The repetition threshold for binary rich words

A word of length $n$ is rich if it contains $n$ nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent $2+\sqrt{2}/2$ ($\approx 2.707$) and conjectured that this was the least pos...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Mathematics and Theoretical Computer Science Vol. 22 no. 1; no. Analysis of Algorithms; pp. 1 - 16
Main Authors: Currie, James D., Mol, Lucas, Rampersad, Narad
Format: Journal Article
Language:English
Published: Nancy DMTCS 01.01.2020
Discrete Mathematics & Theoretical Computer Science
Subjects:
ISSN:1365-8050, 1462-7264, 1365-8050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A word of length $n$ is rich if it contains $n$ nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent $2+\sqrt{2}/2$ ($\approx 2.707$) and conjectured that this was the least possible critical exponent for infinite binary rich words (i.e., that the repetition threshold for binary rich words is $2+\sqrt{2}/2$). In this article, we give a structure theorem for infinite binary rich words that avoid $14/5$-powers (i.e., repetitions with exponent at least 2.8). As a consequence, we deduce that the repetition threshold for binary rich words is $2+\sqrt{2}/2$, as conjectured by Baranwal and Shallit. This resolves an open problem of Vesti for the binary alphabet; the problem remains open for larger alphabets. Comment: 16 pages
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.23638/DMTCS-22-1-6