A conjugate gradient like method for p-norm minimization in functional spaces
We develop an iterative algorithm to recover the minimum p -norm solution of the functional linear equation A x = b , where A : X ⟶ Y is a continuous linear operator between the two Banach spaces X = L p , 1 < p < 2 , and Y = L r , r > 1 , with x ∈ X and b ∈ Y . The algorithm is conceived w...
Uloženo v:
| Vydáno v: | Numerische Mathematik Ročník 137; číslo 4; s. 895 - 922 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2017
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 0029-599X, 0945-3245 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We develop an iterative algorithm to recover the minimum
p
-norm solution of the functional linear equation
A
x
=
b
,
where
A
:
X
⟶
Y
is a continuous linear operator between the two Banach spaces
X
=
L
p
,
1
<
p
<
2
, and
Y
=
L
r
,
r
>
1
, with
x
∈
X
and
b
∈
Y
. The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329,
2006
). Indeed, the algorithm is based on using, at the
n
-th iteration, a linear combination of the steepest current “descent functional”
A
∗
J
b
-
A
x
n
and the previous descent functional, where
J
denotes a duality map of the Banach space
Y
. In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum
p
-norm solution of the functional linear equation
A
x
=
b
and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of
L
p
spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes. |
|---|---|
| AbstractList | We develop an iterative algorithm to recover the minimum
p
-norm solution of the functional linear equation
A
x
=
b
,
where
A
:
X
⟶
Y
is a continuous linear operator between the two Banach spaces
X
=
L
p
,
1
<
p
<
2
, and
Y
=
L
r
,
r
>
1
, with
x
∈
X
and
b
∈
Y
. The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329,
2006
). Indeed, the algorithm is based on using, at the
n
-th iteration, a linear combination of the steepest current “descent functional”
A
∗
J
b
-
A
x
n
and the previous descent functional, where
J
denotes a duality map of the Banach space
Y
. In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum
p
-norm solution of the functional linear equation
A
x
=
b
and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of
L
p
spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes. We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation Ax=b, where A:X⟶Y is a continuous linear operator between the two Banach spaces X=Lp, 1<p<2, and Y=Lr, r>1, with x∈X and b∈Y. The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329, 2006). Indeed, the algorithm is based on using, at the n-th iteration, a linear combination of the steepest current “descent functional” A∗J(b−Axn) and the previous descent functional, where J denotes a duality map of the Banach space Y. In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum p-norm solution of the functional linear equation Ax=b and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of Lp spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes. We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation A x = b , where A : X ⟶ Y is a continuous linear operator between the two Banach spaces X = L p , 1 < p < 2 , and Y = L r , r > 1 , with x ∈ X and b ∈ Y . The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329, 2006). Indeed, the algorithm is based on using, at the n-th iteration, a linear combination of the steepest current “descent functional” A ∗ J b - A x n and the previous descent functional, where J denotes a duality map of the Banach space Y . In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum p-norm solution of the functional linear equation A x = b and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of L p spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes. |
| Author | Estatico, Claudio Gratton, Serge Titley-Peloquin, David Lenti, Flavia |
| Author_xml | – sequence: 1 givenname: Claudio surname: Estatico fullname: Estatico, Claudio organization: Dipartimento di Matematica, Università degli Studi di Genova – sequence: 2 givenname: Serge surname: Gratton fullname: Gratton, Serge organization: Université de Toulouse, INP-IRIT – sequence: 3 givenname: Flavia surname: Lenti fullname: Lenti, Flavia email: flavialenti@gmail.com organization: Institut de Recherche en Informatique de Toulouse – sequence: 4 givenname: David surname: Titley-Peloquin fullname: Titley-Peloquin, David organization: Department of Bioresource Engineering, McGill University |
| BackLink | https://hal.science/hal-03512093$$DView record in HAL |
| BookMark | eNp9kEtLBDEQhIMo-PwB3gKePETzmNlMjov4ghUvCt5CzHbWrDPJmswK-uvNOAoi6KmbTn1FpXbRZogBEDpk9IRRKk8zpZwxQpkktFGCyA20Q1VVE8GrerPslCtSK_WwjXZzXtIinFRsB91MsY1huV6YHvAimbmH0OPWPwPuoH-Kc-xiwisSYupw54Pv_LvpfQzYB-zWwQ67aXFeGQt5H20502Y4-Jp76P7i_O7sisxuL6_PpjNihRI9MRKMasAZo1RjJ4zTislHSt3EOeMcl7wpz_DYSGjAMismIIEZy5kTak4rsYeOR98n0-pV8p1Jbzoar6-mMz3cqKiLqxKvrGiPRu0qxZc15F4v4zqVzFkzVTeyYZIPjnJU2RRzTuC09f3nR_tkfKsZ1UPPeuxZl_r00LOWhWS_yO9A_zF8ZHLRhgWkH5n-hD4AOkqRTw |
| CitedBy_id | crossref_primary_10_1080_02331934_2019_1566328 crossref_primary_10_3390_s19061270 crossref_primary_10_1088_1361_6420_ab9f86 crossref_primary_10_1007_s11075_023_01578_x crossref_primary_10_1109_TMTT_2018_2849060 crossref_primary_10_1155_2019_2841937 crossref_primary_10_1109_JERM_2020_3042711 crossref_primary_10_1007_s11784_019_0684_0 crossref_primary_10_1007_s10915_018_0816_5 crossref_primary_10_1007_s10915_021_01727_1 crossref_primary_10_1007_s00371_022_02484_4 crossref_primary_10_1007_s10092_018_0260_9 crossref_primary_10_1016_j_cam_2020_112824 crossref_primary_10_1016_j_apnum_2018_09_006 crossref_primary_10_1016_j_apnum_2023_05_007 crossref_primary_10_1109_JSTARS_2023_3276698 crossref_primary_10_1007_s11075_021_01087_9 crossref_primary_10_1007_s11075_022_01458_w |
| Cites_doi | 10.1109/TGRS.2015.2458014 10.1088/0266-5611/25/1/015013 10.1088/0266-5611/20/5/005 10.1007/s10589-012-9527-2 10.1109/TGRS.2015.2411854 10.1887/0750304359 10.1088/0266-5611/26/11/115014 10.1016/0022-247X(91)90144-O 10.1155/AAA/2006/84919 10.1088/0266-5611/21/4/007 10.1088/0266-5611/24/5/055008 10.1002/cpa.20042 10.1080/10556788.2010.549231 10.1088/0266-5611/22/1/017 10.1016/0041-5553(67)90040-7 10.1090/S0002-9904-1967-11678-1 10.1137/1.9780898719697 10.1007/978-3-662-53294-2_8 10.1007/978-94-009-2121-4 10.1515/jiip-2016-0027 10.1515/9783110255720 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2017 Copyright Springer Science & Business Media 2017 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2017 – notice: Copyright Springer Science & Business Media 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1007/s00211-017-0893-7 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 0945-3245 |
| EndPage | 922 |
| ExternalDocumentID | oai:HAL:hal-03512093v1 10_1007_s00211_017_0893_7 |
| GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR YNT YQT Z45 Z5O Z7R Z7X Z83 Z86 Z88 Z8M Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 1XC VOOES |
| ID | FETCH-LOGICAL-c393t-a7ea98efaa998c6120417b00f6ffaff272898eeb87e8ec1c36e7e1ac21f39d043 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414357700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-599X |
| IngestDate | Sat Oct 25 11:14:25 EDT 2025 Mon Oct 06 16:25:19 EDT 2025 Tue Nov 18 20:15:34 EST 2025 Sat Nov 29 01:35:59 EST 2025 Fri Feb 21 02:33:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 65F10 47A52 65J20 Conjugate gradient method Iterative regularization Banach spaces |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c393t-a7ea98efaa998c6120417b00f6ffaff272898eeb87e8ec1c36e7e1ac21f39d043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5021-2357 |
| OpenAccessLink | https://hal.science/hal-03512093 |
| PQID | 1958781724 |
| PQPubID | 2043616 |
| PageCount | 28 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03512093v1 proquest_journals_1958781724 crossref_citationtrail_10_1007_s00211_017_0893_7 crossref_primary_10_1007_s00211_017_0893_7 springer_journals_10_1007_s00211_017_0893_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-01 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Numerische Mathematik |
| PublicationTitleAbbrev | Numer. Math |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | Schöpfer, Schuster (CR21) 2009; 25 Lenti, Nunziata, Estatico, Migliaccio (CR16) 2016; 54 Bertero, Boccacci (CR2) 1998 Schöpfer, Schuster, Louis (CR22) 2007; 15 CR13 CR12 Daubachies, Defrise, De Mol (CR8) 2004; 57 Resmerita (CR19) 2005; 21 Grasmair (CR10) 2010; 26 Schöpfer, Schuster, Louis (CR23) 2008; 24 CR3 Milicic (CR18) 2002; 3 CR7 CR25 Xu, Roach (CR26) 1991; 157 Butnariu, Resmerita (CR6) 2006; 2006 CR24 Lindestrauss, Tzafriri (CR17) 1996 Bregman (CR4) 1967; 7 Kien (CR14) 2002; 27 Lenti, Nunziata, Estatico, Migliaccio (CR15) 2015; 53 Schöpfer, Louis, Schuster (CR20) 2006; 22 Brianzi, Di Benedetto, Estatico (CR9) 2013; 54 Burger, Osher (CR5) 2004; 20 Gratton, Toint, Tröltzsch (CR11) 2011; 26 Asplund (CR1) 1967; 73 LM Bregman (893_CR4) 1967; 7 PM Milicic (893_CR18) 2002; 3 F Schöpfer (893_CR22) 2007; 15 E Resmerita (893_CR19) 2005; 21 M Grasmair (893_CR10) 2010; 26 D Butnariu (893_CR6) 2006; 2006 S Gratton (893_CR11) 2011; 26 893_CR24 893_CR25 F Schöpfer (893_CR23) 2008; 24 L Daubachies (893_CR8) 2004; 57 M Burger (893_CR5) 2004; 20 ZB Xu (893_CR26) 1991; 157 F Lenti (893_CR15) 2015; 53 M Bertero (893_CR2) 1998 893_CR7 F Schöpfer (893_CR21) 2009; 25 P Brianzi (893_CR9) 2013; 54 F Schöpfer (893_CR20) 2006; 22 893_CR3 BT Kien (893_CR14) 2002; 27 893_CR13 893_CR12 E Asplund (893_CR1) 1967; 73 J Lindestrauss (893_CR17) 1996 F Lenti (893_CR16) 2016; 54 |
| References_xml | – volume: 54 start-page: 397 year: 2016 end-page: 406 ident: CR16 article-title: Conjugate gradient method in Hilbert and Banach spaces to enhance the spatial resolution of radiometer data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2458014 – volume: 25 start-page: 1 year: 2009 end-page: 22 ident: CR21 article-title: Fast regularizing sequential subspace optimization in Banach spaces publication-title: Inverse Probl. doi: 10.1088/0266-5611/25/1/015013 – volume: 20 start-page: 1411 year: 2004 end-page: 1421 ident: CR5 article-title: Convergence rates of convex variational regularization publication-title: Inverse Probl. doi: 10.1088/0266-5611/20/5/005 – start-page: 53 year: 1996 end-page: 104 ident: CR17 publication-title: Classical Banach Spaces – ident: CR12 – volume: 54 start-page: 263 year: 2013 end-page: 282 ident: CR9 article-title: Preconditioned iterative regularization in Banach spaces publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-012-9527-2 – volume: 53 start-page: 4876 year: 2015 end-page: 4886 ident: CR15 article-title: Analysis of reconstructions obtained solving -penalized minimization problems publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2411854 – start-page: 98 year: 1998 end-page: 127 ident: CR2 publication-title: Introduction to Inverse Problems in Imaging doi: 10.1887/0750304359 – volume: 26 start-page: 1 year: 2010 end-page: 20 ident: CR10 article-title: Generalized Bregman distances and convergences rate for non-convex regularization methods publication-title: Inverse Probl. doi: 10.1088/0266-5611/26/11/115014 – ident: CR25 – volume: 157 start-page: 189 year: 1991 end-page: 210 ident: CR26 article-title: Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(91)90144-O – volume: 2006 start-page: 1 year: 2006 end-page: 39 ident: CR6 article-title: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces publication-title: Abstr. Appl. Anal. doi: 10.1155/AAA/2006/84919 – volume: 21 start-page: 1303 year: 2005 end-page: 1314 ident: CR19 article-title: Regularization of ill-posed problems in Banach spaces: convergence rates publication-title: Inverse Probl. doi: 10.1088/0266-5611/21/4/007 – volume: 15 start-page: 479 year: 2007 end-page: 506 ident: CR22 article-title: Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods publication-title: J. Inverse Ill Posed Probl. – volume: 27 start-page: 53 year: 2002 end-page: 67 ident: CR14 article-title: The normalized duality mapping and two related characteristic properties of a uniformly convex Banach space publication-title: Acta Math. Vietnam. – volume: 3 start-page: 1 year: 2002 end-page: 7 ident: CR18 article-title: On moduli of expansion of the duality mapping of smooth Banach spaces publication-title: J. Inequal. Pure Appl. Math. – ident: CR3 – ident: CR13 – volume: 24 start-page: 1 year: 2008 end-page: 20 ident: CR23 article-title: An iterative regularization method for the solution of the split feasibility problem in Banach spaces publication-title: Inverse Probl. doi: 10.1088/0266-5611/24/5/055008 – volume: 57 start-page: 1413 year: 2004 end-page: 1457 ident: CR8 article-title: An iterative thresholding algorithm for linear inverse problems with sparsity constraint publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20042 – ident: CR7 – volume: 26 start-page: 873 year: 2011 end-page: 894 ident: CR11 article-title: An active-set trust-region method for derivative-free nonlinear bound-constrained optimization publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2010.549231 – volume: 22 start-page: 311 year: 2006 end-page: 329 ident: CR20 article-title: Nonlinear iterative methods for linear ill-posed problems in Banach spaces publication-title: Inverse Probl. doi: 10.1088/0266-5611/22/1/017 – ident: CR24 – volume: 7 start-page: 200 year: 1967 end-page: 217 ident: CR4 article-title: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90040-7 – volume: 73 start-page: 200 year: 1967 end-page: 203 ident: CR1 article-title: Positivity of duality mappings publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1967-11678-1 – volume: 54 start-page: 397 year: 2016 ident: 893_CR16 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2458014 – ident: 893_CR12 doi: 10.1137/1.9780898719697 – volume: 26 start-page: 1 year: 2010 ident: 893_CR10 publication-title: Inverse Probl. doi: 10.1088/0266-5611/26/11/115014 – volume: 26 start-page: 873 year: 2011 ident: 893_CR11 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2010.549231 – start-page: 53 volume-title: Classical Banach Spaces year: 1996 ident: 893_CR17 doi: 10.1007/978-3-662-53294-2_8 – ident: 893_CR24 – volume: 7 start-page: 200 year: 1967 ident: 893_CR4 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90040-7 – start-page: 98 volume-title: Introduction to Inverse Problems in Imaging year: 1998 ident: 893_CR2 doi: 10.1887/0750304359 – volume: 20 start-page: 1411 year: 2004 ident: 893_CR5 publication-title: Inverse Probl. doi: 10.1088/0266-5611/20/5/005 – volume: 22 start-page: 311 year: 2006 ident: 893_CR20 publication-title: Inverse Probl. doi: 10.1088/0266-5611/22/1/017 – volume: 54 start-page: 263 year: 2013 ident: 893_CR9 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-012-9527-2 – volume: 157 start-page: 189 year: 1991 ident: 893_CR26 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(91)90144-O – volume: 57 start-page: 1413 year: 2004 ident: 893_CR8 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20042 – ident: 893_CR7 doi: 10.1007/978-94-009-2121-4 – volume: 24 start-page: 1 year: 2008 ident: 893_CR23 publication-title: Inverse Probl. doi: 10.1088/0266-5611/24/5/055008 – volume: 21 start-page: 1303 year: 2005 ident: 893_CR19 publication-title: Inverse Probl. doi: 10.1088/0266-5611/21/4/007 – ident: 893_CR13 doi: 10.1515/jiip-2016-0027 – volume: 15 start-page: 479 year: 2007 ident: 893_CR22 publication-title: J. Inverse Ill Posed Probl. – volume: 73 start-page: 200 year: 1967 ident: 893_CR1 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1967-11678-1 – volume: 25 start-page: 1 year: 2009 ident: 893_CR21 publication-title: Inverse Probl. doi: 10.1088/0266-5611/25/1/015013 – volume: 2006 start-page: 1 year: 2006 ident: 893_CR6 publication-title: Abstr. Appl. Anal. doi: 10.1155/AAA/2006/84919 – ident: 893_CR3 – ident: 893_CR25 doi: 10.1515/9783110255720 – volume: 27 start-page: 53 year: 2002 ident: 893_CR14 publication-title: Acta Math. Vietnam. – volume: 3 start-page: 1 year: 2002 ident: 893_CR18 publication-title: J. Inequal. Pure Appl. Math. – volume: 53 start-page: 4876 year: 2015 ident: 893_CR15 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2411854 |
| SSID | ssj0017641 |
| Score | 2.3132467 |
| Snippet | We develop an iterative algorithm to recover the minimum
p
-norm solution of the functional linear equation
A
x
=
b
,
where
A
:
X
⟶
Y
is a continuous linear... We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation A x = b , where A : X ⟶ Y is a continuous linear... We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation Ax=b, where A:X⟶Y is a continuous linear operator... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 895 |
| SubjectTerms | Algorithms Banach spaces Computer Arithmetic Computer Science Conjugate gradient method Descent Hilbert space Iterative algorithms Iterative methods Linear equations Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Queuing theory Regularization Restoration Robustness (mathematics) Simulation Smoothness Theoretical |
| Title | A conjugate gradient like method for p-norm minimization in functional spaces |
| URI | https://link.springer.com/article/10.1007/s00211-017-0893-7 https://www.proquest.com/docview/1958781724 https://hal.science/hal-03512093 |
| Volume | 137 |
| WOSCitedRecordID | wos000414357700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0945-3245 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017641 issn: 0029-599X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB3RwgEOFAqIsslCnECWktiJ42OFqHoAhMSi3iLHsaEsAXX7fjxpEgECJLgmzqLx8t54xm8AjkIWyIylioYyZZQ7jKWK24xmShrOdWhExotiE-LyMh4M5FV5jntcZbtXIclipa4PuyEcoesrqOdAlooGLIYoNoMu-vVdHToQEfervI5QykEVyvzuFZ_AqPGAqZAfeOaX0GiBOL3Wv_51DVZLgkm68xGxDgsmb0OrKt5AyrnchpWLWrB1vAEXXeIc48cpbqqR-1GRBzYhz8MnQ-Y1pokjt-SN5o7iEpQjeSnPb5JhThAb51uKxK1PbuHZhNve2c1pn5aVFqhmkk2oEkbJ2FilnPelHenxuC_chLSRtcraQDi3LDYmjYWJjfY1i4wwvtKBb5nMPM62oJm_5mYbiBCRlyo_Qkjkqa9lZhlXgUYiZVLOOuBVJk90KUOO1TCek1pAuTBe4oyXoPES0YHj-pG3uQbHb40PXT_W7VA9u989T_AaBk0DT7KZ34G9qpuTcs6OE5TdEbEjdLwDJ1W3frj90xd3_tR6F5YDHBdFRsweNCejqdmHJT2bDMejg2IovwN03uvY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7RDgn2sI4ytG4dWIgnkKUkduP4sZqoimirSSuob5bj2NBRsqnp-vfPlyZRhwAJXhPnh84_vu985-8A3g1YJDOWajqQKaPcYyzV3GU009JybgZWZLwsNiFms2SxkFfVOe6iznavQ5LlSt0cdkM4QtdX0MCDLBUtOOBYZQdd9OuvTehAxDys8zoGUi7qUObvXvEIjFrfMRVyj2f-EhotEWfU-a9_PYajimCS4W5EvIAnNu9Cpy7eQKq53IXDaSPYWryE6ZB4x_jmHjfVyLd1mQe2IavlD0t2NaaJJ7fkjuae4hKUI_lZnd8ky5wgNu62FIlfn_zCcwJfRh_nl2NaVVqghkm2oVpYLRPrtPbel_GkJ-Ch8BPSxc5p5yLh3bLE2jQRNrEmNCy2wobaRKFjMgs4ewXt_Da3p0CEiINUhzFCIk9DIzPHuI4MEimbctaDoDa5MpUMOVbDWKlGQLk0nvLGU2g8JXrwvnnkbqfB8bfGb30_Nu1QPXs8nCi8hkHTKJBsG_agX3ezquZsoVB2RySe0PEefKi7de_2n7549k-t38Cz8Xw6UZNPs8_n8DzCMVJmx_ShvVnf2wt4arabZbF-XQ7rB4qu7rw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5xqYIHoLSI5ShWxVMriyT2xvHjClhRAStEabVvluPYZTnCajfw-_HkElRQCfU1cQ6Nj-8bz_gbgL0ui2TGUk27MmWUe4ylmruMZlpazk3XioyXxSbEYJAMh_K8rnM6bbLdm5BkdaYBVZryYn-cuf324BtCE7rBggYecKmYhXnuHRnM6br4-bsNI4iYh02OR1fKYRPWfO0VL4Bp9grTIp9xzr_CpCX69Ff--79XYbkmnqRXjZSPMGPzNVhpijqQeo6vwdJZK-Q6_QRnPeK_cP2Am23kz6TMDyvI7ejGkqr2NPGkl4xp7qkvQZmSu_pcJxnlBDGz2mokft3yC9Jn-NU_ujw4pnUFBmqYZAXVwmqZWKe198qMJ0MBD4WfqC52TjsXCe-uJdamibCJNaFhsRU21CYKHZNZwNk6zOX3ud0AIkQcpDqMESp5GhqZOcZ1ZJBg2ZSzDgSN-ZWp5cmxSsataoWVS-MpbzyFxlOiA9_aR8aVNse_Gn_1fdq2Q1Xt496pwmsYTI0CyR7DDmw3Xa7quTxVKMcjEk_0eAe-N1387PZbX9x8V-td-HB-2FenPwYnW7AY4RApk2a2Ya6YPNgdWDCPxWg6-VKO8CeXV_eg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conjugate+gradient+like+method+for+p-norm+minimization+in+functional+spaces&rft.jtitle=Numerische+Mathematik&rft.au=Estatico%2C+Claudio&rft.au=Gratton%2C+Serge&rft.au=Lenti%2C+Flavia&rft.au=Titley-Peloquin%2C+David&rft.date=2017-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=137&rft.issue=4&rft.spage=895&rft.epage=922&rft_id=info:doi/10.1007%2Fs00211-017-0893-7&rft.externalDocID=10_1007_s00211_017_0893_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon |