Inner Approximation Method for a Reverse Convex Programming Problem

In this paper, we consider a reverse convex programming problem constrained by a convex set and a reverse convex set, which is defined by the complement of the interior of a compact convex set X. We propose an inner approximation method to solve the problem in the case where X is not necessarily a p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 107; číslo 2; s. 355 - 389
Hlavní autoři: Yamada, S., Tanino, T., Inuiguchi, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Springer 01.11.2000
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider a reverse convex programming problem constrained by a convex set and a reverse convex set, which is defined by the complement of the interior of a compact convex set X. We propose an inner approximation method to solve the problem in the case where X is not necessarily a polytope. The algorithm utilizes an inner approximation of X by a sequence of polytopes to generate relaxed problems. It is shown that every accumulation point of the sequence of optimal solutions of the relaxed problems is an optimal solution of the original problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1023/A:1026456730792