A Deep Learning Approach for Real-Time Intrusion Mitigation in Automotive Controller Area Networks
The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as th...
Gespeichert in:
| Veröffentlicht in: | World electric vehicle journal Jg. 16; H. 9; S. 492 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.09.2025
|
| Schlagworte: | |
| ISSN: | 2032-6653, 2032-6653 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as the de facto standard for interconnecting these units, enabling critical functionalities. However, inherited non-delineation in SCs— transmits messages without explicit destination addressing—poses significant security risks, necessitating the evolution of an astute and resilient self-defense mechanism (SDM) to neutralize cyber threats. To this end, this study introduces a lightweight intrusion mitigation mechanism based on an adaptive momentum-based deep denoising autoencoder (AM-DDAE). Employing real-time CAN bus data from renowned smart vehicles, the proposed framework effectively reconstructs original data compromised by adversarial activities. Simulation results illustrate the efficacy of the AM-DDAE-based SDM, achieving a reconstruction error (RE) of less than 1% and an average execution time of 0.145532 s for data recovery. When validated on a new unseen attack, and on an Adversarial Machine Learning attack, the proposed model demonstrated equally strong performance with RE < 1%. Furthermore, the model’s decision-making capabilities were analysed using Explainable AI techinques such as SHAP and LIME. Additionally, the scheme offers applicable deployment flexibility: it can either be (a) embedded directly into individual ECU firmware or (b) implemented as a centralized hardware component interfacing between the CAN bus and ECUs, preloaded with the proposed mitigation algorithm. |
|---|---|
| AbstractList | The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as the de facto standard for interconnecting these units, enabling critical functionalities. However, inherited non-delineation in SCs— transmits messages without explicit destination addressing—poses significant security risks, necessitating the evolution of an astute and resilient self-defense mechanism (SDM) to neutralize cyber threats. To this end, this study introduces a lightweight intrusion mitigation mechanism based on an adaptive momentum-based deep denoising autoencoder (AM-DDAE). Employing real-time CAN bus data from renowned smart vehicles, the proposed framework effectively reconstructs original data compromised by adversarial activities. Simulation results illustrate the efficacy of the AM-DDAE-based SDM, achieving a reconstruction error (RE) of less than 1% and an average execution time of 0.145532 s for data recovery. When validated on a new unseen attack, and on an Adversarial Machine Learning attack, the proposed model demonstrated equally strong performance with RE < 1%. Furthermore, the model’s decision-making capabilities were analysed using Explainable AI techinques such as SHAP and LIME. Additionally, the scheme offers applicable deployment flexibility: it can either be (a) embedded directly into individual ECU firmware or (b) implemented as a centralized hardware component interfacing between the CAN bus and ECUs, preloaded with the proposed mitigation algorithm. |
| Author | Khan, Zafar A. Ahmed, Saeed Kousar, Anila |
| Author_xml | – sequence: 1 givenname: Anila surname: Kousar fullname: Kousar, Anila – sequence: 2 givenname: Saeed orcidid: 0000-0002-3624-4096 surname: Ahmed fullname: Ahmed, Saeed – sequence: 3 givenname: Zafar A. orcidid: 0000-0003-3149-6865 surname: Khan fullname: Khan, Zafar A. |
| BookMark | eNpNkU9v1DAQxS1UJErpjQ9giSuB8djxxsdo-bfSAhIqZ2viTBYv2XhxvK349qRsVfU0T6Of3ozeeykupjSxEK8VvNPawfs7vt0rCw6Mw2fiEkFjZW2tL57oF-J6nvcAgMo4pdSl6Fr5gfkot0x5itNOtsdjThR-ySFl-YNprG7igeVmKvk0xzTJr7HEHZV7GSfZnko6pBJvWa7TwqRx5CzbzCS_cblL-ff8SjwfaJz5-mFeiZ-fPt6sv1Tb758363ZbBe10qZwmR0E1aAOhHnrX9RAawAGpgd4AsqnRQYekGoeDhd4uMELXsaUVNvpKbM6-faK9P-Z4oPzXJ4r-_yLlnadcYhjZB1j11qByYQiG2HVG6wGRQmc5AJrF683Zawnjz4nn4vfplKflfa-xNrauV8Yu1NszFXKa58zD41UF_r4U_7QU_Q-OX4Ca |
| Cites_doi | 10.1145/3508398.3511523 10.1007/s42979-024-03459-z 10.1186/s42400-023-00195-4 10.1109/ACCESS.2021.3095962 10.3390/s23084086 10.3390/sym14020310 10.1109/JSEN.2024.3397966 10.1109/ACCESS.2025.3564848 10.1109/ACCESS.2024.3457682 10.3390/electronics13101962 10.1080/01969722.2022.2137643 10.1109/JIOT.2023.3303271 10.1109/TIV.2021.3122144 10.3390/sym17060874 10.3390/s23073610 |
| ContentType | Journal Article |
| Copyright | 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/wevj16090492 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2032-6653 |
| ExternalDocumentID | oai_doaj_org_article_c07d64219cfc4ae9b433f22acb6ec024 10_3390_wevj16090492 |
| GroupedDBID | AADQD AAFWJ AAYXX ABJCF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS 8FE 8FG ABUWG AZQEC DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c393t-93a9ac1826ca23fd9bd0c802f2a80d402e45290b2a1892f60d618220bbe6a7283 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001581230700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2032-6653 |
| IngestDate | Mon Nov 10 04:31:06 EST 2025 Fri Sep 26 22:34:47 EDT 2025 Sat Nov 29 07:22:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c393t-93a9ac1826ca23fd9bd0c802f2a80d402e45290b2a1892f60d618220bbe6a7283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3149-6865 0000-0002-3624-4096 |
| OpenAccessLink | https://doaj.org/article/c07d64219cfc4ae9b433f22acb6ec024 |
| PQID | 3254655746 |
| PQPubID | 5046847 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c07d64219cfc4ae9b433f22acb6ec024 proquest_journals_3254655746 crossref_primary_10_3390_wevj16090492 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | World electric vehicle journal |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Shahriar (ref_11) 2023; 10 Wang (ref_19) 2024; 15 ref_12 ref_10 ref_32 ref_31 ref_30 Dabbaghjamanesh (ref_14) 2020; 22 Khanapuri (ref_25) 2021; 8 Hidalgo (ref_21) 2022; 34 ref_15 Tanksale (ref_8) 2024; 7 Sontakke (ref_20) 2023; 54 Samani (ref_18) 2025; 13 Hassan (ref_16) 2024; 12 Moradi (ref_17) 2024; 24 ref_23 ref_22 ref_1 ref_3 ref_2 ref_29 ref_28 Moulahi (ref_13) 2021; 9 ref_27 ref_26 ref_9 Khanna (ref_24) 2024; 5 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_28 – ident: ref_30 – ident: ref_5 – ident: ref_32 doi: 10.1145/3508398.3511523 – ident: ref_3 – ident: ref_26 – volume: 5 start-page: 1089 year: 2024 ident: ref_24 article-title: An Integrated Security VANET Algorithm for Threat Mitigation and Performance Improvement Using Machine Learning publication-title: SN Comput. Sci. doi: 10.1007/s42979-024-03459-z – volume: 7 start-page: 4 year: 2024 ident: ref_8 article-title: Intrusion detection system for controller area network publication-title: Cybersecurity doi: 10.1186/s42400-023-00195-4 – volume: 9 start-page: 99595 year: 2021 ident: ref_13 article-title: Comparative performance evaluation of intrusion detection based on machine learning in in-vehicle controller area network bus publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3095962 – ident: ref_23 – ident: ref_1 doi: 10.3390/s23084086 – ident: ref_12 doi: 10.3390/sym14020310 – volume: 34 start-page: 100425 year: 2022 ident: ref_21 article-title: Detection, control and mitigation system for secure vehicular communication publication-title: Veh. Commun. – ident: ref_6 – volume: 22 start-page: 4478 year: 2020 ident: ref_14 article-title: An evolutionary deep learning-based anomaly detection model for securing vehicles publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 24 start-page: 20908 year: 2024 ident: ref_17 article-title: Sensor and Decision Fusion-based Intrusion Detection and Mitigation Approach for Connected Autonomous Vehicles publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3397966 – ident: ref_4 – volume: 13 start-page: 77305 year: 2025 ident: ref_18 article-title: Adverse to Normal Image Reconstruction Using Inverse of StarGAN for Autonomous Vehicle Control publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3564848 – ident: ref_31 – volume: 15 start-page: 964 year: 2024 ident: ref_19 article-title: Leveraging Deep Learning for Enhanced Information Security: A Comprehensive Approach to Threat Detection and Mitigation publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_29 – ident: ref_27 – ident: ref_2 – volume: 12 start-page: 150046 year: 2024 ident: ref_16 article-title: Advanced intrusion detection in MANETs: A survey of machine learning and optimization techniques for mitigating black/gray hole attacks publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3457682 – ident: ref_9 doi: 10.3390/electronics13101962 – volume: 54 start-page: 985 year: 2023 ident: ref_20 article-title: Optimized Deep Neural Model-Based Intrusion Detection and Mitigation System for Vehicular Ad-Hoc Network publication-title: Cybern. Syst. doi: 10.1080/01969722.2022.2137643 – volume: 10 start-page: 22111 year: 2023 ident: ref_11 article-title: ANShield: Deep Learning-Based Intrusion Detection Framework for Controller Area Networks at the Signal-Level publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3303271 – ident: ref_15 – volume: 8 start-page: 290 year: 2021 ident: ref_25 article-title: Learning based longitudinal vehicle platooning threat detection, identification and mitigation publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2021.3122144 – ident: ref_22 – ident: ref_7 doi: 10.3390/sym17060874 – ident: ref_10 doi: 10.3390/s23073610 |
| SSID | ssj0002149111 |
| Score | 2.336186 |
| Snippet | The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 492 |
| SubjectTerms | Automobiles Control equipment Controller area network Controllers cyber-attacks Cybersecurity Data integrity Data recovery Deep learning deep-denoising autoencoder Electronic control Explainable artificial intelligence Intelligent vehicles Intrusion intrusions mitigation Machine learning Neural networks Real time Sensors Smart cars |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5ap4fmkPRJnaRFh_YoopXW2tUpOC9aaE0ILeS2jF7Boaxd23H_fke7ch4Ueult0Qp20WhG34xmvgH4WGARKxFK7r3SvMRoOBIw4dqoqNGjLXue2a_VZFJfXZmLHHBb5rTKjU3sDLWfuRQjP1SJuH00qkp9NP_FU9eodLuaW2g8ha3EVFYOYOv4bHJxeRdlkeQAkDb3Ge-K_PvD32F9U2hhCBnLR2dRR9n_l0Xujpnz3f_9wRewkwEmG_c74iU8Ce0r2H5AO_ga7JidhjBnmVv1mo0zsTgjBMsuCTryVBnCvrSpIoMEx75NeyoOepy2bHy76nL41oGd9JnuP8OCvhiQTfqs8uUb-HF-9v3kM8-9FrhTRq24UWjQJWfDoVTRG-uFq4WMEmvhyckM6YZWWIlFbWTUwmuaLIW1QWNFGOUtDNpZG94Bc9YZNSqiQq3KESJKjNFKGnCuLkQcwqfNqjfznlKjIVckSad5KJ0hHCeR3M1JRNjdwGxx3WS9apyofKrVNS66EoOxpVJRSnRWB0f4YwgHG2k1WTuXzb2o9v79eh-ey9Tvt8spO4ABrXp4D8_cejVdLj7kzfYHPJXglg priority: 102 providerName: ProQuest |
| Title | A Deep Learning Approach for Real-Time Intrusion Mitigation in Automotive Controller Area Networks |
| URI | https://www.proquest.com/docview/3254655746 https://doaj.org/article/c07d64219cfc4ae9b433f22acb6ec024 |
| Volume | 16 |
| WOSCitedRecordID | wos001581230700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2032-6653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002149111 issn: 2032-6653 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2032-6653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002149111 issn: 2032-6653 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2032-6653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002149111 issn: 2032-6653 databaseCode: M7S dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2032-6653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002149111 issn: 2032-6653 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2032-6653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002149111 issn: 2032-6653 databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6iHvQg_sTpHDnosZgmXdocp24o6BhTQU_lJU1kInVsc978231pqkw8ePFSShqa8l7z3vfIly-EHMcQu5TZJCoKIaMEnIoAgUkklXASCtBJ0Jm9Tvv97OFBDRaO-vKcsCAPHAx3alha-M2YyjiTgFU6EcJxDkZLazDB-OiLL18opnwM5gj8cRYHprvAuv703c6fY8kUImL-IwdVUv2_InGVXnqbZKPGhbQTvmeLLNlym6wvqAXuEN2hF9aOaS2J-kQ7tR44ReBJh4j4Ir-hg16VfiMF2pvejIKCBt6OStp5m1XUu7ml54Gg_mInOKIF2g9k8Okuue91784vo_qIhMgIJWaREqDA-BrBABeuULpgJmPccchYgbWh9QurTHOIM8WdZIXEzpxpbSWkCC32yHL5Wtp9Qo02SrRjJ0CKpA0AHJzTHBuMyWLmGuTky2j5OChh5FhBeOPmi8ZtkDNv0e8-Xr-6akCv5rVX87-82iDNL3_k9aSa5sJr97fbaSIP_mOMQ7LG_WG-FWGsSZbRN_aIrJr5bDSdtMjKWbc_GLaq_6rlKaG3_vrRxSeDq5vB4ycJVNdO |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58K66tIAP9BjVsbNOfEDV0lJ11e0KQZF6C-NXtajKLrvLVvwpfiPjPEoRErceuEWOlSiZT-MZ-5tvAN6kmIac-yxxTqokw6ATpMAkUVoGhQ5N1ujMjvLxuDg_1x_W4GdXCxNplZ1PrB21m9q4R74no3B7v59nan_2LYldo-LpatdCo4HFif9xRSnb4u3wkOy7K8TR-7OD46TtKpBYqeUy0RI12hhWWxQyOG0ctwUXQWDBHaVTPp5FciMwLbQIijtFkwU3xivMaTWm596Bu1n0_jVV8NP1no6gdIN8R8Ovl1LzvSu_-poqrikOF3-sfHWDgL_8f72oHT36337HY3jYhs9s0OD9Caz56ik8uCGq-AzMgB16P2OtcuwFG7Sy6Yzic_aRAuMk1r2wYRXrTQiW7HTSCI3Q5aRig-_LmqG48uyg4fFf-jm90SMbN5z5xXP4fCsfuQnr1bTyW8CssVr20yBRyayPiAJDMIIGrC1SHnqw21m5nDWCISUlWhEN5U009OBdhMD1nCjzXQ9M5xdl6zVKy3MXK5G1DTZDr00mZRACrVHeUnTVg50OHWXrexblb2i8-Pft13D_-Ox0VI6G45Nt2BCxs3HNntuBdbKAfwn37Go5Wcxf1TBn8OW2gfQLRAM6kA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VghAceCNCC_hAj6t47Y13fUBVaIiIWqKKh9TbMn5VQWgTkpCKv9Zf1_E-ShEStx64rbzWvvztzNj-5huA1ymmIec-S5yTKskw6AQpMEmUlkGhQ5M1OrNH-XRanJzo4y0473JhIq2ys4m1oXZzG9fI-zIKtw8Geab6oaVFHI_G-4sfSawgFXdau3IaDUQO_a8zmr6t3kxGNNZ7QozffT54n7QVBhIrtVwnWqJGG0Nsi0IGp43jtuAiCCy4o6mVj_uS3AhMCy2C4k5RZ8GN8Qpz8sx03Rtwkx4qFTVt8NPl-o6gqQfZkYZrL6Xm_TO_-ZYqrikmF394wbpYwF--oHZw4_v_86d5APfasJoNm__gIWz56hHcvSK2-BjMkI28X7BWUfaUDVs5dUZxO_tIAXMS82HYpIp5KARX9mHWCJDQ4axiw5_rmrm48eyg4fd_90u6o0c2bbj0qyfw5Vpe8ilsV_PKPwNmjdVykAaJSmYDRBQYghHUYG2R8tCDvW7Ey0UjJFLSBCwio7yKjB68jXC47BPlv-uG-fK0bK1JaXnuYoaytsFm6LXJpAxCoDXKW4q6erDbIaVsbdKq_A2T5_8-_QpuE37Ko8n0cAfuiFjwuCbV7cI2DYB_AbfsZj1bLV_WiGfw9bpxdAHiakNW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Real-Time+Intrusion+Mitigation+in+Automotive+Controller+Area+Networks&rft.jtitle=World+electric+vehicle+journal&rft.au=Kousar%2C+Anila&rft.au=Ahmed%2C+Saeed&rft.au=Khan%2C+Zafar+A.&rft.date=2025-09-01&rft.issn=2032-6653&rft.eissn=2032-6653&rft.volume=16&rft.issue=9&rft.spage=492&rft_id=info:doi/10.3390%2Fwevj16090492&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_wevj16090492 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2032-6653&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2032-6653&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2032-6653&client=summon |