The repetition threshold for binary rich words

A word of length $n$ is rich if it contains $n$ nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent $2+\sqrt{2}/2$ ($\approx 2.707$) and conjectured that this was the least pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Mathematics and Theoretical Computer Science Jg. 22 no. 1; H. Analysis of Algorithms; S. 1 - 16
Hauptverfasser: Currie, James D., Mol, Lucas, Rampersad, Narad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Nancy DMTCS 01.01.2020
Discrete Mathematics & Theoretical Computer Science
Schlagworte:
ISSN:1365-8050, 1462-7264, 1365-8050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A word of length $n$ is rich if it contains $n$ nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent $2+\sqrt{2}/2$ ($\approx 2.707$) and conjectured that this was the least possible critical exponent for infinite binary rich words (i.e., that the repetition threshold for binary rich words is $2+\sqrt{2}/2$). In this article, we give a structure theorem for infinite binary rich words that avoid $14/5$-powers (i.e., repetitions with exponent at least 2.8). As a consequence, we deduce that the repetition threshold for binary rich words is $2+\sqrt{2}/2$, as conjectured by Baranwal and Shallit. This resolves an open problem of Vesti for the binary alphabet; the problem remains open for larger alphabets. Comment: 16 pages
AbstractList A word of length n is rich if it contains n nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent 2+[square root of (2)]/2 ([approximately equal to] 2.707) and conjectured that this was the least possible critical exponent for infinite binary rich words (i.e., that the repetition threshold for binary rich words is 2 + [square root of (2)]/2). In this article, we give a structure theorem for infinite binary rich words that avoid 14/5-powers (i.e., repetitions with exponent at least 2.8). As a consequence, we deduce that the repetition threshold for binary rich words is 2 + [square root of (2)]/2, as conjectured by Baranwal and Shallit. This resolves an open problem of Vesti for the binary alphabet; the problem remains open for larger alphabets. Keywords: rich word, repetition threshold, critical exponent, palindrome
A word of length n is rich if it contains n nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent 2+[square root of (2)]/2 ([approximately equal to] 2.707) and conjectured that this was the least possible critical exponent for infinite binary rich words (i.e., that the repetition threshold for binary rich words is 2 + [square root of (2)]/2). In this article, we give a structure theorem for infinite binary rich words that avoid 14/5-powers (i.e., repetitions with exponent at least 2.8). As a consequence, we deduce that the repetition threshold for binary rich words is 2 + [square root of (2)]/2, as conjectured by Baranwal and Shallit. This resolves an open problem of Vesti for the binary alphabet; the problem remains open for larger alphabets.
A word of length n is rich if it contains n nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent 2+√2/2 (≈ 2.707) and conjectured that this was the least possible critical exponent for infinite binary rich words (i.e., that the repetition threshold for binary rich words is 2 + √2/2). In this article, we give a structure theorem for infinite binary rich words that avoid 14/5-powers (i.e., repetitions with exponent at least 2.8). As a consequence, we deduce that the repetition threshold for binary rich words is 2 + √2/2, as conjectured by Baranwal and Shallit. This resolves an open problem of Vesti for the binary alphabet; the problem remains open for larger alphabets.
A word of length $n$ is rich if it contains $n$ nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent $2+\sqrt{2}/2$ ($\approx 2.707$) and conjectured that this was the least possible critical exponent for infinite binary rich words (i.e., that the repetition threshold for binary rich words is $2+\sqrt{2}/2$). In this article, we give a structure theorem for infinite binary rich words that avoid $14/5$-powers (i.e., repetitions with exponent at least 2.8). As a consequence, we deduce that the repetition threshold for binary rich words is $2+\sqrt{2}/2$, as conjectured by Baranwal and Shallit. This resolves an open problem of Vesti for the binary alphabet; the problem remains open for larger alphabets.
A word of length $n$ is rich if it contains $n$ nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit produced an infinite binary rich word with critical exponent $2+\sqrt{2}/2$ ($\approx 2.707$) and conjectured that this was the least possible critical exponent for infinite binary rich words (i.e., that the repetition threshold for binary rich words is $2+\sqrt{2}/2$). In this article, we give a structure theorem for infinite binary rich words that avoid $14/5$-powers (i.e., repetitions with exponent at least 2.8). As a consequence, we deduce that the repetition threshold for binary rich words is $2+\sqrt{2}/2$, as conjectured by Baranwal and Shallit. This resolves an open problem of Vesti for the binary alphabet; the problem remains open for larger alphabets. Comment: 16 pages
Audience Academic
Author Rampersad, Narad
Currie, James D.
Mol, Lucas
Author_xml – sequence: 1
  givenname: James D.
  surname: Currie
  fullname: Currie, James D.
– sequence: 2
  givenname: Lucas
  surname: Mol
  fullname: Mol, Lucas
– sequence: 3
  givenname: Narad
  surname: Rampersad
  fullname: Rampersad, Narad
BookMark eNptUUtLAzEYDFLBtnr0vuB5a97ZHEt9FSoerOeQzaOb0m5qskX8966t-AD5Dt_HMDPMx4zAoI2tA-ASwQkmnFTXN4_L2XOJcYlKfgKGiHBWVpDBwa_7DIxyXkOIsKRiCCbLxhXJ7VwXuhDbomuSy03c2MLHVNSh1em9SME0xVtMNp-DU6832V187TF4ubtdzh7KxdP9fDZdlIZI0pVGEosoN0JiXCHrqefWVJYaU0MNsZZYeMEFM5XzmkJEfV0bVFlIXI0MMmQM5kdfG_Va7VLY9jlU1EEdgJhWSqcumI1TvGaeOiIc1pBqaTXR0GkqEMOUQf3pdXX02qX4une5U-u4T20fXxFIK8SkoPyHtdK9aWh97JI225CNmnLMGRRCsp41-YfVj3XbYPo6fOjxP4LyKDAp5pyc_34GQXVoTR1aUxgrpDj5AEITiZI
ContentType Journal Article
Copyright COPYRIGHT 2020 DMTCS
Copyright DMTCS 2020
Copyright_xml – notice: COPYRIGHT 2020 DMTCS
– notice: Copyright DMTCS 2020
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.23638/DMTCS-22-1-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Continental Europe Database
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
EndPage 16
ExternalDocumentID oai_doaj_org_article_6b5f4e37e2a04a9da3a0ea47152450ac
A626507795
10_23638_DMTCS_22_1_6
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
M~E
ADOJU
AZQEC
DWQXO
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c393t-c93d146c792281df4f6dc8d4ccb0a02a927f7675c8efa4014fbbc18d03eb1c1c3
IEDL.DBID BENPR
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561191500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1365-8050
1462-7264
IngestDate Fri Oct 03 12:30:44 EDT 2025
Fri Jul 25 12:04:51 EDT 2025
Wed Mar 19 00:35:20 EDT 2025
Sat Mar 08 18:39:22 EST 2025
Sat Nov 29 08:05:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Analysis of Algorithms
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-c93d146c792281df4f6dc8d4ccb0a02a927f7675c8efa4014fbbc18d03eb1c1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3048159746?pq-origsite=%requestingapplication%
PQID 3048159746
PQPubID 946337
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_6b5f4e37e2a04a9da3a0ea47152450ac
proquest_journals_3048159746
gale_infotracmisc_A626507795
gale_infotracacademiconefile_A626507795
crossref_primary_10_23638_DMTCS_22_1_6
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Nancy
PublicationPlace_xml – name: Nancy
PublicationTitle Discrete Mathematics and Theoretical Computer Science
PublicationYear 2020
Publisher DMTCS
Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: DMTCS
– name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
ssib044734695
Score 2.3235662
Snippet A word of length $n$ is rich if it contains $n$ nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and...
A word of length n is rich if it contains n nonempty palindromic factors. An infinite word is rich if all of its finite factors are rich. Baranwal and Shallit...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1
SubjectTerms 68r15
Codes
computer science - formal languages and automata theory
Engineering research
Mathematical research
mathematics - combinatorics
Palindromes
Repetition
Words
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_T90wED5VqEMZoIUiHoXKQwVTip_t2PHITzEAqgSV2Cz7YguWB3pJ6b_fs5OH-gbEwpp4ON3nO98X574D-JFSqxs6ySttEq9UHWPlhQqVCdgmIzRqLI3Cl-b6urm7s7_-G_WV_wkb5IEHxx3qUCcVpYnCc-Vt66Xn0VNKrYWqucecfanqWZCp8f5AWGUGRU0haYcdnl7dntxUxLvIqKUTqAj1v5aOyxlz_hnWxuKQHQ1GfYEPcbYB64vBC2yMww1YvXoRW-024SdBzebxKQ66Q6wneLp8q8SoIGWhNNwySnf37C8xze4r_D4_uz25qMYxCBVKK_sKrWwpn6GxQlB1mVTSLTatQgzcc-GtMClLsmATkye6pFIIOG1aLikP4xTlFqzMHmdxG5hq0Ebe-ibEpILnIZlgwlSnoFVsgp3A_sI17mlQu3DEEooPXfGhE8JNnZ7AcXbcy6IsUl0eEHRuhM69Bd0EDrLbXQ6lfu7Rjx0BZGsWpXJHRLaoXDW2nsDu0koKAVx-vQDOjSHYOVmUcIgu6Z33MPYbfBKZapevL7uw0s__xD34iM_9Qzf_XnbfP7jP34o
  priority: 102
  providerName: Directory of Open Access Journals
Title The repetition threshold for binary rich words
URI https://www.proquest.com/docview/3048159746
https://doaj.org/article/6b5f4e37e2a04a9da3a0ea47152450ac
Volume 22 no. 1
WOSCitedRecordID wos000561191500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734695
  issn: 1365-8050
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV2_bxMxFH6ClAEGCgVEoEQ3IJiOXnw--zyhtqQCiUQRLVKZLPudTbsk4e6ArX97nx0nKAMsLDecPVh-Pz_b73sAr71vRE2RPBfSFzmvnMsN4zaXFhsvmUCBsVD4s5zN6stLNU8Hbl16VrnxidFRN0sMZ-RHZSQ2oexXvF_9yEPXqHC7mlpo3IW9wFTGB7B3MpnNv2zvEZjics2syUrStKMP04vT85zwFy1uJxJFwv6_ueUYa872_3eVj-BhyjKz47VaPIY7bnEA-5sODlky6AN4MN2ytnZP4B3pTNa6lVsTGGU9ybkL11MZZbaZjZW7GfnNq-w3QdbuKXw9m1ycfsxTP4UcS1X2OaqyIceIUjFGaarnXjRYNxzRFqZgRjHpA7cL1s4bwl3cW4vjuilKcug4xvIZDBbLhXsOGa9RuaIxtXWeW1NYL620Y-Gt4K62aghvNnurV2vaDE1wIwpBRyFoxvRYiyGchJ3fTgps1_HHsv2uk_FoYSvPXSkdMwU3qjGlKZyhsFoxXhUGh_A2yE0Hm-xbgyaVFtBaA7uVPibURnmvVNUQDndmki3h7vBGrDrZcqf_yPTFv4dfwn0W0Hg8oDmEQd_-dK_gHv7qr7t2lFRzFFH_KLwxPQ_fmwmNzD9N599uAQt484c
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHRJwYDBAFAb4wI9TWOo4dnxAaGxMq9ZWlSjSOBnbsYFLW5IA4p_ib-TZSYp6gNsOXGMriv0-f-89O_4ewFPvS16gJ0-48GnCcucSTZlJhLGlF5RbbuNF4YmYzYqLCznfgV_9XZjwW2XPiZGoy5UNe-SHWRQ2weiXv15_TULVqHC62pfQaGFx7n7-wJStfjU-Qfs-o_T07eL4LOmqCiQ2k1mTWJmVSA9WSEoxWPPM89IWJbPWpDqlWlLhg8KJLZzXmH0wb4wdFWWaIa3Zkc3wvVdglyHYiwHszsfT-YfNuQWVTLRKnjRDZB-eTBfH7xLM93AytjxfLBDwNzcQfdvp3v82K7fgZhdFk6MW9rdhxy33Ya-vUEE6wtqHG9ONKm19B17imiCVW7tWoIk0iOM6HL8RjNyJiTeTCfqFzySO5C68v5Qx3IPBcrV094GwwkqXlrowzjOjU-OFEWbEveHMFUYO4XlvS7VuZUEUplPR6CoaXVGqRooP4U2w9KZTUPOOD1bVJ9WRg-Im98xlwlGdMi1LnenUaQwbcsryVNshvAg4UYFzmkpb3V2dwG8N6l3qCLNSjOuFzIdwsNUTucJuN_cwUh1X1eoPhh78u_kJXDtbTCdqMp6dP4TrNOw8xM2oAxg01Tf3CK7a782XunrcLQsCHy8bc78BHSFNtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+repetition+threshold+for+binary+rich+words&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Currie%2C+James+D&rft.au=Mol%2C+Lucas&rft.au=Rampersad%2C+Narad&rft.date=2020-01-01&rft.pub=DMTCS&rft.eissn=1365-8050&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.23638%2FDMTCS-22-1-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon