An analogue of Vosper's theorem for extension fields

We are interested in characterising pairs S, T of F-linear subspaces in a field extension L/F such that the linear span ST of the set of products of elements of S and of elements of T has small dimension. Our central result is a linear analogue of Vosper's Theorem, which gives the structure of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical proceedings of the Cambridge Philosophical Society Ročník 163; číslo 3; s. 423 - 452
Hlavní autoři: BACHOC, CHRISTINE, SERRA, ORIOL, ZÉMOR, GILLES
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.11.2017
Témata:
ISSN:0305-0041, 1469-8064
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We are interested in characterising pairs S, T of F-linear subspaces in a field extension L/F such that the linear span ST of the set of products of elements of S and of elements of T has small dimension. Our central result is a linear analogue of Vosper's Theorem, which gives the structure of vector spaces S, T in a prime extension L of a finite field F for which \begin{linenomath}$$ \dim_FST =\dim_F S+\dim_F T-1, $$\end{linenomath} when dim FS, dim FT ⩾ 2 and dim FST ⩽ [L : F] − 2.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004117000044