A conjugate gradient like method for p-norm minimization in functional spaces

We develop an iterative algorithm to recover the minimum p -norm solution of the functional linear equation A x = b , where A : X ⟶ Y is a continuous linear operator between the two Banach spaces X = L p , 1 < p < 2 , and Y = L r , r > 1 , with x ∈ X and b ∈ Y . The algorithm is conceived w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerische Mathematik Ročník 137; číslo 4; s. 895 - 922
Hlavní autoři: Estatico, Claudio, Gratton, Serge, Lenti, Flavia, Titley-Peloquin, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2017
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0029-599X, 0945-3245
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We develop an iterative algorithm to recover the minimum p -norm solution of the functional linear equation A x = b , where A : X ⟶ Y is a continuous linear operator between the two Banach spaces X = L p , 1 < p < 2 , and Y = L r , r > 1 , with x ∈ X and b ∈ Y . The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329, 2006 ). Indeed, the algorithm is based on using, at the n -th iteration, a linear combination of the steepest current “descent functional” A ∗ J b - A x n and the previous descent functional, where J denotes a duality map of the Banach space Y . In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum p -norm solution of the functional linear equation A x = b and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of L p spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes.
AbstractList We develop an iterative algorithm to recover the minimum p -norm solution of the functional linear equation A x = b , where A : X ⟶ Y is a continuous linear operator between the two Banach spaces X = L p , 1 < p < 2 , and Y = L r , r > 1 , with x ∈ X and b ∈ Y . The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329, 2006 ). Indeed, the algorithm is based on using, at the n -th iteration, a linear combination of the steepest current “descent functional” A ∗ J b - A x n and the previous descent functional, where J denotes a duality map of the Banach space Y . In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum p -norm solution of the functional linear equation A x = b and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of L p spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes.
We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation Ax=b, where A:X⟶Y is a continuous linear operator between the two Banach spaces X=Lp, 1<p<2, and Y=Lr, r>1, with x∈X and b∈Y. The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329, 2006). Indeed, the algorithm is based on using, at the n-th iteration, a linear combination of the steepest current “descent functional” A∗J(b−Axn) and the previous descent functional, where J denotes a duality map of the Banach space Y. In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum p-norm solution of the functional linear equation Ax=b and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of Lp spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes.
We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation A x = b , where A : X ⟶ Y is a continuous linear operator between the two Banach spaces X = L p , 1 < p < 2 , and Y = L r , r > 1 , with x ∈ X and b ∈ Y . The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schöpfer et al. (Inverse Probl 22:311–329, 2006). Indeed, the algorithm is based on using, at the n-th iteration, a linear combination of the steepest current “descent functional” A ∗ J b - A x n and the previous descent functional, where J denotes a duality map of the Banach space Y . In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum p-norm solution of the functional linear equation A x = b and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of L p spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes.
Author Estatico, Claudio
Gratton, Serge
Titley-Peloquin, David
Lenti, Flavia
Author_xml – sequence: 1
  givenname: Claudio
  surname: Estatico
  fullname: Estatico, Claudio
  organization: Dipartimento di Matematica, Università degli Studi di Genova
– sequence: 2
  givenname: Serge
  surname: Gratton
  fullname: Gratton, Serge
  organization: Université de Toulouse, INP-IRIT
– sequence: 3
  givenname: Flavia
  surname: Lenti
  fullname: Lenti, Flavia
  email: flavialenti@gmail.com
  organization: Institut de Recherche en Informatique de Toulouse
– sequence: 4
  givenname: David
  surname: Titley-Peloquin
  fullname: Titley-Peloquin, David
  organization: Department of Bioresource Engineering, McGill University
BackLink https://hal.science/hal-03512093$$DView record in HAL
BookMark eNp9kEtLBDEQhIMo-PwB3gKePETzmNlMjov4ghUvCt5CzHbWrDPJmswK-uvNOAoi6KmbTn1FpXbRZogBEDpk9IRRKk8zpZwxQpkktFGCyA20Q1VVE8GrerPslCtSK_WwjXZzXtIinFRsB91MsY1huV6YHvAimbmH0OPWPwPuoH-Kc-xiwisSYupw54Pv_LvpfQzYB-zWwQ67aXFeGQt5H20502Y4-Jp76P7i_O7sisxuL6_PpjNihRI9MRKMasAZo1RjJ4zTislHSt3EOeMcl7wpz_DYSGjAMismIIEZy5kTak4rsYeOR98n0-pV8p1Jbzoar6-mMz3cqKiLqxKvrGiPRu0qxZc15F4v4zqVzFkzVTeyYZIPjnJU2RRzTuC09f3nR_tkfKsZ1UPPeuxZl_r00LOWhWS_yO9A_zF8ZHLRhgWkH5n-hD4AOkqRTw
CitedBy_id crossref_primary_10_1080_02331934_2019_1566328
crossref_primary_10_3390_s19061270
crossref_primary_10_1088_1361_6420_ab9f86
crossref_primary_10_1007_s11075_023_01578_x
crossref_primary_10_1109_TMTT_2018_2849060
crossref_primary_10_1155_2019_2841937
crossref_primary_10_1109_JERM_2020_3042711
crossref_primary_10_1007_s11784_019_0684_0
crossref_primary_10_1007_s10915_018_0816_5
crossref_primary_10_1007_s10915_021_01727_1
crossref_primary_10_1007_s00371_022_02484_4
crossref_primary_10_1007_s10092_018_0260_9
crossref_primary_10_1016_j_cam_2020_112824
crossref_primary_10_1016_j_apnum_2018_09_006
crossref_primary_10_1016_j_apnum_2023_05_007
crossref_primary_10_1109_JSTARS_2023_3276698
crossref_primary_10_1007_s11075_021_01087_9
crossref_primary_10_1007_s11075_022_01458_w
Cites_doi 10.1109/TGRS.2015.2458014
10.1088/0266-5611/25/1/015013
10.1088/0266-5611/20/5/005
10.1007/s10589-012-9527-2
10.1109/TGRS.2015.2411854
10.1887/0750304359
10.1088/0266-5611/26/11/115014
10.1016/0022-247X(91)90144-O
10.1155/AAA/2006/84919
10.1088/0266-5611/21/4/007
10.1088/0266-5611/24/5/055008
10.1002/cpa.20042
10.1080/10556788.2010.549231
10.1088/0266-5611/22/1/017
10.1016/0041-5553(67)90040-7
10.1090/S0002-9904-1967-11678-1
10.1137/1.9780898719697
10.1007/978-3-662-53294-2_8
10.1007/978-94-009-2121-4
10.1515/jiip-2016-0027
10.1515/9783110255720
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Copyright Springer Science & Business Media 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Copyright Springer Science & Business Media 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s00211-017-0893-7
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 922
ExternalDocumentID oai:HAL:hal-03512093v1
10_1007_s00211_017_0893_7
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c393t-a7ea98efaa998c6120417b00f6ffaff272898eeb87e8ec1c36e7e1ac21f39d043
IEDL.DBID RSV
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414357700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-599X
IngestDate Sat Oct 25 11:14:25 EDT 2025
Mon Oct 06 16:25:19 EDT 2025
Tue Nov 18 20:15:34 EST 2025
Sat Nov 29 01:35:59 EST 2025
Fri Feb 21 02:33:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 65F10
47A52
65J20
Conjugate gradient method
Iterative regularization
Banach spaces
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-a7ea98efaa998c6120417b00f6ffaff272898eeb87e8ec1c36e7e1ac21f39d043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5021-2357
OpenAccessLink https://hal.science/hal-03512093
PQID 1958781724
PQPubID 2043616
PageCount 28
ParticipantIDs hal_primary_oai_HAL_hal_03512093v1
proquest_journals_1958781724
crossref_citationtrail_10_1007_s00211_017_0893_7
crossref_primary_10_1007_s00211_017_0893_7
springer_journals_10_1007_s00211_017_0893_7
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Schöpfer, Schuster (CR21) 2009; 25
Lenti, Nunziata, Estatico, Migliaccio (CR16) 2016; 54
Bertero, Boccacci (CR2) 1998
Schöpfer, Schuster, Louis (CR22) 2007; 15
CR13
CR12
Daubachies, Defrise, De Mol (CR8) 2004; 57
Resmerita (CR19) 2005; 21
Grasmair (CR10) 2010; 26
Schöpfer, Schuster, Louis (CR23) 2008; 24
CR3
Milicic (CR18) 2002; 3
CR7
CR25
Xu, Roach (CR26) 1991; 157
Butnariu, Resmerita (CR6) 2006; 2006
CR24
Lindestrauss, Tzafriri (CR17) 1996
Bregman (CR4) 1967; 7
Kien (CR14) 2002; 27
Lenti, Nunziata, Estatico, Migliaccio (CR15) 2015; 53
Schöpfer, Louis, Schuster (CR20) 2006; 22
Brianzi, Di Benedetto, Estatico (CR9) 2013; 54
Burger, Osher (CR5) 2004; 20
Gratton, Toint, Tröltzsch (CR11) 2011; 26
Asplund (CR1) 1967; 73
LM Bregman (893_CR4) 1967; 7
PM Milicic (893_CR18) 2002; 3
F Schöpfer (893_CR22) 2007; 15
E Resmerita (893_CR19) 2005; 21
M Grasmair (893_CR10) 2010; 26
D Butnariu (893_CR6) 2006; 2006
S Gratton (893_CR11) 2011; 26
893_CR24
893_CR25
F Schöpfer (893_CR23) 2008; 24
L Daubachies (893_CR8) 2004; 57
M Burger (893_CR5) 2004; 20
ZB Xu (893_CR26) 1991; 157
F Lenti (893_CR15) 2015; 53
M Bertero (893_CR2) 1998
893_CR7
F Schöpfer (893_CR21) 2009; 25
P Brianzi (893_CR9) 2013; 54
F Schöpfer (893_CR20) 2006; 22
893_CR3
BT Kien (893_CR14) 2002; 27
893_CR13
893_CR12
E Asplund (893_CR1) 1967; 73
J Lindestrauss (893_CR17) 1996
F Lenti (893_CR16) 2016; 54
References_xml – volume: 54
  start-page: 397
  year: 2016
  end-page: 406
  ident: CR16
  article-title: Conjugate gradient method in Hilbert and Banach spaces to enhance the spatial resolution of radiometer data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2458014
– volume: 25
  start-page: 1
  year: 2009
  end-page: 22
  ident: CR21
  article-title: Fast regularizing sequential subspace optimization in Banach spaces
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/25/1/015013
– volume: 20
  start-page: 1411
  year: 2004
  end-page: 1421
  ident: CR5
  article-title: Convergence rates of convex variational regularization
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/20/5/005
– start-page: 53
  year: 1996
  end-page: 104
  ident: CR17
  publication-title: Classical Banach Spaces
– ident: CR12
– volume: 54
  start-page: 263
  year: 2013
  end-page: 282
  ident: CR9
  article-title: Preconditioned iterative regularization in Banach spaces
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9527-2
– volume: 53
  start-page: 4876
  year: 2015
  end-page: 4886
  ident: CR15
  article-title: Analysis of reconstructions obtained solving -penalized minimization problems
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2411854
– start-page: 98
  year: 1998
  end-page: 127
  ident: CR2
  publication-title: Introduction to Inverse Problems in Imaging
  doi: 10.1887/0750304359
– volume: 26
  start-page: 1
  year: 2010
  end-page: 20
  ident: CR10
  article-title: Generalized Bregman distances and convergences rate for non-convex regularization methods
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/26/11/115014
– ident: CR25
– volume: 157
  start-page: 189
  year: 1991
  end-page: 210
  ident: CR26
  article-title: Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(91)90144-O
– volume: 2006
  start-page: 1
  year: 2006
  end-page: 39
  ident: CR6
  article-title: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/AAA/2006/84919
– volume: 21
  start-page: 1303
  year: 2005
  end-page: 1314
  ident: CR19
  article-title: Regularization of ill-posed problems in Banach spaces: convergence rates
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/4/007
– volume: 15
  start-page: 479
  year: 2007
  end-page: 506
  ident: CR22
  article-title: Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods
  publication-title: J. Inverse Ill Posed Probl.
– volume: 27
  start-page: 53
  year: 2002
  end-page: 67
  ident: CR14
  article-title: The normalized duality mapping and two related characteristic properties of a uniformly convex Banach space
  publication-title: Acta Math. Vietnam.
– volume: 3
  start-page: 1
  year: 2002
  end-page: 7
  ident: CR18
  article-title: On moduli of expansion of the duality mapping of smooth Banach spaces
  publication-title: J. Inequal. Pure Appl. Math.
– ident: CR3
– ident: CR13
– volume: 24
  start-page: 1
  year: 2008
  end-page: 20
  ident: CR23
  article-title: An iterative regularization method for the solution of the split feasibility problem in Banach spaces
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/24/5/055008
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1457
  ident: CR8
  article-title: An iterative thresholding algorithm for linear inverse problems with sparsity constraint
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– ident: CR7
– volume: 26
  start-page: 873
  year: 2011
  end-page: 894
  ident: CR11
  article-title: An active-set trust-region method for derivative-free nonlinear bound-constrained optimization
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2010.549231
– volume: 22
  start-page: 311
  year: 2006
  end-page: 329
  ident: CR20
  article-title: Nonlinear iterative methods for linear ill-posed problems in Banach spaces
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/22/1/017
– ident: CR24
– volume: 7
  start-page: 200
  year: 1967
  end-page: 217
  ident: CR4
  article-title: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume: 73
  start-page: 200
  year: 1967
  end-page: 203
  ident: CR1
  article-title: Positivity of duality mappings
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1967-11678-1
– volume: 54
  start-page: 397
  year: 2016
  ident: 893_CR16
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2458014
– ident: 893_CR12
  doi: 10.1137/1.9780898719697
– volume: 26
  start-page: 1
  year: 2010
  ident: 893_CR10
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/26/11/115014
– volume: 26
  start-page: 873
  year: 2011
  ident: 893_CR11
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2010.549231
– start-page: 53
  volume-title: Classical Banach Spaces
  year: 1996
  ident: 893_CR17
  doi: 10.1007/978-3-662-53294-2_8
– ident: 893_CR24
– volume: 7
  start-page: 200
  year: 1967
  ident: 893_CR4
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– start-page: 98
  volume-title: Introduction to Inverse Problems in Imaging
  year: 1998
  ident: 893_CR2
  doi: 10.1887/0750304359
– volume: 20
  start-page: 1411
  year: 2004
  ident: 893_CR5
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/20/5/005
– volume: 22
  start-page: 311
  year: 2006
  ident: 893_CR20
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/22/1/017
– volume: 54
  start-page: 263
  year: 2013
  ident: 893_CR9
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9527-2
– volume: 157
  start-page: 189
  year: 1991
  ident: 893_CR26
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(91)90144-O
– volume: 57
  start-page: 1413
  year: 2004
  ident: 893_CR8
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– ident: 893_CR7
  doi: 10.1007/978-94-009-2121-4
– volume: 24
  start-page: 1
  year: 2008
  ident: 893_CR23
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/24/5/055008
– volume: 21
  start-page: 1303
  year: 2005
  ident: 893_CR19
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/4/007
– ident: 893_CR13
  doi: 10.1515/jiip-2016-0027
– volume: 15
  start-page: 479
  year: 2007
  ident: 893_CR22
  publication-title: J. Inverse Ill Posed Probl.
– volume: 73
  start-page: 200
  year: 1967
  ident: 893_CR1
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1967-11678-1
– volume: 25
  start-page: 1
  year: 2009
  ident: 893_CR21
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/25/1/015013
– volume: 2006
  start-page: 1
  year: 2006
  ident: 893_CR6
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/AAA/2006/84919
– ident: 893_CR3
– ident: 893_CR25
  doi: 10.1515/9783110255720
– volume: 27
  start-page: 53
  year: 2002
  ident: 893_CR14
  publication-title: Acta Math. Vietnam.
– volume: 3
  start-page: 1
  year: 2002
  ident: 893_CR18
  publication-title: J. Inequal. Pure Appl. Math.
– volume: 53
  start-page: 4876
  year: 2015
  ident: 893_CR15
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2411854
SSID ssj0017641
Score 2.3132467
Snippet We develop an iterative algorithm to recover the minimum p -norm solution of the functional linear equation A x = b , where A : X ⟶ Y is a continuous linear...
We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation A x = b , where A : X ⟶ Y is a continuous linear...
We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation Ax=b, where A:X⟶Y is a continuous linear operator...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 895
SubjectTerms Algorithms
Banach spaces
Computer Arithmetic
Computer Science
Conjugate gradient method
Descent
Hilbert space
Iterative algorithms
Iterative methods
Linear equations
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Queuing theory
Regularization
Restoration
Robustness (mathematics)
Simulation
Smoothness
Theoretical
Title A conjugate gradient like method for p-norm minimization in functional spaces
URI https://link.springer.com/article/10.1007/s00211-017-0893-7
https://www.proquest.com/docview/1958781724
https://hal.science/hal-03512093
Volume 137
WOSCitedRecordID wos000414357700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB3RwgEOFAqIsslCnECWktiJ42OFqHoAhMSi3iLHsaEsAXX7fjxpEgECJLgmzqLx8t54xm8AjkIWyIylioYyZZQ7jKWK24xmShrOdWhExotiE-LyMh4M5FV5jntcZbtXIclipa4PuyEcoesrqOdAlooGLIYoNoMu-vVdHToQEfervI5QykEVyvzuFZ_AqPGAqZAfeOaX0GiBOL3Wv_51DVZLgkm68xGxDgsmb0OrKt5AyrnchpWLWrB1vAEXXeIc48cpbqqR-1GRBzYhz8MnQ-Y1pokjt-SN5o7iEpQjeSnPb5JhThAb51uKxK1PbuHZhNve2c1pn5aVFqhmkk2oEkbJ2FilnPelHenxuC_chLSRtcraQDi3LDYmjYWJjfY1i4wwvtKBb5nMPM62oJm_5mYbiBCRlyo_Qkjkqa9lZhlXgUYiZVLOOuBVJk90KUOO1TCek1pAuTBe4oyXoPES0YHj-pG3uQbHb40PXT_W7VA9u989T_AaBk0DT7KZ34G9qpuTcs6OE5TdEbEjdLwDJ1W3frj90xd3_tR6F5YDHBdFRsweNCejqdmHJT2bDMejg2IovwN03uvY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7RDgn2sI4ytG4dWIgnkKUkduP4sZqoimirSSuob5bj2NBRsqnp-vfPlyZRhwAJXhPnh84_vu985-8A3g1YJDOWajqQKaPcYyzV3GU009JybgZWZLwsNiFms2SxkFfVOe6iznavQ5LlSt0cdkM4QtdX0MCDLBUtOOBYZQdd9OuvTehAxDys8zoGUi7qUObvXvEIjFrfMRVyj2f-EhotEWfU-a9_PYajimCS4W5EvIAnNu9Cpy7eQKq53IXDaSPYWryE6ZB4x_jmHjfVyLd1mQe2IavlD0t2NaaJJ7fkjuae4hKUI_lZnd8ky5wgNu62FIlfn_zCcwJfRh_nl2NaVVqghkm2oVpYLRPrtPbel_GkJ-Ch8BPSxc5p5yLh3bLE2jQRNrEmNCy2wobaRKFjMgs4ewXt_Da3p0CEiINUhzFCIk9DIzPHuI4MEimbctaDoDa5MpUMOVbDWKlGQLk0nvLGU2g8JXrwvnnkbqfB8bfGb30_Nu1QPXs8nCi8hkHTKJBsG_agX3ezquZsoVB2RySe0PEefKi7de_2n7549k-t38Cz8Xw6UZNPs8_n8DzCMVJmx_ShvVnf2wt4arabZbF-XQ7rB4qu7rw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5xqYIHoLSI5ShWxVMriyT2xvHjClhRAStEabVvluPYZTnCajfw-_HkElRQCfU1cQ6Nj-8bz_gbgL0ui2TGUk27MmWUe4ylmruMZlpazk3XioyXxSbEYJAMh_K8rnM6bbLdm5BkdaYBVZryYn-cuf324BtCE7rBggYecKmYhXnuHRnM6br4-bsNI4iYh02OR1fKYRPWfO0VL4Bp9grTIp9xzr_CpCX69Ff--79XYbkmnqRXjZSPMGPzNVhpijqQeo6vwdJZK-Q6_QRnPeK_cP2Am23kz6TMDyvI7ejGkqr2NPGkl4xp7qkvQZmSu_pcJxnlBDGz2mokft3yC9Jn-NU_ujw4pnUFBmqYZAXVwmqZWKe198qMJ0MBD4WfqC52TjsXCe-uJdamibCJNaFhsRU21CYKHZNZwNk6zOX3ud0AIkQcpDqMESp5GhqZOcZ1ZJBg2ZSzDgSN-ZWp5cmxSsataoWVS-MpbzyFxlOiA9_aR8aVNse_Gn_1fdq2Q1Xt496pwmsYTI0CyR7DDmw3Xa7quTxVKMcjEk_0eAe-N1387PZbX9x8V-td-HB-2FenPwYnW7AY4RApk2a2Ya6YPNgdWDCPxWg6-VKO8CeXV_eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conjugate+gradient+like+method+for+p-norm+minimization+in+functional+spaces&rft.jtitle=Numerische+Mathematik&rft.au=Estatico%2C+Claudio&rft.au=Gratton%2C+Serge&rft.au=Lenti%2C+Flavia&rft.au=Titley-Peloquin%2C+David&rft.date=2017-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=137&rft.issue=4&rft.spage=895&rft.epage=922&rft_id=info:doi/10.1007%2Fs00211-017-0893-7&rft.externalDocID=10_1007_s00211_017_0893_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon