More infinite products: Thue–Morse and the gamma function
Letting ( t n ) denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product ∏ n ≥ 0 2 n + 1 2 n + 2 ( - 1 ) t n = 2 - 1 / 2 involves a rational function in n and the ± 1 Thue–Morse sequence ( ( - 1 ) t n ) n ≥ 0 . The purpose of this paper is twofold. On the one hand, we...
Uložené v:
| Vydané v: | The Ramanujan journal Ročník 49; číslo 1; s. 115 - 128 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2019
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 1382-4090, 1572-9303 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Letting
(
t
n
)
denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product
∏
n
≥
0
2
n
+
1
2
n
+
2
(
-
1
)
t
n
=
2
-
1
/
2
involves a rational function in
n
and the ± 1 Thue–Morse sequence
(
(
-
1
)
t
n
)
n
≥
0
. The purpose of this paper is twofold. On the one hand, we try to find other rational functions for which similar infinite products involving the ± 1 Thue–Morse sequence have an expression in terms of known constants. On the other hand, we also try to find (possibly different) rational functions
R
for which the infinite product
∏
R
(
n
)
t
n
also has an expression in terms of known constants. |
|---|---|
| AbstractList | Letting
(
t
n
)
denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product
∏
n
≥
0
2
n
+
1
2
n
+
2
(
-
1
)
t
n
=
2
-
1
/
2
involves a rational function in
n
and the ± 1 Thue–Morse sequence
(
(
-
1
)
t
n
)
n
≥
0
. The purpose of this paper is twofold. On the one hand, we try to find other rational functions for which similar infinite products involving the ± 1 Thue–Morse sequence have an expression in terms of known constants. On the other hand, we also try to find (possibly different) rational functions
R
for which the infinite product
∏
R
(
n
)
t
n
also has an expression in terms of known constants. Letting (tn) denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product ∏n≥02n+12n+2(-1)tn=2-1/2involves a rational function in n and the ± 1 Thue–Morse sequence ((-1)tn)n≥0. The purpose of this paper is twofold. On the one hand, we try to find other rational functions for which similar infinite products involving the ± 1 Thue–Morse sequence have an expression in terms of known constants. On the other hand, we also try to find (possibly different) rational functions R for which the infinite product ∏R(n)tn also has an expression in terms of known constants. Letting (t n) denote the Thue-Morse sequence with values 0, 1, we note that the Woods-Robbins product n≥0 2n + 1 2n + 2 (−1) tn = 2 −1/2 involves a rational function in n and the ±1 Thue-Morse sequence ((−1) tn) n≥0. The purpose of this paper is twofold. On the one hand, we try to find other rational functions for which similar infinite products involving the ±1 Thue-Morse sequence have an expression in terms of known constants. On the other hand, we also try to find (possibly different) rational functions R for which the infinite product R(n) tn also has an expression in terms of known constants. |
| Author | Allouche, J.-P. Riasat, S. Shallit, J. |
| Author_xml | – sequence: 1 givenname: J.-P. surname: Allouche fullname: Allouche, J.-P. email: jean-paul.allouche@imj-prg.fr organization: CNRS, IMJ-PRG, Université P. et M. Curie – sequence: 2 givenname: S. surname: Riasat fullname: Riasat, S. organization: School of Computer Science, University of Waterloo – sequence: 3 givenname: J. surname: Shallit fullname: Shallit, J. organization: School of Computer Science, University of Waterloo |
| BackLink | https://hal.sorbonne-universite.fr/hal-02187998$$DView record in HAL |
| BookMark | eNp9kMFKAzEQhoNUsFYfwNuCJw_RmWS32eipFLVCxUs9h5jNtlvabE12BW--g2_ok5hlRUHQ04TJ_8388x-SgaudJeQE4RwBxEVARC4poKBS5kjFHhliJhiVHPggvnnOaAoSDshhCGsASIGLIbm6r71NKldWrmpssvN10ZomXCaLVWs_3t7jd7CJdkXSrGyy1NutTsrWmaaq3RHZL_Um2OOvOiKPN9eL6YzOH27vppM5NVzyhhqmeSqZkCi0Bj1OdcEzPi5B4BjSIs0LFGOwRmY2KjIGWZ6DNJg_pcC0KfmInPVzV3qjdr7aav-qal2p2WSuuh4wzEU8-wWj9rTXxkueWxsata5b76I9xRhylFJEUyOCvcr4OgRvy--xCKrLU_V5qpin6vJUIjLiF2OqRnc5NF5Xm39J1pMhbnFL6388_Q19AuaHiXg |
| CitedBy_id | crossref_primary_10_1016_j_aam_2024_102721 crossref_primary_10_1007_s00605_020_01480_x crossref_primary_10_1016_j_aim_2020_107068 crossref_primary_10_1007_s00605_023_01923_1 |
| Cites_doi | 10.1112/jlms/s2-39.2.193 10.1364/JOSA.41.000468 10.1016/j.jnt.2014.09.012 10.1090/S0002-9939-1959-0116184-5 10.2307/2978052 10.1112/blms/17.6.531 10.1016/0022-0000(85)90041-8 10.1017/CBO9780511608759 10.1016/j.jnt.2015.09.025 10.4064/aa-49-2-141-153 10.1007/978-1-4471-0551-0_1 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Copyright Springer Nature B.V. 2019 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Copyright Springer Nature B.V. 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1007/s11139-017-9981-7 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1572-9303 |
| EndPage | 128 |
| ExternalDocumentID | oai:HAL:hal-02187998v1 10_1007_s11139_017_9981_7 |
| GroupedDBID | -5D -5G -BR -EM -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9R PF0 PT4 PT5 QOS R89 R9I ROL RPX RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U ZMTXR ~A9 -Y2 1SB 2P1 2VQ 5VS 6TJ AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABJCF ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADQRH AEBTG AEKMD AEZWR AFDZB AFFHD AFGCZ AFHIU AFKRA AFOHR AGGDS AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA AZQEC BENPR BGLVJ CAG CCPQU CITATION COF DWQXO GNUQQ H13 HCIFZ M2P M7S N2Q O9- OVD PHGZM PHGZT PQGLB PTHSS RNI RZC RZE RZK S1Z TEORI 1XC VOOES |
| ID | FETCH-LOGICAL-c393t-c2a34927917aa0a64ad3536f071604d48d1760ec95e17a52058809c18b402acf3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465530000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-4090 |
| IngestDate | Tue Oct 14 20:15:21 EDT 2025 Thu Sep 25 00:36:29 EDT 2025 Sat Nov 29 03:20:57 EST 2025 Tue Nov 18 22:43:49 EST 2025 Fri Feb 21 02:33:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 11B83 Prouhet–Thue–Morse sequence 11B85 11A63 68R15 Woods and Robbins product Closed formulas for infinite products |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c393t-c2a34927917aa0a64ad3536f071604d48d1760ec95e17a52058809c18b402acf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1197-3820 |
| OpenAccessLink | https://hal.sorbonne-universite.fr/hal-02187998 |
| PQID | 2213199739 |
| PQPubID | 2043831 |
| PageCount | 14 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02187998v1 proquest_journals_2213199739 crossref_primary_10_1007_s11139_017_9981_7 crossref_citationtrail_10_1007_s11139_017_9981_7 springer_journals_10_1007_s11139_017_9981_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan |
| PublicationTitle | The Ramanujan journal |
| PublicationTitleAbbrev | Ramanujan J |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | Whittaker, Watson (CR17) 1996 Allouche, Shallit (CR4) 1989; 39 Allouche (CR1) 2015; 148 CR6 CR5 Hu (CR10) 2016; 162 CR7 Rudin (CR13) 1959; 10 Allouche, Cohen, Mendès France, Shallit (CR3) 1987; 49 CR15 CR14 CR11 Flajolet, Martin (CR8) 1985; 31 Robbins (CR12) 1979; 86 Woods (CR16) 1978; 85 Golay (CR9) 1951; 41 Allouche, Cohen (CR2) 1985; 17 9981_CR11 D Robbins (9981_CR12) 1979; 86 Y Hu (9981_CR10) 2016; 162 DR Woods (9981_CR16) 1978; 85 9981_CR14 9981_CR15 J-P Allouche (9981_CR1) 2015; 148 W Rudin (9981_CR13) 1959; 10 9981_CR5 9981_CR6 9981_CR7 J-P Allouche (9981_CR4) 1989; 39 MJE Golay (9981_CR9) 1951; 41 ET Whittaker (9981_CR17) 1996 J-P Allouche (9981_CR2) 1985; 17 J-P Allouche (9981_CR3) 1987; 49 P Flajolet (9981_CR8) 1985; 31 |
| References_xml | – volume: 86 start-page: 394 year: 1979 end-page: 395 ident: CR12 article-title: Solution to problem E 2692 publication-title: Am. Math. Mon – volume: 39 start-page: 193 year: 1989 end-page: 204 ident: CR4 article-title: Infinite products associated with counting blocks in binary strings publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/s2-39.2.193 – volume: 41 start-page: 468 year: 1951 end-page: 472 ident: CR9 article-title: Statistic multislit spectrometry and its application to the panoramic display of infrared spectra publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.41.000468 – volume: 148 start-page: 95 year: 2015 end-page: 111 ident: CR1 article-title: Paperfolding infinite products and the gamma function publication-title: J. Number Theory doi: 10.1016/j.jnt.2014.09.012 – volume: 10 start-page: 855 year: 1959 end-page: 859 ident: CR13 article-title: Some theorems on Fourier coefficients publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1959-0116184-5 – ident: CR14 – ident: CR15 – volume: 85 start-page: 48 year: 1978 ident: CR16 article-title: Elementary problem proposal E 2692 publication-title: Am. Math. Mon. doi: 10.2307/2978052 – ident: CR11 – volume: 17 start-page: 531 year: 1985 end-page: 538 ident: CR2 article-title: Dirichlet series and curious infinite products publication-title: Bull. Lond. Math. Soc. doi: 10.1112/blms/17.6.531 – ident: CR6 – ident: CR5 – ident: CR7 – volume: 31 start-page: 182 year: 1985 end-page: 209 ident: CR8 article-title: Probabilistic counting algorithms for data base applications publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(85)90041-8 – year: 1996 ident: CR17 publication-title: A Course of Modern Analysis doi: 10.1017/CBO9780511608759 – volume: 162 start-page: 589 year: 2016 end-page: 600 ident: CR10 article-title: Patterns in numbers and infinite sums and products publication-title: J. Number Theory doi: 10.1016/j.jnt.2015.09.025 – volume: 49 start-page: 141 year: 1987 end-page: 153 ident: CR3 article-title: De nouveaux curieux produits infinis publication-title: Acta Arith. doi: 10.4064/aa-49-2-141-153 – volume: 86 start-page: 394 year: 1979 ident: 9981_CR12 publication-title: Am. Math. Mon – volume: 148 start-page: 95 year: 2015 ident: 9981_CR1 publication-title: J. Number Theory doi: 10.1016/j.jnt.2014.09.012 – volume-title: A Course of Modern Analysis year: 1996 ident: 9981_CR17 doi: 10.1017/CBO9780511608759 – volume: 10 start-page: 855 year: 1959 ident: 9981_CR13 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1959-0116184-5 – ident: 9981_CR14 – volume: 49 start-page: 141 year: 1987 ident: 9981_CR3 publication-title: Acta Arith. doi: 10.4064/aa-49-2-141-153 – ident: 9981_CR15 – ident: 9981_CR6 – ident: 9981_CR7 – volume: 17 start-page: 531 year: 1985 ident: 9981_CR2 publication-title: Bull. Lond. Math. Soc. doi: 10.1112/blms/17.6.531 – ident: 9981_CR11 – volume: 162 start-page: 589 year: 2016 ident: 9981_CR10 publication-title: J. Number Theory doi: 10.1016/j.jnt.2015.09.025 – volume: 39 start-page: 193 year: 1989 ident: 9981_CR4 publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/s2-39.2.193 – ident: 9981_CR5 doi: 10.1007/978-1-4471-0551-0_1 – volume: 41 start-page: 468 year: 1951 ident: 9981_CR9 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.41.000468 – volume: 31 start-page: 182 year: 1985 ident: 9981_CR8 publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(85)90041-8 – volume: 85 start-page: 48 year: 1978 ident: 9981_CR16 publication-title: Am. Math. Mon. doi: 10.2307/2978052 |
| SSID | ssj0004037 |
| Score | 2.222367 |
| Snippet | Letting
(
t
n
)
denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product
∏
n
≥
0
2
n
+
1
2
n
+
2
(
-
1
)
t
n
=
2
-
1
/
2... Letting (tn) denote the Thue–Morse sequence with values 0, 1, we note that the Woods–Robbins product ∏n≥02n+12n+2(-1)tn=2-1/2involves a rational function in n... Letting (t n) denote the Thue-Morse sequence with values 0, 1, we note that the Woods-Robbins product n≥0 2n + 1 2n + 2 (−1) tn = 2 −1/2 involves a rational... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115 |
| SubjectTerms | Combinatorics Constants Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Gamma function Mathematics Mathematics and Statistics Number Theory Rational functions |
| Title | More infinite products: Thue–Morse and the gamma function |
| URI | https://link.springer.com/article/10.1007/s11139-017-9981-7 https://www.proquest.com/docview/2213199739 https://hal.sorbonne-universite.fr/hal-02187998 |
| Volume | 49 |
| WOSCitedRecordID | wos000465530000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9303 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004037 issn: 1382-4090 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4AAH3ojBQBHiBIqUtOkjcJoQaIdtQuKh3aq0yQCJPbRuO_Mf-If8Epyu3QABElwbp63sJP4s218Ajk0sg07MXaoZV1R4jNFQmJiiM2Ta8ZUWXtYo3AharbDdltd5H3daVLsXKcnspJ43u3FEK9SeqhgicBqUYNGzZDM2RL-5nzdDsowo03LrYXAkZ6nM717xyRmVHm0p5Aec-SU1mnmcq7V__es6rOYAk9SmK2IDFkxvE1aaM3bWdAvOm_2hIbi0nizgJIMp6Wt6Rm4fx-bt5RWHU0NUTxOcRB5Ut6uI9X_Whttwd3V5e1Gn-SUKNHGlO6KJoywBYYBhmVJM-UJp13P9DkILnwktQs0Dn5lEegYlPId5uKNlwsMYI0uVdNwdKPf6PbMLRDBlJNe-kg4XserEoUCw6CgZJ6HnaFMBVmgzSnKGcXvRxXM050a2eolQL5HVSxRU4GQ2ZTCl1_hN-AhNNJOzxNj1WiOyzyxSCVBqwitQLSwY5dsxjRyHu7aixpUVOC0sNh_-8Yt7f5Leh2WEU3JaDlmF8mg4NgewlExGT-nwMFul71D_3lY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58gXrwLdZnEE9KINnNPqInEaViWwSreAvZTWoFrdKtnv0P_kN_iZPtbquigl43k91lJsl8w8x8AdixiYxaCfepYVxTETBGY2ETis6QGS_URgR5o3AtajTi62t5XvRxZ2W1e5mSzE_qYbMbR7RC3amKIQKn0SiMC3fLjgvRL66GzZAsJ8p03HoYHMlBKvO7V3xyRqNtVwr5AWd-SY3mHudk9l__OgczBcAkh_0VMQ8jtrMA0_UBO2u2CAf1h64luLRuHeAkj33S12yfNNtP9u3lFYczS3THEJxEbvT9vSbO_zkbLsHlyXHzqEqLSxRo6ku_R1NPOwLCCMMyrZkOhTZ-4IcthBYhE0bEhkchs6kMLEoEHgtwR8uUxwlGljpt-csw1nno2BUggmkruQm1RLUnupXEAsGip2WSxoFnbAVYqU2VFgzj7qKLOzXkRnZ6UagX5fSiogrsDqY89uk1fhPeRhMN5BwxdvWwptwzh1QilHrmFVgvLaiK7Zgpz-O-q6jxZQX2SosNh3_84uqfpLdgstqs11TttHG2BlMIrWS_NHIdxnrdJ7sBE-lz7zbrbuYr9h3FVuE6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VbYXKgbZAxZZHLcQJZK2dOA_DCUFXIJYV4iVulhM7BakbVpuFc_9D_2F_CeNNsgsIkBDXeOxEM3bmG83MZ4B1m8goS7hPDeOaioAxGgubUHSGzHihNiIYNQp3om43vryUx9U9p0Vd7V6nJMueBsfSlA9bfZO1Jo1vHJELdX9YDBc4jabgo8BAxtV0nZxeTBoj2Yg00_HsYaAkx2nN55Z45JimrlxZ5APM-SRNOvI-7S_v_u6vMFsBT7JT7pRv8MHmczBzNGZtLeZh--hmYAluuWsHREm_JIMttsjZ1a39__cfDheW6NwQnER-615PE-cXnW0X4Lz962x3n1aXK9DUl_6Qpp52xIQRhmtaMx0KbfzADzOEHCETRsSGRyGzqQwsSgQeC_Cky5THCUacOs3879DIb3K7CEQwbSU3oZYeF4nOklggiPS0TNI48IxtAqs1q9KKedxdgPFHTTiTnV4U6kU5vaioCRvjKf2SduM14TU011jOEWbv73SUe-YQTIRSd7wJy7U1VXVMC-V53HeVNr5swmZtvcnwi2_88SbpnzB9vNdWnYPu4RJ8RsQly4rJZWgMB7d2BT6ld8PrYrA62rz3gqbqHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+infinite+products%3A+Thue%E2%80%93Morse+and+the+gamma+function&rft.jtitle=The+Ramanujan+journal&rft.au=Allouche%2C+J.-P.&rft.au=Riasat%2C+S.&rft.au=Shallit%2C+J.&rft.date=2019-05-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=49&rft.issue=1&rft.spage=115&rft.epage=128&rft_id=info:doi/10.1007%2Fs11139-017-9981-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_017_9981_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon |