More infinite products: Thue–Morse and the gamma function

Letting ( t n ) denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product ∏ n ≥ 0 2 n + 1 2 n + 2 ( - 1 ) t n = 2 - 1 / 2 involves a rational function in n and the ± 1 Thue–Morse sequence ( ( - 1 ) t n ) n ≥ 0 . The purpose of this paper is twofold. On the one hand, we...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Ramanujan journal Ročník 49; číslo 1; s. 115 - 128
Hlavní autori: Allouche, J.-P., Riasat, S., Shallit, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2019
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:1382-4090, 1572-9303
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Letting ( t n ) denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product ∏ n ≥ 0 2 n + 1 2 n + 2 ( - 1 ) t n = 2 - 1 / 2 involves a rational function in n and the ± 1 Thue–Morse sequence ( ( - 1 ) t n ) n ≥ 0 . The purpose of this paper is twofold. On the one hand, we try to find other rational functions for which similar infinite products involving the ± 1 Thue–Morse sequence have an expression in terms of known constants. On the other hand, we also try to find (possibly different) rational functions R for which the infinite product ∏ R ( n ) t n also has an expression in terms of known constants.
AbstractList Letting ( t n ) denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product ∏ n ≥ 0 2 n + 1 2 n + 2 ( - 1 ) t n = 2 - 1 / 2 involves a rational function in n and the ± 1 Thue–Morse sequence ( ( - 1 ) t n ) n ≥ 0 . The purpose of this paper is twofold. On the one hand, we try to find other rational functions for which similar infinite products involving the ± 1 Thue–Morse sequence have an expression in terms of known constants. On the other hand, we also try to find (possibly different) rational functions R for which the infinite product ∏ R ( n ) t n also has an expression in terms of known constants.
Letting (tn) denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product ∏n≥02n+12n+2(-1)tn=2-1/2involves a rational function in n and the ± 1 Thue–Morse sequence ((-1)tn)n≥0. The purpose of this paper is twofold. On the one hand, we try to find other rational functions for which similar infinite products involving the ± 1 Thue–Morse sequence have an expression in terms of known constants. On the other hand, we also try to find (possibly different) rational functions R for which the infinite product ∏R(n)tn also has an expression in terms of known constants.
Letting (t n) denote the Thue-Morse sequence with values 0, 1, we note that the Woods-Robbins product n≥0 2n + 1 2n + 2 (−1) tn = 2 −1/2 involves a rational function in n and the ±1 Thue-Morse sequence ((−1) tn) n≥0. The purpose of this paper is twofold. On the one hand, we try to find other rational functions for which similar infinite products involving the ±1 Thue-Morse sequence have an expression in terms of known constants. On the other hand, we also try to find (possibly different) rational functions R for which the infinite product R(n) tn also has an expression in terms of known constants.
Author Allouche, J.-P.
Riasat, S.
Shallit, J.
Author_xml – sequence: 1
  givenname: J.-P.
  surname: Allouche
  fullname: Allouche, J.-P.
  email: jean-paul.allouche@imj-prg.fr
  organization: CNRS, IMJ-PRG, Université P. et M. Curie
– sequence: 2
  givenname: S.
  surname: Riasat
  fullname: Riasat, S.
  organization: School of Computer Science, University of Waterloo
– sequence: 3
  givenname: J.
  surname: Shallit
  fullname: Shallit, J.
  organization: School of Computer Science, University of Waterloo
BackLink https://hal.sorbonne-universite.fr/hal-02187998$$DView record in HAL
BookMark eNp9kMFKAzEQhoNUsFYfwNuCJw_RmWS32eipFLVCxUs9h5jNtlvabE12BW--g2_ok5hlRUHQ04TJ_8388x-SgaudJeQE4RwBxEVARC4poKBS5kjFHhliJhiVHPggvnnOaAoSDshhCGsASIGLIbm6r71NKldWrmpssvN10ZomXCaLVWs_3t7jd7CJdkXSrGyy1NutTsrWmaaq3RHZL_Um2OOvOiKPN9eL6YzOH27vppM5NVzyhhqmeSqZkCi0Bj1OdcEzPi5B4BjSIs0LFGOwRmY2KjIGWZ6DNJg_pcC0KfmInPVzV3qjdr7aav-qal2p2WSuuh4wzEU8-wWj9rTXxkueWxsata5b76I9xRhylFJEUyOCvcr4OgRvy--xCKrLU_V5qpin6vJUIjLiF2OqRnc5NF5Xm39J1pMhbnFL6388_Q19AuaHiXg
CitedBy_id crossref_primary_10_1016_j_aam_2024_102721
crossref_primary_10_1007_s00605_020_01480_x
crossref_primary_10_1016_j_aim_2020_107068
crossref_primary_10_1007_s00605_023_01923_1
Cites_doi 10.1112/jlms/s2-39.2.193
10.1364/JOSA.41.000468
10.1016/j.jnt.2014.09.012
10.1090/S0002-9939-1959-0116184-5
10.2307/2978052
10.1112/blms/17.6.531
10.1016/0022-0000(85)90041-8
10.1017/CBO9780511608759
10.1016/j.jnt.2015.09.025
10.4064/aa-49-2-141-153
10.1007/978-1-4471-0551-0_1
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s11139-017-9981-7
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 128
ExternalDocumentID oai:HAL:hal-02187998v1
10_1007_s11139_017_9981_7
GroupedDBID -5D
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9R
PF0
PT4
PT5
QOS
R89
R9I
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
-Y2
1SB
2P1
2VQ
5VS
6TJ
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADQRH
AEBTG
AEKMD
AEZWR
AFDZB
AFFHD
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
DWQXO
GNUQQ
H13
HCIFZ
M2P
M7S
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
PTHSS
RNI
RZC
RZE
RZK
S1Z
TEORI
1XC
VOOES
ID FETCH-LOGICAL-c393t-c2a34927917aa0a64ad3536f071604d48d1760ec95e17a52058809c18b402acf3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465530000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-4090
IngestDate Tue Oct 14 20:15:21 EDT 2025
Thu Sep 25 00:36:29 EDT 2025
Sat Nov 29 03:20:57 EST 2025
Tue Nov 18 22:43:49 EST 2025
Fri Feb 21 02:33:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 11B83
Prouhet–Thue–Morse sequence
11B85
11A63
68R15
Woods and Robbins product
Closed formulas for infinite products
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-c2a34927917aa0a64ad3536f071604d48d1760ec95e17a52058809c18b402acf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1197-3820
OpenAccessLink https://hal.sorbonne-universite.fr/hal-02187998
PQID 2213199739
PQPubID 2043831
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_02187998v1
proquest_journals_2213199739
crossref_primary_10_1007_s11139_017_9981_7
crossref_citationtrail_10_1007_s11139_017_9981_7
springer_journals_10_1007_s11139_017_9981_7
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Whittaker, Watson (CR17) 1996
Allouche, Shallit (CR4) 1989; 39
Allouche (CR1) 2015; 148
CR6
CR5
Hu (CR10) 2016; 162
CR7
Rudin (CR13) 1959; 10
Allouche, Cohen, Mendès France, Shallit (CR3) 1987; 49
CR15
CR14
CR11
Flajolet, Martin (CR8) 1985; 31
Robbins (CR12) 1979; 86
Woods (CR16) 1978; 85
Golay (CR9) 1951; 41
Allouche, Cohen (CR2) 1985; 17
9981_CR11
D Robbins (9981_CR12) 1979; 86
Y Hu (9981_CR10) 2016; 162
DR Woods (9981_CR16) 1978; 85
9981_CR14
9981_CR15
J-P Allouche (9981_CR1) 2015; 148
W Rudin (9981_CR13) 1959; 10
9981_CR5
9981_CR6
9981_CR7
J-P Allouche (9981_CR4) 1989; 39
MJE Golay (9981_CR9) 1951; 41
ET Whittaker (9981_CR17) 1996
J-P Allouche (9981_CR2) 1985; 17
J-P Allouche (9981_CR3) 1987; 49
P Flajolet (9981_CR8) 1985; 31
References_xml – volume: 86
  start-page: 394
  year: 1979
  end-page: 395
  ident: CR12
  article-title: Solution to problem E 2692
  publication-title: Am. Math. Mon
– volume: 39
  start-page: 193
  year: 1989
  end-page: 204
  ident: CR4
  article-title: Infinite products associated with counting blocks in binary strings
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s2-39.2.193
– volume: 41
  start-page: 468
  year: 1951
  end-page: 472
  ident: CR9
  article-title: Statistic multislit spectrometry and its application to the panoramic display of infrared spectra
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.41.000468
– volume: 148
  start-page: 95
  year: 2015
  end-page: 111
  ident: CR1
  article-title: Paperfolding infinite products and the gamma function
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2014.09.012
– volume: 10
  start-page: 855
  year: 1959
  end-page: 859
  ident: CR13
  article-title: Some theorems on Fourier coefficients
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1959-0116184-5
– ident: CR14
– ident: CR15
– volume: 85
  start-page: 48
  year: 1978
  ident: CR16
  article-title: Elementary problem proposal E 2692
  publication-title: Am. Math. Mon.
  doi: 10.2307/2978052
– ident: CR11
– volume: 17
  start-page: 531
  year: 1985
  end-page: 538
  ident: CR2
  article-title: Dirichlet series and curious infinite products
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/17.6.531
– ident: CR6
– ident: CR5
– ident: CR7
– volume: 31
  start-page: 182
  year: 1985
  end-page: 209
  ident: CR8
  article-title: Probabilistic counting algorithms for data base applications
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(85)90041-8
– year: 1996
  ident: CR17
  publication-title: A Course of Modern Analysis
  doi: 10.1017/CBO9780511608759
– volume: 162
  start-page: 589
  year: 2016
  end-page: 600
  ident: CR10
  article-title: Patterns in numbers and infinite sums and products
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2015.09.025
– volume: 49
  start-page: 141
  year: 1987
  end-page: 153
  ident: CR3
  article-title: De nouveaux curieux produits infinis
  publication-title: Acta Arith.
  doi: 10.4064/aa-49-2-141-153
– volume: 86
  start-page: 394
  year: 1979
  ident: 9981_CR12
  publication-title: Am. Math. Mon
– volume: 148
  start-page: 95
  year: 2015
  ident: 9981_CR1
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2014.09.012
– volume-title: A Course of Modern Analysis
  year: 1996
  ident: 9981_CR17
  doi: 10.1017/CBO9780511608759
– volume: 10
  start-page: 855
  year: 1959
  ident: 9981_CR13
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1959-0116184-5
– ident: 9981_CR14
– volume: 49
  start-page: 141
  year: 1987
  ident: 9981_CR3
  publication-title: Acta Arith.
  doi: 10.4064/aa-49-2-141-153
– ident: 9981_CR15
– ident: 9981_CR6
– ident: 9981_CR7
– volume: 17
  start-page: 531
  year: 1985
  ident: 9981_CR2
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/17.6.531
– ident: 9981_CR11
– volume: 162
  start-page: 589
  year: 2016
  ident: 9981_CR10
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2015.09.025
– volume: 39
  start-page: 193
  year: 1989
  ident: 9981_CR4
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s2-39.2.193
– ident: 9981_CR5
  doi: 10.1007/978-1-4471-0551-0_1
– volume: 41
  start-page: 468
  year: 1951
  ident: 9981_CR9
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.41.000468
– volume: 31
  start-page: 182
  year: 1985
  ident: 9981_CR8
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(85)90041-8
– volume: 85
  start-page: 48
  year: 1978
  ident: 9981_CR16
  publication-title: Am. Math. Mon.
  doi: 10.2307/2978052
SSID ssj0004037
Score 2.222367
Snippet Letting ( t n ) denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product ∏ n ≥ 0 2 n + 1 2 n + 2 ( - 1 ) t n = 2 - 1 / 2...
Letting (tn) denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product ∏n≥02n+12n+2(-1)tn=2-1/2involves a rational function in n...
Letting (t n) denote the Thue-Morse sequence with values 0, 1, we note that the Woods-Robbins product n≥0 2n + 1 2n + 2 (−1) tn = 2 −1/2 involves a rational...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Combinatorics
Constants
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Gamma function
Mathematics
Mathematics and Statistics
Number Theory
Rational functions
Title More infinite products: Thue–Morse and the gamma function
URI https://link.springer.com/article/10.1007/s11139-017-9981-7
https://www.proquest.com/docview/2213199739
https://hal.sorbonne-universite.fr/hal-02187998
Volume 49
WOSCitedRecordID wos000465530000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004037
  issn: 1382-4090
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4AAH3ojBQBHiBIqUtOkjcJoQaIdtQuKh3aq0yQCJPbRuO_Mf-If8Epyu3QABElwbp63sJP4s218Ajk0sg07MXaoZV1R4jNFQmJiiM2Ta8ZUWXtYo3AharbDdltd5H3daVLsXKcnspJ43u3FEK9SeqhgicBqUYNGzZDM2RL-5nzdDsowo03LrYXAkZ6nM717xyRmVHm0p5Aec-SU1mnmcq7V__es6rOYAk9SmK2IDFkxvE1aaM3bWdAvOm_2hIbi0nizgJIMp6Wt6Rm4fx-bt5RWHU0NUTxOcRB5Ut6uI9X_Whttwd3V5e1Gn-SUKNHGlO6KJoywBYYBhmVJM-UJp13P9DkILnwktQs0Dn5lEegYlPId5uKNlwsMYI0uVdNwdKPf6PbMLRDBlJNe-kg4XserEoUCw6CgZJ6HnaFMBVmgzSnKGcXvRxXM050a2eolQL5HVSxRU4GQ2ZTCl1_hN-AhNNJOzxNj1WiOyzyxSCVBqwitQLSwY5dsxjRyHu7aixpUVOC0sNh_-8Yt7f5Leh2WEU3JaDlmF8mg4NgewlExGT-nwMFul71D_3lY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58gXrwLdZnEE9KINnNPqInEaViWwSreAvZTWoFrdKtnv0P_kN_iZPtbquigl43k91lJsl8w8x8AdixiYxaCfepYVxTETBGY2ETis6QGS_URgR5o3AtajTi62t5XvRxZ2W1e5mSzE_qYbMbR7RC3amKIQKn0SiMC3fLjgvRL66GzZAsJ8p03HoYHMlBKvO7V3xyRqNtVwr5AWd-SY3mHudk9l__OgczBcAkh_0VMQ8jtrMA0_UBO2u2CAf1h64luLRuHeAkj33S12yfNNtP9u3lFYczS3THEJxEbvT9vSbO_zkbLsHlyXHzqEqLSxRo6ku_R1NPOwLCCMMyrZkOhTZ-4IcthBYhE0bEhkchs6kMLEoEHgtwR8uUxwlGljpt-csw1nno2BUggmkruQm1RLUnupXEAsGip2WSxoFnbAVYqU2VFgzj7qKLOzXkRnZ6UagX5fSiogrsDqY89uk1fhPeRhMN5BwxdvWwptwzh1QilHrmFVgvLaiK7Zgpz-O-q6jxZQX2SosNh3_84uqfpLdgstqs11TttHG2BlMIrWS_NHIdxnrdJ7sBE-lz7zbrbuYr9h3FVuE6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VbYXKgbZAxZZHLcQJZK2dOA_DCUFXIJYV4iVulhM7BakbVpuFc_9D_2F_CeNNsgsIkBDXeOxEM3bmG83MZ4B1m8goS7hPDeOaioAxGgubUHSGzHihNiIYNQp3om43vryUx9U9p0Vd7V6nJMueBsfSlA9bfZO1Jo1vHJELdX9YDBc4jabgo8BAxtV0nZxeTBoj2Yg00_HsYaAkx2nN55Z45JimrlxZ5APM-SRNOvI-7S_v_u6vMFsBT7JT7pRv8MHmczBzNGZtLeZh--hmYAluuWsHREm_JIMttsjZ1a39__cfDheW6NwQnER-615PE-cXnW0X4Lz962x3n1aXK9DUl_6Qpp52xIQRhmtaMx0KbfzADzOEHCETRsSGRyGzqQwsSgQeC_Cky5THCUacOs3879DIb3K7CEQwbSU3oZYeF4nOklggiPS0TNI48IxtAqs1q9KKedxdgPFHTTiTnV4U6kU5vaioCRvjKf2SduM14TU011jOEWbv73SUe-YQTIRSd7wJy7U1VXVMC-V53HeVNr5swmZtvcnwi2_88SbpnzB9vNdWnYPu4RJ8RsQly4rJZWgMB7d2BT6ld8PrYrA62rz3gqbqHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+infinite+products%3A+Thue%E2%80%93Morse+and+the+gamma+function&rft.jtitle=The+Ramanujan+journal&rft.au=Allouche%2C+J.-P.&rft.au=Riasat%2C+S.&rft.au=Shallit%2C+J.&rft.date=2019-05-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=49&rft.issue=1&rft.spage=115&rft.epage=128&rft_id=info:doi/10.1007%2Fs11139-017-9981-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_017_9981_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon