A Deep Learning Approach for Real-Time Intrusion Mitigation in Automotive Controller Area Networks

The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World electric vehicle journal Jg. 16; H. 9; S. 492
Hauptverfasser: Kousar, Anila, Ahmed, Saeed, Khan, Zafar A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2025
Schlagworte:
ISSN:2032-6653, 2032-6653
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as the de facto standard for interconnecting these units, enabling critical functionalities. However, inherited non-delineation in SCs— transmits messages without explicit destination addressing—poses significant security risks, necessitating the evolution of an astute and resilient self-defense mechanism (SDM) to neutralize cyber threats. To this end, this study introduces a lightweight intrusion mitigation mechanism based on an adaptive momentum-based deep denoising autoencoder (AM-DDAE). Employing real-time CAN bus data from renowned smart vehicles, the proposed framework effectively reconstructs original data compromised by adversarial activities. Simulation results illustrate the efficacy of the AM-DDAE-based SDM, achieving a reconstruction error (RE) of less than 1% and an average execution time of 0.145532 s for data recovery. When validated on a new unseen attack, and on an Adversarial Machine Learning attack, the proposed model demonstrated equally strong performance with RE < 1%. Furthermore, the model’s decision-making capabilities were analysed using Explainable AI techinques such as SHAP and LIME. Additionally, the scheme offers applicable deployment flexibility: it can either be (a) embedded directly into individual ECU firmware or (b) implemented as a centralized hardware component interfacing between the CAN bus and ECUs, preloaded with the proposed mitigation algorithm.
AbstractList The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as the de facto standard for interconnecting these units, enabling critical functionalities. However, inherited non-delineation in SCs— transmits messages without explicit destination addressing—poses significant security risks, necessitating the evolution of an astute and resilient self-defense mechanism (SDM) to neutralize cyber threats. To this end, this study introduces a lightweight intrusion mitigation mechanism based on an adaptive momentum-based deep denoising autoencoder (AM-DDAE). Employing real-time CAN bus data from renowned smart vehicles, the proposed framework effectively reconstructs original data compromised by adversarial activities. Simulation results illustrate the efficacy of the AM-DDAE-based SDM, achieving a reconstruction error (RE) of less than 1% and an average execution time of 0.145532 s for data recovery. When validated on a new unseen attack, and on an Adversarial Machine Learning attack, the proposed model demonstrated equally strong performance with RE < 1%. Furthermore, the model’s decision-making capabilities were analysed using Explainable AI techinques such as SHAP and LIME. Additionally, the scheme offers applicable deployment flexibility: it can either be (a) embedded directly into individual ECU firmware or (b) implemented as a centralized hardware component interfacing between the CAN bus and ECUs, preloaded with the proposed mitigation algorithm.
Author Khan, Zafar A.
Ahmed, Saeed
Kousar, Anila
Author_xml – sequence: 1
  givenname: Anila
  surname: Kousar
  fullname: Kousar, Anila
– sequence: 2
  givenname: Saeed
  orcidid: 0000-0002-3624-4096
  surname: Ahmed
  fullname: Ahmed, Saeed
– sequence: 3
  givenname: Zafar A.
  orcidid: 0000-0003-3149-6865
  surname: Khan
  fullname: Khan, Zafar A.
BookMark eNpNkU9v1DAQxS1UJErpjQ9giSuB8djxxsdo-bfSAhIqZ2viTBYv2XhxvK349qRsVfU0T6Of3ozeeykupjSxEK8VvNPawfs7vt0rCw6Mw2fiEkFjZW2tL57oF-J6nvcAgMo4pdSl6Fr5gfkot0x5itNOtsdjThR-ySFl-YNprG7igeVmKvk0xzTJr7HEHZV7GSfZnko6pBJvWa7TwqRx5CzbzCS_cblL-ff8SjwfaJz5-mFeiZ-fPt6sv1Tb758363ZbBe10qZwmR0E1aAOhHnrX9RAawAGpgd4AsqnRQYekGoeDhd4uMELXsaUVNvpKbM6-faK9P-Z4oPzXJ4r-_yLlnadcYhjZB1j11qByYQiG2HVG6wGRQmc5AJrF683Zawnjz4nn4vfplKflfa-xNrauV8Yu1NszFXKa58zD41UF_r4U_7QU_Q-OX4Ca
Cites_doi 10.1145/3508398.3511523
10.1007/s42979-024-03459-z
10.1186/s42400-023-00195-4
10.1109/ACCESS.2021.3095962
10.3390/s23084086
10.3390/sym14020310
10.1109/JSEN.2024.3397966
10.1109/ACCESS.2025.3564848
10.1109/ACCESS.2024.3457682
10.3390/electronics13101962
10.1080/01969722.2022.2137643
10.1109/JIOT.2023.3303271
10.1109/TIV.2021.3122144
10.3390/sym17060874
10.3390/s23073610
ContentType Journal Article
Copyright 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/wevj16090492
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2032-6653
ExternalDocumentID oai_doaj_org_article_c07d64219cfc4ae9b433f22acb6ec024
10_3390_wevj16090492
GroupedDBID AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c393t-93a9ac1826ca23fd9bd0c802f2a80d402e45290b2a1892f60d618220bbe6a7283
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001581230700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2032-6653
IngestDate Mon Nov 10 04:31:06 EST 2025
Fri Sep 26 22:34:47 EDT 2025
Sat Nov 29 07:22:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-93a9ac1826ca23fd9bd0c802f2a80d402e45290b2a1892f60d618220bbe6a7283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3149-6865
0000-0002-3624-4096
OpenAccessLink https://doaj.org/article/c07d64219cfc4ae9b433f22acb6ec024
PQID 3254655746
PQPubID 5046847
ParticipantIDs doaj_primary_oai_doaj_org_article_c07d64219cfc4ae9b433f22acb6ec024
proquest_journals_3254655746
crossref_primary_10_3390_wevj16090492
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle World electric vehicle journal
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shahriar (ref_11) 2023; 10
Wang (ref_19) 2024; 15
ref_12
ref_10
ref_32
ref_31
ref_30
Dabbaghjamanesh (ref_14) 2020; 22
Khanapuri (ref_25) 2021; 8
Hidalgo (ref_21) 2022; 34
ref_15
Tanksale (ref_8) 2024; 7
Sontakke (ref_20) 2023; 54
Samani (ref_18) 2025; 13
Hassan (ref_16) 2024; 12
Moradi (ref_17) 2024; 24
ref_23
ref_22
ref_1
ref_3
ref_2
ref_29
ref_28
Moulahi (ref_13) 2021; 9
ref_27
ref_26
ref_9
Khanna (ref_24) 2024; 5
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_28
– ident: ref_30
– ident: ref_5
– ident: ref_32
  doi: 10.1145/3508398.3511523
– ident: ref_3
– ident: ref_26
– volume: 5
  start-page: 1089
  year: 2024
  ident: ref_24
  article-title: An Integrated Security VANET Algorithm for Threat Mitigation and Performance Improvement Using Machine Learning
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-024-03459-z
– volume: 7
  start-page: 4
  year: 2024
  ident: ref_8
  article-title: Intrusion detection system for controller area network
  publication-title: Cybersecurity
  doi: 10.1186/s42400-023-00195-4
– volume: 9
  start-page: 99595
  year: 2021
  ident: ref_13
  article-title: Comparative performance evaluation of intrusion detection based on machine learning in in-vehicle controller area network bus
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3095962
– ident: ref_23
– ident: ref_1
  doi: 10.3390/s23084086
– ident: ref_12
  doi: 10.3390/sym14020310
– volume: 34
  start-page: 100425
  year: 2022
  ident: ref_21
  article-title: Detection, control and mitigation system for secure vehicular communication
  publication-title: Veh. Commun.
– ident: ref_6
– volume: 22
  start-page: 4478
  year: 2020
  ident: ref_14
  article-title: An evolutionary deep learning-based anomaly detection model for securing vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 24
  start-page: 20908
  year: 2024
  ident: ref_17
  article-title: Sensor and Decision Fusion-based Intrusion Detection and Mitigation Approach for Connected Autonomous Vehicles
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3397966
– ident: ref_4
– volume: 13
  start-page: 77305
  year: 2025
  ident: ref_18
  article-title: Adverse to Normal Image Reconstruction Using Inverse of StarGAN for Autonomous Vehicle Control
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3564848
– ident: ref_31
– volume: 15
  start-page: 964
  year: 2024
  ident: ref_19
  article-title: Leveraging Deep Learning for Enhanced Information Security: A Comprehensive Approach to Threat Detection and Mitigation
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_29
– ident: ref_27
– ident: ref_2
– volume: 12
  start-page: 150046
  year: 2024
  ident: ref_16
  article-title: Advanced intrusion detection in MANETs: A survey of machine learning and optimization techniques for mitigating black/gray hole attacks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3457682
– ident: ref_9
  doi: 10.3390/electronics13101962
– volume: 54
  start-page: 985
  year: 2023
  ident: ref_20
  article-title: Optimized Deep Neural Model-Based Intrusion Detection and Mitigation System for Vehicular Ad-Hoc Network
  publication-title: Cybern. Syst.
  doi: 10.1080/01969722.2022.2137643
– volume: 10
  start-page: 22111
  year: 2023
  ident: ref_11
  article-title: ANShield: Deep Learning-Based Intrusion Detection Framework for Controller Area Networks at the Signal-Level
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3303271
– ident: ref_15
– volume: 8
  start-page: 290
  year: 2021
  ident: ref_25
  article-title: Learning based longitudinal vehicle platooning threat detection, identification and mitigation
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2021.3122144
– ident: ref_22
– ident: ref_7
  doi: 10.3390/sym17060874
– ident: ref_10
  doi: 10.3390/s23073610
SSID ssj0002149111
Score 2.336186
Snippet The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 492
SubjectTerms Automobiles
Control equipment
Controller area network
Controllers
cyber-attacks
Cybersecurity
Data integrity
Data recovery
Deep learning
deep-denoising autoencoder
Electronic control
Explainable artificial intelligence
Intelligent vehicles
Intrusion
intrusions mitigation
Machine learning
Neural networks
Real time
Sensors
Smart cars
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5ap4fmkPRJnaRFh_YoopXW2tUpOC9aaE0ILeS2jF7Boaxd23H_fke7ch4Ueult0Qp20WhG34xmvgH4WGARKxFK7r3SvMRoOBIw4dqoqNGjLXue2a_VZFJfXZmLHHBb5rTKjU3sDLWfuRQjP1SJuH00qkp9NP_FU9eodLuaW2g8ha3EVFYOYOv4bHJxeRdlkeQAkDb3Ge-K_PvD32F9U2hhCBnLR2dRR9n_l0Xujpnz3f_9wRewkwEmG_c74iU8Ce0r2H5AO_ga7JidhjBnmVv1mo0zsTgjBMsuCTryVBnCvrSpIoMEx75NeyoOepy2bHy76nL41oGd9JnuP8OCvhiQTfqs8uUb-HF-9v3kM8-9FrhTRq24UWjQJWfDoVTRG-uFq4WMEmvhyckM6YZWWIlFbWTUwmuaLIW1QWNFGOUtDNpZG94Bc9YZNSqiQq3KESJKjNFKGnCuLkQcwqfNqjfznlKjIVckSad5KJ0hHCeR3M1JRNjdwGxx3WS9apyofKrVNS66EoOxpVJRSnRWB0f4YwgHG2k1WTuXzb2o9v79eh-ey9Tvt8spO4ABrXp4D8_cejVdLj7kzfYHPJXglg
  priority: 102
  providerName: ProQuest
Title A Deep Learning Approach for Real-Time Intrusion Mitigation in Automotive Controller Area Networks
URI https://www.proquest.com/docview/3254655746
https://doaj.org/article/c07d64219cfc4ae9b433f22acb6ec024
Volume 16
WOSCitedRecordID wos001581230700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2032-6653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002149111
  issn: 2032-6653
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2032-6653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002149111
  issn: 2032-6653
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2032-6653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002149111
  issn: 2032-6653
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2032-6653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002149111
  issn: 2032-6653
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2032-6653
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002149111
  issn: 2032-6653
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6iHvQg_sTpHDnosZgmXdocp24o6BhTQU_lJU1kInVsc978231pqkw8ePFSShqa8l7z3vfIly-EHMcQu5TZJCoKIaMEnIoAgUkklXASCtBJ0Jm9Tvv97OFBDRaO-vKcsCAPHAx3alha-M2YyjiTgFU6EcJxDkZLazDB-OiLL18opnwM5gj8cRYHprvAuv703c6fY8kUImL-IwdVUv2_InGVXnqbZKPGhbQTvmeLLNlym6wvqAXuEN2hF9aOaS2J-kQ7tR44ReBJh4j4Ir-hg16VfiMF2pvejIKCBt6OStp5m1XUu7ml54Gg_mInOKIF2g9k8Okuue91784vo_qIhMgIJWaREqDA-BrBABeuULpgJmPccchYgbWh9QurTHOIM8WdZIXEzpxpbSWkCC32yHL5Wtp9Qo02SrRjJ0CKpA0AHJzTHBuMyWLmGuTky2j5OChh5FhBeOPmi8ZtkDNv0e8-Xr-6akCv5rVX87-82iDNL3_k9aSa5sJr97fbaSIP_mOMQ7LG_WG-FWGsSZbRN_aIrJr5bDSdtMjKWbc_GLaq_6rlKaG3_vrRxSeDq5vB4ycJVNdO
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58K66tIAP9BjVsbNOfEDV0lJ11e0KQZF6C-NXtajKLrvLVvwpfiPjPEoRErceuEWOlSiZT-MZ-5tvAN6kmIac-yxxTqokw6ATpMAkUVoGhQ5N1ujMjvLxuDg_1x_W4GdXCxNplZ1PrB21m9q4R74no3B7v59nan_2LYldo-LpatdCo4HFif9xRSnb4u3wkOy7K8TR-7OD46TtKpBYqeUy0RI12hhWWxQyOG0ctwUXQWDBHaVTPp5FciMwLbQIijtFkwU3xivMaTWm596Bu1n0_jVV8NP1no6gdIN8R8Ovl1LzvSu_-poqrikOF3-sfHWDgL_8f72oHT36337HY3jYhs9s0OD9Caz56ik8uCGq-AzMgB16P2OtcuwFG7Sy6Yzic_aRAuMk1r2wYRXrTQiW7HTSCI3Q5aRig-_LmqG48uyg4fFf-jm90SMbN5z5xXP4fCsfuQnr1bTyW8CssVr20yBRyayPiAJDMIIGrC1SHnqw21m5nDWCISUlWhEN5U009OBdhMD1nCjzXQ9M5xdl6zVKy3MXK5G1DTZDr00mZRACrVHeUnTVg50OHWXrexblb2i8-Pft13D_-Ox0VI6G45Nt2BCxs3HNntuBdbKAfwn37Go5Wcxf1TBn8OW2gfQLRAM6kA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VghAceCNCC_hAj6t47Y13fUBVaIiIWqKKh9TbMn5VQWgTkpCKv9Zf1_E-ShEStx64rbzWvvztzNj-5huA1ymmIec-S5yTKskw6AQpMEmUlkGhQ5M1OrNH-XRanJzo4y0473JhIq2ys4m1oXZzG9fI-zIKtw8Geab6oaVFHI_G-4sfSawgFXdau3IaDUQO_a8zmr6t3kxGNNZ7QozffT54n7QVBhIrtVwnWqJGG0Nsi0IGp43jtuAiCCy4o6mVj_uS3AhMCy2C4k5RZ8GN8Qpz8sx03Rtwkx4qFTVt8NPl-o6gqQfZkYZrL6Xm_TO_-ZYqrikmF394wbpYwF--oHZw4_v_86d5APfasJoNm__gIWz56hHcvSK2-BjMkI28X7BWUfaUDVs5dUZxO_tIAXMS82HYpIp5KARX9mHWCJDQ4axiw5_rmrm48eyg4fd_90u6o0c2bbj0qyfw5Vpe8ilsV_PKPwNmjdVykAaJSmYDRBQYghHUYG2R8tCDvW7Ey0UjJFLSBCwio7yKjB68jXC47BPlv-uG-fK0bK1JaXnuYoaytsFm6LXJpAxCoDXKW4q6erDbIaVsbdKq_A2T5_8-_QpuE37Ko8n0cAfuiFjwuCbV7cI2DYB_AbfsZj1bLV_WiGfw9bpxdAHiakNW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Real-Time+Intrusion+Mitigation+in+Automotive+Controller+Area+Networks&rft.jtitle=World+electric+vehicle+journal&rft.au=Kousar%2C+Anila&rft.au=Ahmed%2C+Saeed&rft.au=Khan%2C+Zafar+A.&rft.date=2025-09-01&rft.issn=2032-6653&rft.eissn=2032-6653&rft.volume=16&rft.issue=9&rft.spage=492&rft_id=info:doi/10.3390%2Fwevj16090492&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_wevj16090492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2032-6653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2032-6653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2032-6653&client=summon