Multi-sensor fusion algorithm in cooperative vehicle-infrastructure system for blind spot warning

With the rapid development of electric vehicles and artificial intelligence technology, the automatic driving industry has entered a rapid development stage. However, there is a risk of traffic accidents due to the blind spot of vision, whether autonomous vehicles or traditional vehicles. In this ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of distributed sensor networks Jg. 18; H. 5; S. 155013292211004
Hauptverfasser: Xiang, Chao, Zhang, Li, Xie, Xiaopo, Zhao, Longgang, Ke, Xin, Niu, Zhendong, Wang, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London, England SAGE Publications 01.05.2022
Wiley
Schlagworte:
ISSN:1550-1329, 1550-1477
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the rapid development of electric vehicles and artificial intelligence technology, the automatic driving industry has entered a rapid development stage. However, there is a risk of traffic accidents due to the blind spot of vision, whether autonomous vehicles or traditional vehicles. In this article, a multi-sensor fusion perception method is proposed, in which the semantic information from the camera and the range information from the LiDAR are fused at the data layer and the LiDAR point cloud containing semantic information is clustered to obtain the type and location information of the objects. Based on the sensor equipments deployed on the roadside, the sensing information processed by the fusion method is sent to the nearby vehicles in real-time through 5G and V2X technology for blind spot early warning, and its feasibility is verified by experiments and simulations. The blind spot warning scheme based on roadside multi-sensor fusion perception proposed in this article has been experimentally verified in the closed park, which can obviously reduce the traffic accidents caused by the blind spot of vision, and is of great significance to improve traffic safety.
AbstractList With the rapid development of electric vehicles and artificial intelligence technology, the automatic driving industry has entered a rapid development stage. However, there is a risk of traffic accidents due to the blind spot of vision, whether autonomous vehicles or traditional vehicles. In this article, a multi-sensor fusion perception method is proposed, in which the semantic information from the camera and the range information from the LiDAR are fused at the data layer and the LiDAR point cloud containing semantic information is clustered to obtain the type and location information of the objects. Based on the sensor equipments deployed on the roadside, the sensing information processed by the fusion method is sent to the nearby vehicles in real-time through 5G and V2X technology for blind spot early warning, and its feasibility is verified by experiments and simulations. The blind spot warning scheme based on roadside multi-sensor fusion perception proposed in this article has been experimentally verified in the closed park, which can obviously reduce the traffic accidents caused by the blind spot of vision, and is of great significance to improve traffic safety.
Author Xie, Xiaopo
Xiang, Chao
Zhang, Li
Ke, Xin
Zhao, Longgang
Niu, Zhendong
Wang, Feng
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0001-6649-681X
  surname: Xiang
  fullname: Xiang, Chao
– sequence: 2
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
– sequence: 3
  givenname: Xiaopo
  surname: Xie
  fullname: Xie, Xiaopo
– sequence: 4
  givenname: Longgang
  surname: Zhao
  fullname: Zhao, Longgang
– sequence: 5
  givenname: Xin
  surname: Ke
  fullname: Ke, Xin
– sequence: 6
  givenname: Zhendong
  surname: Niu
  fullname: Niu, Zhendong
– sequence: 7
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  email: wangfeng6@chinatelecom.cn
BookMark eNp9kNtKAzEQhoNUsK0-gHd5ga2Z7CGbSykeChVv9HrJ5tCmbJOSZCt9e7dWvVDo1QzDfB8z_wSNnHcaoVsgMwDG7qAsCeSUUwpASAH0Ao2PswwKxkY__bBwhSYxbgjJK1rBGImXvks2i9pFH7Dpo_UOi27lg03rLbYOS-93Oohk9xrv9drKTmfWmSBiCr1MfdA4HmLSW2wGQ9tZp3Dc-YQ_RHDWra7RpRFd1DffdYreHx_e5s_Z8vVpMb9fZjLnecoUVYJLXtHjYVLXRV2WlA-_CSWZakuuWKUMa3OAgle5KUgtGVUtr-uWM5LnU7Q4eZUXm2YX7FaEQ-OFbb4GPqwaEdLx_IYRVgJriRREFqatRSWhMFrVhkFbKzK44OSSwccYtPn1AWmOeTf_8h4Y9oeRNg2xeZeCsN1ZcnYio1jpZuP74IagzgCfdJuT3Q
CitedBy_id crossref_primary_10_1109_JRFID_2022_3212169
crossref_primary_10_1109_JIOT_2024_3402071
crossref_primary_10_1109_MITS_2023_3283864
crossref_primary_10_1016_j_procs_2024_04_030
crossref_primary_10_1109_ACCESS_2025_3551367
crossref_primary_10_3390_s24020374
crossref_primary_10_1016_j_eswa_2025_127074
crossref_primary_10_4271_12_09_01_0008
crossref_primary_10_1109_JIOT_2025_3583443
crossref_primary_10_1109_TITS_2025_3526820
crossref_primary_10_3390_s23167136
crossref_primary_10_1155_abb_2451501
crossref_primary_10_1109_ACCESS_2025_3531942
Cites_doi 10.3390/s18103337
10.1145/3161587.3161593
10.1016/j.trc.2016.03.008
10.1007/978-981-15-1275-9_44
10.1007/978-3-319-46448-0_2
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID AFRWT
AAYXX
CITATION
DOA
DOI 10.1177/15501329221100412
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1550-1477
ExternalDocumentID oai_doaj_org_article_707517b0ca0c4fb8a6c14fed8f71b8d0
10_1177_15501329221100412
10.1177_15501329221100412
GroupedDBID .4S
.DC
0R~
24P
29J
4.4
54M
5GY
5VS
8FE
8FG
AAJEY
AAJPV
AAKPC
AASGM
ABAWP
ABJCF
ABQXT
ABUWG
ACCMX
ACGEJ
ACGFS
ACIWK
ACROE
ADBBV
ADMLS
ADXPE
AEDFJ
AENEX
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AUTPY
AWYRJ
AYAKG
AZQEC
BCNDV
BDDNI
BENPR
BGLVJ
BPHCQ
CAG
CCPQU
COF
CS3
CWDGH
DU5
DWQXO
EBS
EDO
EJD
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
I-F
IAO
ICD
IEA
IL9
IPNFZ
ITC
J8X
K.F
K6V
K7-
KQ8
L6V
M4Z
M7S
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RIG
RNS
ROL
SAUOL
SCNPE
SFC
TDBHL
TFW
TUS
TWF
TWQ
XH6
AAMMB
AAYXX
ACHEB
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
AQTUD
CITATION
PQGLB
ID FETCH-LOGICAL-c393t-d2da9c9623626ce8485529117adc7db59d76df7b3114963f408c72db988b97033
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000806268500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1550-1329
IngestDate Fri Oct 03 12:46:16 EDT 2025
Sat Nov 29 06:19:41 EST 2025
Tue Nov 18 20:23:13 EST 2025
Tue Jun 17 22:28:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 5G
Multi-sensor fusion
blind spot warning
RSU
V2X
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-d2da9c9623626ce8485529117adc7db59d76df7b3114963f408c72db988b97033
ORCID 0000-0001-6649-681X
OpenAccessLink https://doaj.org/article/707517b0ca0c4fb8a6c14fed8f71b8d0
ParticipantIDs doaj_primary_oai_doaj_org_article_707517b0ca0c4fb8a6c14fed8f71b8d0
crossref_primary_10_1177_15501329221100412
crossref_citationtrail_10_1177_15501329221100412
sage_journals_10_1177_15501329221100412
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle International journal of distributed sensor networks
PublicationYear 2022
Publisher SAGE Publications
Wiley
Publisher_xml – name: SAGE Publications
– name: Wiley
References Wang, Mao, Gong 2017; 21
Ren, He, Girshick 2015; 28
Dey, Rayamajhi, Chowdhury 2016; 68
Yan, Mao, Li 2018; 18
Viola P (bibr6-15501329221100412)
Lin TY (bibr15-15501329221100412)
Girshick R (bibr11-15501329221100412)
bibr14-15501329221100412
bibr4-15501329221100412
Ren S (bibr12-15501329221100412) 2015; 28
bibr1-15501329221100412
Zhou Y (bibr21-15501329221100412)
Qi CR (bibr17-15501329221100412)
Shi S (bibr23-15501329221100412)
Vora S (bibr25-15501329221100412)
bibr2-15501329221100412
bibr18-15501329221100412
bibr5-15501329221100412
bibr22-15501329221100412
Girshick R (bibr9-15501329221100412)
Redmon J (bibr13-15501329221100412)
Shi S (bibr19-15501329221100412)
Dalal N (bibr7-15501329221100412)
bibr3-15501329221100412
Felzenszwalb P (bibr8-15501329221100412)
bibr16-15501329221100412
Liang M (bibr24-15501329221100412)
bibr10-15501329221100412
Yang Z (bibr20-15501329221100412)
References_xml – volume: 28
  start-page: 91
  year: 2015
  end-page: 99
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: Adv Neur Inform Process Syst
– volume: 21
  start-page: 19
  issue: 3
  year: 2017
  end-page: 25
  article-title: An overview of 3GPP cellular vehicle-to-everything standards
  publication-title: Getmobile: Mobile Comput Commun
– volume: 18
  start-page: 3337
  issue: 10
  year: 2018
  article-title: SECOND: sparsely embedded convolutional detection
  publication-title: Sensors
– volume: 68
  start-page: 168
  year: 2016
  end-page: 184
  article-title: Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network: performance evaluation
  publication-title: Transp Res Part C: Emerg Technol
– ident: bibr18-15501329221100412
– start-page: 10529
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  ident: bibr23-15501329221100412
– ident: bibr22-15501329221100412
  doi: 10.3390/s18103337
– start-page: 779
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  ident: bibr13-15501329221100412
– start-page: 4604
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  ident: bibr25-15501329221100412
– start-page: 580
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  ident: bibr9-15501329221100412
– start-page: 2980
  volume-title: Proceedings of the IEEE international conference on computer vision
  ident: bibr15-15501329221100412
– ident: bibr16-15501329221100412
– start-page: 11040
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  ident: bibr20-15501329221100412
– ident: bibr4-15501329221100412
  doi: 10.1145/3161587.3161593
– ident: bibr5-15501329221100412
– volume: 28
  start-page: 91
  year: 2015
  ident: bibr12-15501329221100412
  publication-title: Adv Neur Inform Process Syst
– ident: bibr1-15501329221100412
– volume-title: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition (CVPR 2001)
  ident: bibr6-15501329221100412
– ident: bibr2-15501329221100412
  doi: 10.1016/j.trc.2016.03.008
– start-page: 1440
  volume-title: Proceedings of the IEEE international conference on computer vision
  ident: bibr11-15501329221100412
– ident: bibr3-15501329221100412
  doi: 10.1007/978-981-15-1275-9_44
– start-page: 7345
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  ident: bibr24-15501329221100412
– start-page: 652
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  ident: bibr17-15501329221100412
– start-page: 886
  volume-title: Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR 2005)
  ident: bibr7-15501329221100412
– ident: bibr10-15501329221100412
– start-page: 1
  volume-title: Proceedings of the 2008 IEEE conference on computer vision and pattern recognition
  ident: bibr8-15501329221100412
– start-page: 4490
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  ident: bibr21-15501329221100412
– ident: bibr14-15501329221100412
  doi: 10.1007/978-3-319-46448-0_2
– start-page: 770
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  ident: bibr19-15501329221100412
SSID ssj0036261
Score 2.3843935
Snippet With the rapid development of electric vehicles and artificial intelligence technology, the automatic driving industry has entered a rapid development stage....
SourceID doaj
crossref
sage
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 155013292211004
Title Multi-sensor fusion algorithm in cooperative vehicle-infrastructure system for blind spot warning
URI https://journals.sagepub.com/doi/full/10.1177/15501329221100412
https://doaj.org/article/707517b0ca0c4fb8a6c14fed8f71b8d0
Volume 18
WOSCitedRecordID wos000806268500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1550-1477
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036261
  issn: 1550-1329
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1JSwMxFICDiAcv7mLdyEEQhOBMZtokRxWLBykeVHobstpCnSnTxb_vSzItFlEvXofMlrw1y_cQumjnVoNddEQqqkgOISwRVguiXWq07mRWhIX210fW6_F-Xzx9KfXl94RFPHDsuGsGPi1lKtEy0blTXHZ0mjtruGOp4iZk6wkTi2Qq2mDPWEmbNUyPV_JxuK-oTmkgpKV0xQsFWP_KTq7gXLo7aKuJCvFN_JpdtGbLPbS9qLiAGwXcRzKclyUTyD2rGruZn-rCcvRWQYo_eMfDEuuqGttI88ZzO_CPIyBEtYyg2FltcYQ3Y4hWsYIg02DIbKf4I06RHKCX7v3z3QNpiiQQnYlsSgw1UmgBUQz8s7bcw14oWDAmjWZGtYVhHeOYyiDxAWVzecI1o0YJzpUAdc8O0XpZlfYIYZkrX3neKAM-O6OJMG2wAFRZGxbgXAsli04rdEMQ94UsRkXaQMO_9XMLXS1vGUd8xm-Nb_1ILBt68nW4APJQNPJQ_CUPLXTpx7FoVHHy8-uO_-N1J2iT-gMRYQvkKVqHsbRnaEPPp8NJfR6E8hMvHeJP
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-sensor+fusion+algorithm+in+cooperative+vehicle-infrastructure+system+for+blind+spot+warning&rft.jtitle=International+journal+of+distributed+sensor+networks&rft.au=Xiang%2C+Chao&rft.au=Zhang%2C+Li&rft.au=Xie%2C+Xiaopo&rft.au=Zhao%2C+Longgang&rft.date=2022-05-01&rft.pub=SAGE+Publications&rft.issn=1550-1329&rft.eissn=1550-1477&rft.volume=18&rft.issue=5&rft_id=info:doi/10.1177%2F15501329221100412&rft.externalDocID=10.1177_15501329221100412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-1329&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-1329&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-1329&client=summon