Investigating the energy saving potential of thermochromic coatings on building envelopes
•Thermochromic (TC) coatings provide heating and cooling savings in buildings.•5 building types and 3 climates were studied.•TC coating properties were optimized according to building types and climates.•Temperature-based control of TC coatings leads to heating penalties in winters. Thermochromic (T...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 291; S. 116788 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.06.2021
|
| Schlagworte: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Thermochromic (TC) coatings provide heating and cooling savings in buildings.•5 building types and 3 climates were studied.•TC coating properties were optimized according to building types and climates.•Temperature-based control of TC coatings leads to heating penalties in winters.
Thermochromic (TC) materials can switch solar absorptance (α) based on temperature stimuli. When coatings with TC properties are applied on building envelope surfaces, the amount of solar heat gains can be controlled to reduce the heating and cooling demand of buildings. To date, limited research has been conducted in investigating optimal TC coating properties for application on opaque building envelopes in various scenarios.
In this research, a method to model TC coatings using building performance simulation (BPS) tools has been developed and coupled with python to optimize solar absorption states (α) and switching temperatures and reduce the annual heating and cooling demand. The simulation-based approach has been employed to perform early-stage exploration studies on multiple building types and climates to support material R&D in developing optimized coatings for target applications and assess the potential energy savings.
The results indicate that the optimum TC properties are unique to climate and building types. TC coatings with high switching temperatures result in larger energy savings for scenarios with high heating demands, while TC coatings with low switching temperatures produce larger energy savings in scenarios with high cooling demands. Similarly, increasing the high solar absorption (αhigh) to 1 increases the heating savings, while reducing the low solar absorption (αlow) to 0 results in higher cooling savings. Furthermore, it was found that solar irradiance causes temperature spikes triggering the TC coatings to unnecessarily switch from high to low absorptance state in winters leading to heating penalties. Replacing optimal static with TC coatings on terraced houses in the Spanish climate with a 2:3 heating to cooling demand ratio results in 2 to 13% energy savings. |
|---|---|
| AbstractList | Thermochromic (TC) materials can switch solar absorptance (α) based on temperature stimuli. When coatings with TC properties are applied on building envelope surfaces, the amount of solar heat gains can be controlled to reduce the heating and cooling demand of buildings. To date, limited research has been conducted in investigating optimal TC coating properties for application on opaque building envelopes in various scenarios.In this research, a method to model TC coatings using building performance simulation (BPS) tools has been developed and coupled with python to optimize solar absorption states (α) and switching temperatures and reduce the annual heating and cooling demand. The simulation-based approach has been employed to perform early-stage exploration studies on multiple building types and climates to support material R&D in developing optimized coatings for target applications and assess the potential energy savings.The results indicate that the optimum TC properties are unique to climate and building types. TC coatings with high switching temperatures result in larger energy savings for scenarios with high heating demands, while TC coatings with low switching temperatures produce larger energy savings in scenarios with high cooling demands. Similarly, increasing the high solar absorption (αₕᵢgₕ) to 1 increases the heating savings, while reducing the low solar absorption (αₗₒw) to 0 results in higher cooling savings. Furthermore, it was found that solar irradiance causes temperature spikes triggering the TC coatings to unnecessarily switch from high to low absorptance state in winters leading to heating penalties. Replacing optimal static with TC coatings on terraced houses in the Spanish climate with a 2:3 heating to cooling demand ratio results in 2 to 13% energy savings. •Thermochromic (TC) coatings provide heating and cooling savings in buildings.•5 building types and 3 climates were studied.•TC coating properties were optimized according to building types and climates.•Temperature-based control of TC coatings leads to heating penalties in winters. Thermochromic (TC) materials can switch solar absorptance (α) based on temperature stimuli. When coatings with TC properties are applied on building envelope surfaces, the amount of solar heat gains can be controlled to reduce the heating and cooling demand of buildings. To date, limited research has been conducted in investigating optimal TC coating properties for application on opaque building envelopes in various scenarios. In this research, a method to model TC coatings using building performance simulation (BPS) tools has been developed and coupled with python to optimize solar absorption states (α) and switching temperatures and reduce the annual heating and cooling demand. The simulation-based approach has been employed to perform early-stage exploration studies on multiple building types and climates to support material R&D in developing optimized coatings for target applications and assess the potential energy savings. The results indicate that the optimum TC properties are unique to climate and building types. TC coatings with high switching temperatures result in larger energy savings for scenarios with high heating demands, while TC coatings with low switching temperatures produce larger energy savings in scenarios with high cooling demands. Similarly, increasing the high solar absorption (αhigh) to 1 increases the heating savings, while reducing the low solar absorption (αlow) to 0 results in higher cooling savings. Furthermore, it was found that solar irradiance causes temperature spikes triggering the TC coatings to unnecessarily switch from high to low absorptance state in winters leading to heating penalties. Replacing optimal static with TC coatings on terraced houses in the Spanish climate with a 2:3 heating to cooling demand ratio results in 2 to 13% energy savings. |
| ArticleNumber | 116788 |
| Author | Butt, Afaq A. van den Ham, Jonathan E.J. Erich, Bart S.J.F. Stuiver, Anthonie de Vries, Samuel B. Hensen, Jan L.M. Loonen, Roel C.G.M. |
| Author_xml | – sequence: 1 givenname: Afaq A. orcidid: 0000-0003-4275-6001 surname: Butt fullname: Butt, Afaq A. email: a.a.butt@tue.nl organization: Eindhoven University of Technology, Department of Building Physics and Services, Eindhoven, the Netherlands – sequence: 2 givenname: Samuel B. orcidid: 0000-0001-7906-299X surname: de Vries fullname: de Vries, Samuel B. organization: Eindhoven University of Technology, Department of Building Physics and Services, Eindhoven, the Netherlands – sequence: 3 givenname: Roel C.G.M. surname: Loonen fullname: Loonen, Roel C.G.M. organization: Eindhoven University of Technology, Department of Building Physics and Services, Eindhoven, the Netherlands – sequence: 4 givenname: Jan L.M. orcidid: 0000-0002-7528-4234 surname: Hensen fullname: Hensen, Jan L.M. organization: Eindhoven University of Technology, Department of Building Physics and Services, Eindhoven, the Netherlands – sequence: 5 givenname: Anthonie surname: Stuiver fullname: Stuiver, Anthonie organization: AkzoNobel, Amsterdam, the Netherlands – sequence: 6 givenname: Jonathan E.J. surname: van den Ham fullname: van den Ham, Jonathan E.J. organization: TNO, Material Solutions, Eindhoven, the Netherlands – sequence: 7 givenname: Bart S.J.F. surname: Erich fullname: Erich, Bart S.J.F. organization: Eindhoven University of Technology, Department of Applied Physics, Eindhoven, the Netherlands |
| BookMark | eNqFkEtLxDAUhYMoOD7-gnTppmNu0qYNuFDEFwhudOEqpOntmKGT1CQz4L-3tbpx4ypwc74D5zsi-847JOQM6BIoiIv1Ug_oMKw-l4wyWAKIqq73yALqiuUSoN4nC8qpyJkAeUiOYlxTOiYZXZC3R7fDmOxKJ-tWWXrHbO7Kot5Nl8EndMnqPvPd9B023rwHv7EmM_4bipl3WbO1fTvlcezr_YDxhBx0uo94-vMek9e725ebh_zp-f7x5vopN1zylFeF6ZjoOJeywqaSIMpGVrxo-LiihQbAMF1UJUpZirKGQlNBuUSh25Z1QPkxOZ97h-A_tuMWtbHRYN9rh34bFSurgkPBSj5GL-eoCT7GgJ0yNo0bvEtB214BVZNRtVa_RtVkVM1GR1z8wYdgNzp8_g9ezSCOHnYWg4rGojPY2oAmqdbb_yq-ANX_l6U |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2025_08_042 crossref_primary_10_1093_ijlct_ctac052 crossref_primary_10_1016_j_buildenv_2025_113187 crossref_primary_10_1016_j_seta_2022_101992 crossref_primary_10_3390_su17188209 crossref_primary_10_1016_j_jobe_2024_108570 crossref_primary_10_1016_j_buildenv_2023_110113 crossref_primary_10_1016_j_jclepro_2022_132699 crossref_primary_10_1016_j_renene_2023_119537 crossref_primary_10_3390_en17092008 crossref_primary_10_3390_buildings14041157 crossref_primary_10_47982_jfde_2023_2_A5 crossref_primary_10_1016_j_est_2023_106632 crossref_primary_10_1016_j_jobe_2022_105535 crossref_primary_10_1016_j_enbuild_2024_114417 crossref_primary_10_1016_j_rser_2024_114716 crossref_primary_10_1016_j_mtsust_2024_101009 crossref_primary_10_3390_en17215270 crossref_primary_10_1016_j_enbuild_2022_112716 crossref_primary_10_1016_j_applthermaleng_2025_125970 crossref_primary_10_1016_j_enconman_2021_115058 crossref_primary_10_1016_j_enbuild_2023_113423 crossref_primary_10_1061_JAEIED_AEENG_1784 crossref_primary_10_1007_s40820_025_01676_6 crossref_primary_10_1016_j_energy_2022_125706 crossref_primary_10_1016_j_renene_2022_06_135 crossref_primary_10_1016_j_adapen_2025_100225 crossref_primary_10_1016_j_csite_2025_106351 crossref_primary_10_1016_j_solener_2025_113268 crossref_primary_10_1007_s12649_023_02273_7 crossref_primary_10_1016_j_porgcoat_2025_109625 crossref_primary_10_1016_j_enbuild_2023_112803 crossref_primary_10_3390_su14106106 crossref_primary_10_1016_j_enbuild_2023_113131 crossref_primary_10_1016_j_renene_2025_122879 crossref_primary_10_1016_j_jobe_2023_106643 crossref_primary_10_1093_ijlct_ctac118 crossref_primary_10_1016_j_enbuild_2025_115276 crossref_primary_10_1016_j_est_2023_106698 crossref_primary_10_1016_j_nxmate_2025_101226 crossref_primary_10_1016_j_enbuild_2024_114955 crossref_primary_10_1155_2024_7845784 crossref_primary_10_1016_j_apenergy_2023_122051 crossref_primary_10_1016_j_conbuildmat_2023_131438 crossref_primary_10_3390_en17164039 crossref_primary_10_1016_j_energy_2022_124237 crossref_primary_10_1016_j_buildenv_2023_110083 crossref_primary_10_1093_ijlct_ctac028 crossref_primary_10_1016_j_enbenv_2024_04_001 |
| Cites_doi | 10.1016/j.enbuild.2016.04.070 10.1016/j.apenergy.2019.113506 10.1016/S0360-5442(03)00032-X 10.1016/j.rser.2017.04.030 10.1080/19401493.2011.595501 10.1016/S0378-7788(96)01001-8 10.1016/j.solener.2019.10.021 10.1016/j.enpol.2003.10.001 10.1016/j.apenergy.2019.04.020 10.1016/j.solener.2008.10.005 10.26868/25222708.2015.2317 10.1016/j.jqsrt.2017.01.014 10.1016/j.autcon.2014.05.008 10.1080/19401493.2016.1152303 10.1016/j.tsf.2003.09.062 10.1016/j.enbuild.2016.06.089 10.2172/1050120 10.1007/s12053-008-9038-2 10.1016/j.scs.2017.01.016 10.18086/eurosun2018.06.13 10.1080/19401493.2018.1561754 10.1088/1742-6596/559/1/012001 10.2172/1009264 10.2172/787107 10.1016/0165-1633(86)90047-X 10.2172/296885 10.1016/S0360-5442(98)00105-4 10.1016/j.rser.2015.03.092 10.1016/j.apenergy.2015.05.065 10.1016/j.solmat.2013.03.043 10.1016/j.buildenv.2018.08.028 10.1016/j.solmat.2009.03.021 10.1016/j.solmat.2018.10.023 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) |
| Copyright_xml | – notice: 2021 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2021.116788 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2021_116788 S0306261921002920 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c393t-74cf26f33997eb79165b9734b3678d1b11c2a475e99565814a06039e6add2f103 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640381100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Wed Oct 01 14:17:57 EDT 2025 Sat Nov 29 07:21:10 EST 2025 Tue Nov 18 21:45:44 EST 2025 Fri Feb 23 02:38:33 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thermochromic coating Building envelopes Simulation-based optimization Building energy savings |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c393t-74cf26f33997eb79165b9734b3678d1b11c2a475e99565814a06039e6add2f103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7906-299X 0000-0002-7528-4234 0000-0003-4275-6001 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.apenergy.2021.116788 |
| PQID | 2574314253 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2574314253 crossref_citationtrail_10_1016_j_apenergy_2021_116788 crossref_primary_10_1016_j_apenergy_2021_116788 elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_116788 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 2021-06-00 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jorgenson, Lee (b0130) 1986; 14 Akbari, Konopacki (b0050) 2005; 33 Favoino, Overend, Jin (b0025) 2015; 156 Akbari, Konopacki, Pomerantz (b0070) 1999; 24 Hooshangi H. Energy performance modeling of buildings with directional reflective roofs [A Thesis]. Montreal, Quebec, Canada: Concordia University; 2015. Testa, Krarti (b0015) 2017; 77 Loonen, Singaravel, Trčka, Cóstola, Hensen (b0255) 2014; 45 Akbari (b0045) 2003; 28 Fabiani, Pisello, Bou-Zeid, Yang, Cotana (b0120) 2019; 247 Akbari H, Bretz S, Kurn D, Haniford J. (1997) Peak power and cooling energy savings of high-albedo roofs. Energy Build 1997; 25:117–26. Garshasbi, Santamouris (b0115) 2019; 191 Favoino F, Cascone Y, Bianco L, Goia F, Zinzi M, Overend M, et al. Simulating switchable glazing with energyplus: an empirical validation and calibration of a thermotropic glazing model. In Proceedings of building simulation; 2015b, December. Mlyuka, Niklasson, Granqvist (b0080) 2009; 93 Konopacki S, Akbari H. Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin. Berkeley (CA): Lawrence Berkeley National Laboratory, Report number LBNL-47149; 2001. Hu, Yu (b0110) 2019; 193 Majcen (b0220) 2016 Loonen, Favoino, Hensen, Overend (b0020) 2017; 10 Niklasson, Li, Granqvist (b0140) 2014; 559 Guinneton, Sauques, Valmalette, Cros, Gavarri (b0135) 2004; 446 DOE. EnergyPlus EMS Application Guide. US Department of Energy; 2019b. Konopacki S, Akbari H, Gartland L, Rainer L. Demonstration of energy savings of cool roofs. Berkeley (CA): Lawrence Berkeley National Laboratory, Report number LBNL-40673; 1998. Taylor, Yang, Wang (b0150) 2017; 197 Bedford H, Birchall S, Bleicher D, Wallis I, Causse E. Inspire Project, Development of Systemic Packages for Deep Energy Renovation of Residential and Tertiary Buildings including Envelope and Systems; 2014. DOE. Input/Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output. US Department of Energy; 2019a. IEA. TCEP: Building envelopes, IEA; 2019. Retrieved 3 September 2019, from Parker, Huang, Konopacki, Gartland, Sherwin, Gu (b0270) 1998; 104 Gray (b0075) 2015 Levinson, Akbari (b0030) 2009; 3 Addington D, Schodek D. Smart Materials and Technologies for the architecture and design profession. Amsterdam: Elsevier, Architectural Press; 2005. Park, Krarti (b0100) 2016; 124 Juaristi, Gómez-Acebo, Monge-Barrio (b0090) 2018; 144 Deru M, Field K, Studer D, Benne K, Griffith B, Torcellini P, Halverson M., Winiarski D, Liu B, Rosenberg M, Huang J, Yazdanian M, Crawley D. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock. Washington, DC: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Building Technologies; 2010. Karlessi, Santamouris, Apostolakis, Synnefa, Livada (b0155) 2008; 83 . Loonen, de Klijn-Chevalerias, Hensen (b0160) 2019; 12 Hildebrandt, Bos, Moore (b0055) 1998; 1998 Testa, Krarti (b0105) 2017; 31 Philip S. Eppy scripting language for Energyplus, Github Repository; 2019. Retrieved 20 January 2020, from Wang, Zhu, Guo (b0125) 2019; 253 D’Antoni M, Geisler-Moroder D, Ochs F. Definition of a reference office building for simulation based evaluation of solar envelope systems. at EuroSun; 2018. Parker D, Sonne J, Sherwin J. Demonstration of cooling savings of light-colored roof surfacing in Florida commercial buildings: retail strip mall. Cocoa (FL): Florida Solar Energy Center, Report FSEC-CR-964-97; 1997. Yang, Wang, Kaloush (b0195) 2015; 47 Custers (b0210) 2013 Tabares-Velasco, Griffith (b0185) 2011; 5 Lee, Pang, Hoffmann, Goudey, Thanachareonkit (b0165) 2013; 116 Wu, Fan, Liu, Chen, Huang, Chen (b0145) 2015; 5 Tabares-Velasco PC, Christensen C, Bianchi M, Booten C., 2012. Verification and validation of EnergyPlus conduction finite difference and phase change material models for opaque wall assemblies (No. NREL/TP-5500-55792). National Renewable Energy Lab.(NREL), Golden, CO (United States). Cao, Dai, Liu (b0010) 2016; 128 10.1016/j.apenergy.2021.116788_b0200 10.1016/j.apenergy.2021.116788_b0005 10.1016/j.apenergy.2021.116788_b0225 10.1016/j.apenergy.2021.116788_b0205 Loonen (10.1016/j.apenergy.2021.116788_b0020) 2017; 10 Cao (10.1016/j.apenergy.2021.116788_b0010) 2016; 128 Gray (10.1016/j.apenergy.2021.116788_b0075) 2015 Taylor (10.1016/j.apenergy.2021.116788_b0150) 2017; 197 Levinson (10.1016/j.apenergy.2021.116788_b0030) 2009; 3 Garshasbi (10.1016/j.apenergy.2021.116788_b0115) 2019; 191 Testa (10.1016/j.apenergy.2021.116788_b0015) 2017; 77 Akbari (10.1016/j.apenergy.2021.116788_b0045) 2003; 28 Park (10.1016/j.apenergy.2021.116788_b0100) 2016; 124 Wang (10.1016/j.apenergy.2021.116788_b0125) 2019; 253 10.1016/j.apenergy.2021.116788_b0190 Wu (10.1016/j.apenergy.2021.116788_b0145) 2015; 5 10.1016/j.apenergy.2021.116788_b0170 Juaristi (10.1016/j.apenergy.2021.116788_b0090) 2018; 144 10.1016/j.apenergy.2021.116788_b0095 Lee (10.1016/j.apenergy.2021.116788_b0165) 2013; 116 10.1016/j.apenergy.2021.116788_b0175 10.1016/j.apenergy.2021.116788_b0035 Jorgenson (10.1016/j.apenergy.2021.116788_b0130) 1986; 14 Loonen (10.1016/j.apenergy.2021.116788_b0160) 2019; 12 Loonen (10.1016/j.apenergy.2021.116788_b0255) 2014; 45 Testa (10.1016/j.apenergy.2021.116788_b0105) 2017; 31 Hu (10.1016/j.apenergy.2021.116788_b0110) 2019; 193 10.1016/j.apenergy.2021.116788_b0215 Parker (10.1016/j.apenergy.2021.116788_b0270) 1998; 104 Hildebrandt (10.1016/j.apenergy.2021.116788_b0055) 1998; 1998 Guinneton (10.1016/j.apenergy.2021.116788_b0135) 2004; 446 Favoino (10.1016/j.apenergy.2021.116788_b0025) 2015; 156 Mlyuka (10.1016/j.apenergy.2021.116788_b0080) 2009; 93 Tabares-Velasco (10.1016/j.apenergy.2021.116788_b0185) 2011; 5 Niklasson (10.1016/j.apenergy.2021.116788_b0140) 2014; 559 Yang (10.1016/j.apenergy.2021.116788_b0195) 2015; 47 Majcen (10.1016/j.apenergy.2021.116788_b0220) 2016 Akbari (10.1016/j.apenergy.2021.116788_b0050) 2005; 33 Fabiani (10.1016/j.apenergy.2021.116788_b0120) 2019; 247 Custers (10.1016/j.apenergy.2021.116788_b0210) 2013 Karlessi (10.1016/j.apenergy.2021.116788_b0155) 2008; 83 10.1016/j.apenergy.2021.116788_b0180 10.1016/j.apenergy.2021.116788_b0060 10.1016/j.apenergy.2021.116788_b0040 Akbari (10.1016/j.apenergy.2021.116788_b0070) 1999; 24 10.1016/j.apenergy.2021.116788_b0085 10.1016/j.apenergy.2021.116788_b0065 |
| References_xml | – volume: 104 start-page: 963 year: 1998 end-page: 975 ident: b0270 article-title: Measured and simulated performance of reflective roofing systems in residential buildings publication-title: ASHRAE Trans – reference: Philip S. Eppy scripting language for Energyplus, Github Repository; 2019. Retrieved 20 January 2020, from – reference: DOE. EnergyPlus EMS Application Guide. US Department of Energy; 2019b. – reference: Bedford H, Birchall S, Bleicher D, Wallis I, Causse E. Inspire Project, Development of Systemic Packages for Deep Energy Renovation of Residential and Tertiary Buildings including Envelope and Systems; 2014. – volume: 93 start-page: 1685 year: 2009 end-page: 1687 ident: b0080 article-title: Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance publication-title: Solar Energy Mater And Solar Cells – volume: 28 start-page: 953 year: 2003 end-page: 967 ident: b0045 article-title: Measured energy savings from the application of reflective roofs in 2 small non-residential buildings publication-title: Energy – volume: 3 start-page: 53 year: 2009 end-page: 109 ident: b0030 article-title: Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing the emission of greenhouse gases and air pollutants publication-title: Energ Effi – volume: 83 start-page: 538 year: 2008 end-page: 551 ident: b0155 article-title: Development and testing of thermochromic coatings for buildings and urban structures publication-title: Sol Energy – volume: 14 start-page: 205 year: 1986 end-page: 214 ident: b0130 article-title: Doped vanadium oxide for optical switching films publication-title: Solar Energy Mater – volume: 191 start-page: 21 year: 2019 end-page: 32 ident: b0115 article-title: Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating publication-title: Sol Energy Mater Sol Cells – year: 2013 ident: b0210 article-title: Flexible city structures (Masters) – reference: Addington D, Schodek D. Smart Materials and Technologies for the architecture and design profession. Amsterdam: Elsevier, Architectural Press; 2005. – reference: Hooshangi H. Energy performance modeling of buildings with directional reflective roofs [A Thesis]. Montreal, Quebec, Canada: Concordia University; 2015. – volume: 247 start-page: 155 year: 2019 end-page: 170 ident: b0120 article-title: Adaptive measures for mitigating urban heat islands: the potential of thermochromic materials to control roofing energy balance publication-title: Appl Energy – reference: D’Antoni M, Geisler-Moroder D, Ochs F. Definition of a reference office building for simulation based evaluation of solar envelope systems. at EuroSun; 2018. – volume: 5 start-page: 329 year: 2011 end-page: 346 ident: b0185 article-title: Diagnostic test cases for verifying surface heat transfer algorithms and boundary conditions in building energy simulation programs publication-title: J Build Perform Simul – volume: 446 start-page: 287 year: 2004 end-page: 295 ident: b0135 article-title: Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure publication-title: Thin Solid Films – reference: Konopacki S, Akbari H, Gartland L, Rainer L. Demonstration of energy savings of cool roofs. Berkeley (CA): Lawrence Berkeley National Laboratory, Report number LBNL-40673; 1998. – reference: Parker D, Sonne J, Sherwin J. Demonstration of cooling savings of light-colored roof surfacing in Florida commercial buildings: retail strip mall. Cocoa (FL): Florida Solar Energy Center, Report FSEC-CR-964-97; 1997. – reference: Konopacki S, Akbari H. Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin. Berkeley (CA): Lawrence Berkeley National Laboratory, Report number LBNL-47149; 2001. – volume: 31 start-page: 62 year: 2017 end-page: 73 ident: b0105 article-title: Evaluation of energy savings potential of variable reflective roofing systems for US buildings publication-title: Sustainable Cities Soc – volume: 197 start-page: 76 year: 2017 end-page: 83 ident: b0150 article-title: Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications publication-title: J Quant Spectrosc Radiat Transfer – reference: IEA. TCEP: Building envelopes, IEA; 2019. Retrieved 3 September 2019, from – volume: 10 start-page: 205 year: 2017 end-page: 223 ident: b0020 article-title: Review of current status, requirements and opportunities for building performance simulation of adaptive facades publication-title: J Build Perform Simul – volume: 5 year: 2015 ident: b0145 article-title: Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO2 by titanium (Ti4+) doping publication-title: Sci Rep – volume: 116 start-page: 14 year: 2013 end-page: 26 ident: b0165 article-title: An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives publication-title: Sol Energy Mater Sol Cells – reference: Favoino F, Cascone Y, Bianco L, Goia F, Zinzi M, Overend M, et al. Simulating switchable glazing with energyplus: an empirical validation and calibration of a thermotropic glazing model. In Proceedings of building simulation; 2015b, December. – volume: 559 start-page: 012001 year: 2014 ident: b0140 article-title: Thermochromic vanadium oxide thin films: electronic and optical properties publication-title: J Phys Conf Ser – volume: 1998 start-page: 14 year: 1998 ident: b0055 article-title: Assessing the impacts of white roofs on building energy loads publication-title: ASHRAE Tech Data Bull – volume: 24 start-page: 391 year: 1999 end-page: 407 ident: b0070 article-title: Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States publication-title: Energy – volume: 144 start-page: 482 year: 2018 end-page: 501 ident: b0090 article-title: Qualitative analysis of promising materials and technologies for the design and evaluation of Climate Adaptive Opaque Facades publication-title: Build Environ – volume: 124 start-page: 88 year: 2016 end-page: 98 ident: b0100 article-title: Energy performance analysis of variable reflectivity envelope systems for commercial buildings publication-title: Energy Build – volume: 47 start-page: 830 year: 2015 end-page: 843 ident: b0195 article-title: Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island? publication-title: Renew Sustain Energy Rev – year: 2015 ident: b0075 article-title: Application of adaptive albedo roofing coatings in the south eastern United States publication-title: A Diss – Univ Ala Birm – reference: . – reference: DOE. Input/Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output. US Department of Energy; 2019a. – volume: 77 start-page: 451 year: 2017 end-page: 460 ident: b0015 article-title: A review of benefits and limitations of static and switchable cool roof systems publication-title: Renew Sustain Energy Rev – volume: 12 start-page: 272 year: 2019 end-page: 288 ident: b0160 article-title: Opportunities and pitfalls of using building performance simulation in explorative R&D contexts publication-title: J Build Perform Simul – year: 2016 ident: b0220 article-title: Predicting energy consumption and savings in the housing stock – volume: 45 start-page: 86 year: 2014 end-page: 95 ident: b0255 article-title: Simulation-based support for product development of innovative building envelope components publication-title: Autom Constr – volume: 253 start-page: 113506 year: 2019 ident: b0125 article-title: Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement publication-title: Appl Energy – volume: 193 start-page: 866 year: 2019 end-page: 877 ident: b0110 article-title: Thermo and light-responsive building envelope: energy analysis under different climate conditions publication-title: Sol Energy – reference: Tabares-Velasco PC, Christensen C, Bianchi M, Booten C., 2012. Verification and validation of EnergyPlus conduction finite difference and phase change material models for opaque wall assemblies (No. NREL/TP-5500-55792). National Renewable Energy Lab.(NREL), Golden, CO (United States). – reference: Deru M, Field K, Studer D, Benne K, Griffith B, Torcellini P, Halverson M., Winiarski D, Liu B, Rosenberg M, Huang J, Yazdanian M, Crawley D. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock. Washington, DC: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Building Technologies; 2010. – volume: 128 start-page: 198 year: 2016 end-page: 213 ident: b0010 article-title: Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade publication-title: Energy Build – volume: 156 start-page: 1 year: 2015 end-page: 15 ident: b0025 article-title: The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies publication-title: Appl Energy – reference: Akbari H, Bretz S, Kurn D, Haniford J. (1997) Peak power and cooling energy savings of high-albedo roofs. Energy Build 1997; 25:117–26. – volume: 33 start-page: 721 year: 2005 end-page: 756 ident: b0050 article-title: Calculating energy-saving potentials of heat-island reduction strategies publication-title: Energy Policy – volume: 124 start-page: 88 year: 2016 ident: 10.1016/j.apenergy.2021.116788_b0100 article-title: Energy performance analysis of variable reflectivity envelope systems for commercial buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2016.04.070 – volume: 253 start-page: 113506 year: 2019 ident: 10.1016/j.apenergy.2021.116788_b0125 article-title: Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113506 – ident: 10.1016/j.apenergy.2021.116788_b0175 – volume: 104 start-page: 963 year: 1998 ident: 10.1016/j.apenergy.2021.116788_b0270 article-title: Measured and simulated performance of reflective roofing systems in residential buildings publication-title: ASHRAE Trans – volume: 28 start-page: 953 year: 2003 ident: 10.1016/j.apenergy.2021.116788_b0045 article-title: Measured energy savings from the application of reflective roofs in 2 small non-residential buildings publication-title: Energy doi: 10.1016/S0360-5442(03)00032-X – volume: 77 start-page: 451 year: 2017 ident: 10.1016/j.apenergy.2021.116788_b0015 article-title: A review of benefits and limitations of static and switchable cool roof systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.04.030 – volume: 5 start-page: 329 issue: 5 year: 2011 ident: 10.1016/j.apenergy.2021.116788_b0185 article-title: Diagnostic test cases for verifying surface heat transfer algorithms and boundary conditions in building energy simulation programs publication-title: J Build Perform Simul doi: 10.1080/19401493.2011.595501 – ident: 10.1016/j.apenergy.2021.116788_b0035 doi: 10.1016/S0378-7788(96)01001-8 – ident: 10.1016/j.apenergy.2021.116788_b0095 – year: 2013 ident: 10.1016/j.apenergy.2021.116788_b0210 – volume: 193 start-page: 866 year: 2019 ident: 10.1016/j.apenergy.2021.116788_b0110 article-title: Thermo and light-responsive building envelope: energy analysis under different climate conditions publication-title: Sol Energy doi: 10.1016/j.solener.2019.10.021 – volume: 33 start-page: 721 year: 2005 ident: 10.1016/j.apenergy.2021.116788_b0050 article-title: Calculating energy-saving potentials of heat-island reduction strategies publication-title: Energy Policy doi: 10.1016/j.enpol.2003.10.001 – volume: 247 start-page: 155 year: 2019 ident: 10.1016/j.apenergy.2021.116788_b0120 article-title: Adaptive measures for mitigating urban heat islands: the potential of thermochromic materials to control roofing energy balance publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.04.020 – year: 2016 ident: 10.1016/j.apenergy.2021.116788_b0220 – ident: 10.1016/j.apenergy.2021.116788_b0005 – volume: 1998 start-page: 14 year: 1998 ident: 10.1016/j.apenergy.2021.116788_b0055 article-title: Assessing the impacts of white roofs on building energy loads publication-title: ASHRAE Tech Data Bull – volume: 83 start-page: 538 issue: 4 year: 2008 ident: 10.1016/j.apenergy.2021.116788_b0155 article-title: Development and testing of thermochromic coatings for buildings and urban structures publication-title: Sol Energy doi: 10.1016/j.solener.2008.10.005 – ident: 10.1016/j.apenergy.2021.116788_b0190 doi: 10.26868/25222708.2015.2317 – ident: 10.1016/j.apenergy.2021.116788_b0225 – volume: 197 start-page: 76 year: 2017 ident: 10.1016/j.apenergy.2021.116788_b0150 article-title: Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications publication-title: J Quant Spectrosc Radiat Transfer doi: 10.1016/j.jqsrt.2017.01.014 – volume: 5 issue: 1 year: 2015 ident: 10.1016/j.apenergy.2021.116788_b0145 article-title: Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO2 by titanium (Ti4+) doping publication-title: Sci Rep – ident: 10.1016/j.apenergy.2021.116788_b0085 – volume: 45 start-page: 86 year: 2014 ident: 10.1016/j.apenergy.2021.116788_b0255 article-title: Simulation-based support for product development of innovative building envelope components publication-title: Autom Constr doi: 10.1016/j.autcon.2014.05.008 – volume: 10 start-page: 205 issue: 2 year: 2017 ident: 10.1016/j.apenergy.2021.116788_b0020 article-title: Review of current status, requirements and opportunities for building performance simulation of adaptive facades publication-title: J Build Perform Simul doi: 10.1080/19401493.2016.1152303 – volume: 446 start-page: 287 issue: 2 year: 2004 ident: 10.1016/j.apenergy.2021.116788_b0135 article-title: Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure publication-title: Thin Solid Films doi: 10.1016/j.tsf.2003.09.062 – volume: 128 start-page: 198 year: 2016 ident: 10.1016/j.apenergy.2021.116788_b0010 article-title: Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade publication-title: Energy Build doi: 10.1016/j.enbuild.2016.06.089 – ident: 10.1016/j.apenergy.2021.116788_b0180 doi: 10.2172/1050120 – volume: 3 start-page: 53 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2021.116788_b0030 article-title: Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing the emission of greenhouse gases and air pollutants publication-title: Energ Effi doi: 10.1007/s12053-008-9038-2 – volume: 31 start-page: 62 year: 2017 ident: 10.1016/j.apenergy.2021.116788_b0105 article-title: Evaluation of energy savings potential of variable reflective roofing systems for US buildings publication-title: Sustainable Cities Soc doi: 10.1016/j.scs.2017.01.016 – ident: 10.1016/j.apenergy.2021.116788_b0205 doi: 10.18086/eurosun2018.06.13 – volume: 12 start-page: 272 issue: 3 year: 2019 ident: 10.1016/j.apenergy.2021.116788_b0160 article-title: Opportunities and pitfalls of using building performance simulation in explorative R&D contexts publication-title: J Build Perform Simul doi: 10.1080/19401493.2018.1561754 – ident: 10.1016/j.apenergy.2021.116788_b0200 – year: 2015 ident: 10.1016/j.apenergy.2021.116788_b0075 article-title: Application of adaptive albedo roofing coatings in the south eastern United States publication-title: A Diss – Univ Ala Birm – volume: 559 start-page: 012001 year: 2014 ident: 10.1016/j.apenergy.2021.116788_b0140 article-title: Thermochromic vanadium oxide thin films: electronic and optical properties publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/559/1/012001 – ident: 10.1016/j.apenergy.2021.116788_b0215 doi: 10.2172/1009264 – ident: 10.1016/j.apenergy.2021.116788_b0065 doi: 10.2172/787107 – volume: 14 start-page: 205 issue: 3–5 year: 1986 ident: 10.1016/j.apenergy.2021.116788_b0130 article-title: Doped vanadium oxide for optical switching films publication-title: Solar Energy Mater doi: 10.1016/0165-1633(86)90047-X – ident: 10.1016/j.apenergy.2021.116788_b0060 doi: 10.2172/296885 – volume: 24 start-page: 391 year: 1999 ident: 10.1016/j.apenergy.2021.116788_b0070 article-title: Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States publication-title: Energy doi: 10.1016/S0360-5442(98)00105-4 – volume: 47 start-page: 830 year: 2015 ident: 10.1016/j.apenergy.2021.116788_b0195 article-title: Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island? publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.03.092 – volume: 156 start-page: 1 year: 2015 ident: 10.1016/j.apenergy.2021.116788_b0025 article-title: The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.065 – volume: 116 start-page: 14 year: 2013 ident: 10.1016/j.apenergy.2021.116788_b0165 article-title: An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2013.03.043 – ident: 10.1016/j.apenergy.2021.116788_b0170 – ident: 10.1016/j.apenergy.2021.116788_b0040 – volume: 144 start-page: 482 year: 2018 ident: 10.1016/j.apenergy.2021.116788_b0090 article-title: Qualitative analysis of promising materials and technologies for the design and evaluation of Climate Adaptive Opaque Facades publication-title: Build Environ doi: 10.1016/j.buildenv.2018.08.028 – volume: 93 start-page: 1685 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2021.116788_b0080 article-title: Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance publication-title: Solar Energy Mater And Solar Cells doi: 10.1016/j.solmat.2009.03.021 – volume: 191 start-page: 21 year: 2019 ident: 10.1016/j.apenergy.2021.116788_b0115 article-title: Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating publication-title: Sol Energy Mater Sol Cells doi: 10.1016/j.solmat.2018.10.023 |
| SSID | ssj0002120 |
| Score | 2.5494518 |
| Snippet | •Thermochromic (TC) coatings provide heating and cooling savings in buildings.•5 building types and 3 climates were studied.•TC coating properties were... Thermochromic (TC) materials can switch solar absorptance (α) based on temperature stimuli. When coatings with TC properties are applied on building envelope... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116788 |
| SubjectTerms | absorption Building energy savings Building envelopes climate heat potential energy Simulation-based optimization solar radiation temperature terracing Thermochromic coating |
| Title | Investigating the energy saving potential of thermochromic coatings on building envelopes |
| URI | https://dx.doi.org/10.1016/j.apenergy.2021.116788 https://www.proquest.com/docview/2574314253 |
| Volume | 291 |
| WOSCitedRecordID | wos000640381100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg4wAHBIOJ8SUjIS5VQhwncXwsU8eYSkGom8rJchJHMG1J1rRofz7PsZ1maGjjwCWqkjw36e_1vef3idBbFZAypVkGlhspvIjJxJNRUHigbGQhc7Dwu3ZNJ1M2m6WLBf9qA-1tN06AVVV6ecmb_wo1nAOwdensP8DdLwon4DOADkeAHY63An7QOcNWQilT39fKznnQ1CudIWSMUG3-ndf5j6UuTh7ldUfURRAyOy9bl8LptCKba-ga1lrj1Szd7-nXJtQ0LuXFxklaqNGJ3pAbB_T5Wp2NPvh9IlBdV0byfdNJtvv-R_9zf_FQVdZBdKSnC7sr1kkRDpKpXHEWnNCbtaHgDTkZNb4OBAGE14pz41k49WVjXsfXa1uKjQJzQfvZF3FwPJ2K-WQxf9dceHq0mA7B2zkrd9F2yGIOom97_GmyOOoVdmi7d7pnHBSSX__Vf7Nh_tDmnYkyf4Qe2r0FHhueeIzuqGoHPRh0nNxBu5NNYSPcaiV7-wR9v8I2GPgCmyfChm1wzza4LvEVtsGObXBdYcc2uGebp-j4YDLfP_Ts2A0vp5yuPBblZZiUFExXpjIG-4c444xGGYV3L0hGSB7KiMVKF0XHKYlkkASUqwRUZViSgO6irQp45xnCPCGER0wBmZ5xTSQvQ5JIlhIZSaWCPRS7H1Lktie9Ho1yJlzy4alwAAgNgDAA7KH3PV1jurLcSMEdTsLalsZmFMBrN9K-ccAKEL46oiYrVa9bAfoODHBQe_T5Le55ge5v_hsv0dZquVav0L381-pnu3xtufI3D6Cnug |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+energy+saving+potential+of+thermochromic+coatings+on+building+envelopes&rft.jtitle=Applied+energy&rft.au=Butt%2C+Afaq+A&rft.au=de+Vries%2C+Samuel+B.&rft.au=Loonen%2C+Roel+C.G.M.&rft.au=Hensen%2C+Jan+L.M.&rft.date=2021-06-01&rft.issn=0306-2619&rft.volume=291+p.116788-&rft_id=info:doi/10.1016%2Fj.apenergy.2021.116788&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |