volume: 18
  start-page: 58
  year: 2001
  end-page: 67
  ident: bib4
  article-title: Nonlinear dynamical analysis of the EEG in patients with Alzheimer’s disease and vacular dementia
  publication-title: Clin. Neurophysiol.
– volume: 32
  start-page: 445
  year: 2002
  end-page: 453
  ident: bib19
  article-title: Comparison of FFT and adaptive ARMA methods in transcranial Doppler signals recorded from the cerebral vessels
  publication-title: Comput. Biol. Med.
– volume: 26
  start-page: S13
  year: 2000
  end-page: S15
  ident: bib17
  article-title: Doppler signal analysis
  publication-title: Ultrasound Med. Biol.
– volume: 29
  start-page: 506
  year: 2005
  end-page: 514
  ident: bib23
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Syst. Appl.
– volume: 83
  start-page: 271
  year: 1992
  end-page: 280
  ident: bib11
  article-title: Automated interictal EEG spike detection using artificial neural networks
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 87
  start-page: 364
  year: 1993
  end-page: 373
  ident: bib12
  article-title: Automatic EEG spike detection: what should the computer imitate?
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 83
  start-page: 271
  issue: 5
  year: 1992
  ident: 10.1016/j.amc.2006.09.022_bib11
  article-title: Automated interictal EEG spike detection using artificial neural networks
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(92)90086-W
– volume: 26
  start-page: S13
  issue: Supplement 1
  year: 2000
  ident: 10.1016/j.amc.2006.09.022_bib17
  article-title: Doppler signal analysis
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(00)00153-8
– volume: 123
  start-page: 69
  issue: 1
  year: 2003
  ident: 10.1016/j.amc.2006.09.022_bib7
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(02)00340-0
– volume: 59
  start-page: 61
  issue: 1
  year: 1997
  ident: 10.1016/j.amc.2006.09.022_bib8
  article-title: Classification of EEG signals using the wavelet transform
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(97)00038-8
– year: 1991
  ident: 10.1016/j.amc.2006.09.022_bib1
– volume: 14
  start-page: 673
  year: 1988
  ident: 10.1016/j.amc.2006.09.022_bib18
  article-title: A comparative study and assessment of Doppler ultrasound spectral estimation techniques part II: methods and results
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/0301-5629(88)90024-5
– volume: 329
  start-page: 108
  year: 2000
  ident: 10.1016/j.amc.2006.09.022_bib2
  article-title: The control of chaos: theory and applications
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(99)00096-4
– volume: 18
  start-page: 58
  issue: 1
  year: 2001
  ident: 10.1016/j.amc.2006.09.022_bib4
  article-title: Nonlinear dynamical analysis of the EEG in patients with Alzheimer’s disease and vacular dementia
  publication-title: Clin. Neurophysiol.
  doi: 10.1097/00004691-200101000-00010
– volume: 87
  start-page: 364
  issue: 6
  year: 1993
  ident: 10.1016/j.amc.2006.09.022_bib12
  article-title: Automatic EEG spike detection: what should the computer imitate?
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(93)90149-P
– volume: 1
  start-page: 81
  year: 1986
  ident: 10.1016/j.amc.2006.09.022_bib21
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– volume: 13
  start-page: 790
  issue: 5
  year: 1983
  ident: 10.1016/j.amc.2006.09.022_bib3
  article-title: Chaos in neurobiology
  publication-title: IEEE Trans. Syst. Man Cybern. SMC
– volume: 32
  start-page: 445
  year: 2002
  ident: 10.1016/j.amc.2006.09.022_bib19
  article-title: Comparison of FFT and adaptive ARMA methods in transcranial Doppler signals recorded from the cerebral vessels
  publication-title: Comput. Biol. Med.
  doi: 10.1016/S0010-4825(02)00036-7
– volume: 64
  start-page: 061907
  year: 2001
  ident: 10.1016/j.amc.2006.09.022_bib15
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
– volume: 324
  start-page: 773
  year: 2001
  ident: 10.1016/j.amc.2006.09.022_bib5
  article-title: Is there chaos in the brain? Concepts of nonlinear dynamics and methods of investigation
  publication-title: Life Sci.
– volume: 80
  start-page: 187
  year: 2005
  ident: 10.1016/j.amc.2006.09.022_bib6
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2005.06.012
– ident: 10.1016/j.amc.2006.09.022_bib16
– volume: 26
  start-page: 55
  issue: 1
  year: 2004
  ident: 10.1016/j.amc.2006.09.022_bib13
  article-title: A neural-network-based detection of epilepsy
  publication-title: Neurol. Res.
  doi: 10.1179/016164104773026534
– year: 1997
  ident: 10.1016/j.amc.2006.09.022_bib20
– volume: 29
  start-page: 506
  year: 2005
  ident: 10.1016/j.amc.2006.09.022_bib23
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.04.011
– volume: 42
  start-page: 516
  issue: 4
  year: 2004
  ident: 10.1016/j.amc.2006.09.022_bib9
  article-title: Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02350993
– volume: 148
  start-page: 113
  year: 2005
  ident: 10.1016/j.amc.2006.09.022_bib14
  article-title: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2005.04.013
– ident: 10.1016/j.amc.2006.09.022_bib22
  doi: 10.1023/A:1007442505281
– volume: 36
  start-page: 519
  issue: 5
  year: 1989
  ident: 10.1016/j.amc.2006.09.022_bib10
  article-title: Context-based automated detection of epileptogenic sharp transients in the EEG: elimination of false positives
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.24253
SSID ssj0007614
Score 2.4187913
Snippet The aim of this study is to detect epileptic seizure in EEG signals using a hybrid system based on decision tree classifier and fast Fourier transform (FFT)....
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1017
SubjectTerms Calculus of variations and optimal control
Combinatorics
Combinatorics. Ordered structures
Decision tree classifier
Designs and configurations
Electroencephalogram (EEG)
Epileptic seizure
Exact sciences and technology
FFT
k-Fold cross-validation
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Sciences and techniques of general use
Title Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
URI https://dx.doi.org/10.1016/j.amc.2006.09.022
Volume 187
WOSCitedRecordID wos000248545300048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlAMIIbaKslRzoBcsV1PvcyxRWkBQ9VBQbtasaqvEtRqnKj-C_8wbz4xjV7SiBw6xIiceO3nfvPnmrQh94LBF5kKQUNHYWKuyJOSFjkIZ06TgkYpFW3bx57f86KiYzejxaPTb58JczfOqKq6vaf1fRQ3nQNgmdfYe4u4GhRPwHoQORxA7HP9J8G2bSxMA1JFBVcPUB9Vg-GkwnR4Gq9ZAwILTXyZfy1VzDsyCJo3zQLq-OyYKXQXCjadstKVmy8Y0Y2o73TWe9vY5rie2i64i7NJnz9Wroef_GDbWjU0PWrAu1uPQeO8_TSq1M0l36IE1XM_PTgcWitw4W2yOpte61MTXkXiodfMevKKeDjVKorceAwPK_qrrrdnhfJcthHMq0V1ik5yHdbVvrHddFKIPcDsvYQjTjzMrCS1hiAdoI8pTWozRxv6X6exrt7TnmS0W73-Qd5O3AYM3nuM2ovOkZkuYftr2TemRmZNn6KnbheB9i57naKSqF-jx97XAXqLVEEf4QuM-jjDgCLc4wgxbHGGLI9ziCMMlHkfY4AivcYQBDdjgCDsc4Q5Hr9CPg-nJ5HPoenSEIqZxE0qVEq4SSTPzSmXEIspkqjlVUaKFSiVRMmc0KvaYSgVXe1qlEU-MIQE-0fEmGlcXlXqNMDBJCbsnIgnXCU9zqmPCYQ2EHQYRiqktRPwfWgpXwN70UZmXtwpyC33sLqlt9Za7vpx4KZWOflpaWQLi7rpseyDR9Y2KPKbA4N_c5yHeokfrKfQOjZvLlXqPHoqr5mx5ue3w-AejOrOh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+epileptiform+EEG+using+a+hybrid+system+based+on+decision+tree+classifier+and+fast+Fourier+transform&rft.jtitle=Applied+mathematics+and+computation&rft.au=Polat%2C+Kemal&rft.au=G%C3%BCne%C5%9F%2C+Salih&rft.date=2007-04-15&rft.issn=0096-3003&rft.volume=187&rft.issue=2&rft.spage=1017&rft.epage=1026&rft_id=info:doi/10.1016%2Fj.amc.2006.09.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2006_09_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon