Investigating the energy saving potential of thermochromic coatings on building envelopes

•Thermochromic (TC) coatings provide heating and cooling savings in buildings.•5 building types and 3 climates were studied.•TC coating properties were optimized according to building types and climates.•Temperature-based control of TC coatings leads to heating penalties in winters. Thermochromic (T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 291; S. 116788
Hauptverfasser: Butt, Afaq A., de Vries, Samuel B., Loonen, Roel C.G.M., Hensen, Jan L.M., Stuiver, Anthonie, van den Ham, Jonathan E.J., Erich, Bart S.J.F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2021
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Thermochromic (TC) coatings provide heating and cooling savings in buildings.•5 building types and 3 climates were studied.•TC coating properties were optimized according to building types and climates.•Temperature-based control of TC coatings leads to heating penalties in winters. Thermochromic (TC) materials can switch solar absorptance (α) based on temperature stimuli. When coatings with TC properties are applied on building envelope surfaces, the amount of solar heat gains can be controlled to reduce the heating and cooling demand of buildings. To date, limited research has been conducted in investigating optimal TC coating properties for application on opaque building envelopes in various scenarios. In this research, a method to model TC coatings using building performance simulation (BPS) tools has been developed and coupled with python to optimize solar absorption states (α) and switching temperatures and reduce the annual heating and cooling demand. The simulation-based approach has been employed to perform early-stage exploration studies on multiple building types and climates to support material R&D in developing optimized coatings for target applications and assess the potential energy savings. The results indicate that the optimum TC properties are unique to climate and building types. TC coatings with high switching temperatures result in larger energy savings for scenarios with high heating demands, while TC coatings with low switching temperatures produce larger energy savings in scenarios with high cooling demands. Similarly, increasing the high solar absorption (αhigh) to 1 increases the heating savings, while reducing the low solar absorption (αlow) to 0 results in higher cooling savings. Furthermore, it was found that solar irradiance causes temperature spikes triggering the TC coatings to unnecessarily switch from high to low absorptance state in winters leading to heating penalties. Replacing optimal static with TC coatings on terraced houses in the Spanish climate with a 2:3 heating to cooling demand ratio results in 2 to 13% energy savings.
AbstractList Thermochromic (TC) materials can switch solar absorptance (α) based on temperature stimuli. When coatings with TC properties are applied on building envelope surfaces, the amount of solar heat gains can be controlled to reduce the heating and cooling demand of buildings. To date, limited research has been conducted in investigating optimal TC coating properties for application on opaque building envelopes in various scenarios.In this research, a method to model TC coatings using building performance simulation (BPS) tools has been developed and coupled with python to optimize solar absorption states (α) and switching temperatures and reduce the annual heating and cooling demand. The simulation-based approach has been employed to perform early-stage exploration studies on multiple building types and climates to support material R&D in developing optimized coatings for target applications and assess the potential energy savings.The results indicate that the optimum TC properties are unique to climate and building types. TC coatings with high switching temperatures result in larger energy savings for scenarios with high heating demands, while TC coatings with low switching temperatures produce larger energy savings in scenarios with high cooling demands. Similarly, increasing the high solar absorption (αₕᵢgₕ) to 1 increases the heating savings, while reducing the low solar absorption (αₗₒw) to 0 results in higher cooling savings. Furthermore, it was found that solar irradiance causes temperature spikes triggering the TC coatings to unnecessarily switch from high to low absorptance state in winters leading to heating penalties. Replacing optimal static with TC coatings on terraced houses in the Spanish climate with a 2:3 heating to cooling demand ratio results in 2 to 13% energy savings.
•Thermochromic (TC) coatings provide heating and cooling savings in buildings.•5 building types and 3 climates were studied.•TC coating properties were optimized according to building types and climates.•Temperature-based control of TC coatings leads to heating penalties in winters. Thermochromic (TC) materials can switch solar absorptance (α) based on temperature stimuli. When coatings with TC properties are applied on building envelope surfaces, the amount of solar heat gains can be controlled to reduce the heating and cooling demand of buildings. To date, limited research has been conducted in investigating optimal TC coating properties for application on opaque building envelopes in various scenarios. In this research, a method to model TC coatings using building performance simulation (BPS) tools has been developed and coupled with python to optimize solar absorption states (α) and switching temperatures and reduce the annual heating and cooling demand. The simulation-based approach has been employed to perform early-stage exploration studies on multiple building types and climates to support material R&D in developing optimized coatings for target applications and assess the potential energy savings. The results indicate that the optimum TC properties are unique to climate and building types. TC coatings with high switching temperatures result in larger energy savings for scenarios with high heating demands, while TC coatings with low switching temperatures produce larger energy savings in scenarios with high cooling demands. Similarly, increasing the high solar absorption (αhigh) to 1 increases the heating savings, while reducing the low solar absorption (αlow) to 0 results in higher cooling savings. Furthermore, it was found that solar irradiance causes temperature spikes triggering the TC coatings to unnecessarily switch from high to low absorptance state in winters leading to heating penalties. Replacing optimal static with TC coatings on terraced houses in the Spanish climate with a 2:3 heating to cooling demand ratio results in 2 to 13% energy savings.
ArticleNumber 116788
Author Butt, Afaq A.
van den Ham, Jonathan E.J.
Erich, Bart S.J.F.
Stuiver, Anthonie
de Vries, Samuel B.
Hensen, Jan L.M.
Loonen, Roel C.G.M.
Author_xml – sequence: 1
  givenname: Afaq A.
  orcidid: 0000-0003-4275-6001
  surname: Butt
  fullname: Butt, Afaq A.
  email: a.a.butt@tue.nl
  organization: Eindhoven University of Technology, Department of Building Physics and Services, Eindhoven, the Netherlands
– sequence: 2
  givenname: Samuel B.
  orcidid: 0000-0001-7906-299X
  surname: de Vries
  fullname: de Vries, Samuel B.
  organization: Eindhoven University of Technology, Department of Building Physics and Services, Eindhoven, the Netherlands
– sequence: 3
  givenname: Roel C.G.M.
  surname: Loonen
  fullname: Loonen, Roel C.G.M.
  organization: Eindhoven University of Technology, Department of Building Physics and Services, Eindhoven, the Netherlands
– sequence: 4
  givenname: Jan L.M.
  orcidid: 0000-0002-7528-4234
  surname: Hensen
  fullname: Hensen, Jan L.M.
  organization: Eindhoven University of Technology, Department of Building Physics and Services, Eindhoven, the Netherlands
– sequence: 5
  givenname: Anthonie
  surname: Stuiver
  fullname: Stuiver, Anthonie
  organization: AkzoNobel, Amsterdam, the Netherlands
– sequence: 6
  givenname: Jonathan E.J.
  surname: van den Ham
  fullname: van den Ham, Jonathan E.J.
  organization: TNO, Material Solutions, Eindhoven, the Netherlands
– sequence: 7
  givenname: Bart S.J.F.
  surname: Erich
  fullname: Erich, Bart S.J.F.
  organization: Eindhoven University of Technology, Department of Applied Physics, Eindhoven, the Netherlands
BookMark eNqFkEtLxDAUhYMoOD7-gnTppmNu0qYNuFDEFwhudOEqpOntmKGT1CQz4L-3tbpx4ypwc74D5zsi-847JOQM6BIoiIv1Ug_oMKw-l4wyWAKIqq73yALqiuUSoN4nC8qpyJkAeUiOYlxTOiYZXZC3R7fDmOxKJ-tWWXrHbO7Kot5Nl8EndMnqPvPd9B023rwHv7EmM_4bipl3WbO1fTvlcezr_YDxhBx0uo94-vMek9e725ebh_zp-f7x5vopN1zylFeF6ZjoOJeywqaSIMpGVrxo-LiihQbAMF1UJUpZirKGQlNBuUSh25Z1QPkxOZ97h-A_tuMWtbHRYN9rh34bFSurgkPBSj5GL-eoCT7GgJ0yNo0bvEtB214BVZNRtVa_RtVkVM1GR1z8wYdgNzp8_g9ezSCOHnYWg4rGojPY2oAmqdbb_yq-ANX_l6U
CitedBy_id crossref_primary_10_1016_j_egyr_2025_08_042
crossref_primary_10_1093_ijlct_ctac052
crossref_primary_10_1016_j_buildenv_2025_113187
crossref_primary_10_1016_j_seta_2022_101992
crossref_primary_10_3390_su17188209
crossref_primary_10_1016_j_jobe_2024_108570
crossref_primary_10_1016_j_buildenv_2023_110113
crossref_primary_10_1016_j_jclepro_2022_132699
crossref_primary_10_1016_j_renene_2023_119537
crossref_primary_10_3390_en17092008
crossref_primary_10_3390_buildings14041157
crossref_primary_10_47982_jfde_2023_2_A5
crossref_primary_10_1016_j_est_2023_106632
crossref_primary_10_1016_j_jobe_2022_105535
crossref_primary_10_1016_j_enbuild_2024_114417
crossref_primary_10_1016_j_rser_2024_114716
crossref_primary_10_1016_j_mtsust_2024_101009
crossref_primary_10_3390_en17215270
crossref_primary_10_1016_j_enbuild_2022_112716
crossref_primary_10_1016_j_applthermaleng_2025_125970
crossref_primary_10_1016_j_enconman_2021_115058
crossref_primary_10_1016_j_enbuild_2023_113423
crossref_primary_10_1061_JAEIED_AEENG_1784
crossref_primary_10_1007_s40820_025_01676_6
crossref_primary_10_1016_j_energy_2022_125706
crossref_primary_10_1016_j_renene_2022_06_135
crossref_primary_10_1016_j_adapen_2025_100225
crossref_primary_10_1016_j_csite_2025_106351
crossref_primary_10_1016_j_solener_2025_113268
crossref_primary_10_1007_s12649_023_02273_7
crossref_primary_10_1016_j_porgcoat_2025_109625
crossref_primary_10_1016_j_enbuild_2023_112803
crossref_primary_10_3390_su14106106
crossref_primary_10_1016_j_enbuild_2023_113131
crossref_primary_10_1016_j_renene_2025_122879
crossref_primary_10_1016_j_jobe_2023_106643
crossref_primary_10_1093_ijlct_ctac118
crossref_primary_10_1016_j_enbuild_2025_115276
crossref_primary_10_1016_j_est_2023_106698
crossref_primary_10_1016_j_nxmate_2025_101226
crossref_primary_10_1016_j_enbuild_2024_114955
crossref_primary_10_1155_2024_7845784
crossref_primary_10_1016_j_apenergy_2023_122051
crossref_primary_10_1016_j_conbuildmat_2023_131438
crossref_primary_10_3390_en17164039
crossref_primary_10_1016_j_energy_2022_124237
crossref_primary_10_1016_j_buildenv_2023_110083
crossref_primary_10_1093_ijlct_ctac028
crossref_primary_10_1016_j_enbenv_2024_04_001
Cites_doi 10.1016/j.enbuild.2016.04.070
10.1016/j.apenergy.2019.113506
10.1016/S0360-5442(03)00032-X
10.1016/j.rser.2017.04.030
10.1080/19401493.2011.595501
10.1016/S0378-7788(96)01001-8
10.1016/j.solener.2019.10.021
10.1016/j.enpol.2003.10.001
10.1016/j.apenergy.2019.04.020
10.1016/j.solener.2008.10.005
10.26868/25222708.2015.2317
10.1016/j.jqsrt.2017.01.014
10.1016/j.autcon.2014.05.008
10.1080/19401493.2016.1152303
10.1016/j.tsf.2003.09.062
10.1016/j.enbuild.2016.06.089
10.2172/1050120
10.1007/s12053-008-9038-2
10.1016/j.scs.2017.01.016
10.18086/eurosun2018.06.13
10.1080/19401493.2018.1561754
10.1088/1742-6596/559/1/012001
10.2172/1009264
10.2172/787107
10.1016/0165-1633(86)90047-X
10.2172/296885
10.1016/S0360-5442(98)00105-4
10.1016/j.rser.2015.03.092
10.1016/j.apenergy.2015.05.065
10.1016/j.solmat.2013.03.043
10.1016/j.buildenv.2018.08.028
10.1016/j.solmat.2009.03.021
10.1016/j.solmat.2018.10.023
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.116788
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_116788
S0306261921002920
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c393t-74cf26f33997eb79165b9734b3678d1b11c2a475e99565814a06039e6add2f103
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640381100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Wed Oct 01 14:17:57 EDT 2025
Sat Nov 29 07:21:10 EST 2025
Tue Nov 18 21:45:44 EST 2025
Fri Feb 23 02:38:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thermochromic coating
Building envelopes
Simulation-based optimization
Building energy savings
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-74cf26f33997eb79165b9734b3678d1b11c2a475e99565814a06039e6add2f103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7906-299X
0000-0002-7528-4234
0000-0003-4275-6001
OpenAccessLink https://dx.doi.org/10.1016/j.apenergy.2021.116788
PQID 2574314253
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574314253
crossref_citationtrail_10_1016_j_apenergy_2021_116788
crossref_primary_10_1016_j_apenergy_2021_116788
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_116788
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jorgenson, Lee (b0130) 1986; 14
Akbari, Konopacki (b0050) 2005; 33
Favoino, Overend, Jin (b0025) 2015; 156
Akbari, Konopacki, Pomerantz (b0070) 1999; 24
Hooshangi H. Energy performance modeling of buildings with directional reflective roofs [A Thesis]. Montreal, Quebec, Canada: Concordia University; 2015.
Testa, Krarti (b0015) 2017; 77
Loonen, Singaravel, Trčka, Cóstola, Hensen (b0255) 2014; 45
Akbari (b0045) 2003; 28
Fabiani, Pisello, Bou-Zeid, Yang, Cotana (b0120) 2019; 247
Akbari H, Bretz S, Kurn D, Haniford J. (1997) Peak power and cooling energy savings of high-albedo roofs. Energy Build 1997; 25:117–26.
Garshasbi, Santamouris (b0115) 2019; 191
Favoino F, Cascone Y, Bianco L, Goia F, Zinzi M, Overend M, et al. Simulating switchable glazing with energyplus: an empirical validation and calibration of a thermotropic glazing model. In Proceedings of building simulation; 2015b, December.
Mlyuka, Niklasson, Granqvist (b0080) 2009; 93
Konopacki S, Akbari H. Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin. Berkeley (CA): Lawrence Berkeley National Laboratory, Report number LBNL-47149; 2001.
Hu, Yu (b0110) 2019; 193
Majcen (b0220) 2016
Loonen, Favoino, Hensen, Overend (b0020) 2017; 10
Niklasson, Li, Granqvist (b0140) 2014; 559
Guinneton, Sauques, Valmalette, Cros, Gavarri (b0135) 2004; 446
DOE. EnergyPlus EMS Application Guide. US Department of Energy; 2019b.
Konopacki S, Akbari H, Gartland L, Rainer L. Demonstration of energy savings of cool roofs. Berkeley (CA): Lawrence Berkeley National Laboratory, Report number LBNL-40673; 1998.
Taylor, Yang, Wang (b0150) 2017; 197
Bedford H, Birchall S, Bleicher D, Wallis I, Causse E. Inspire Project, Development of Systemic Packages for Deep Energy Renovation of Residential and Tertiary Buildings including Envelope and Systems; 2014.
DOE. Input/Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output. US Department of Energy; 2019a.
IEA. TCEP: Building envelopes, IEA; 2019. Retrieved 3 September 2019, from
Parker, Huang, Konopacki, Gartland, Sherwin, Gu (b0270) 1998; 104
Gray (b0075) 2015
Levinson, Akbari (b0030) 2009; 3
Addington D, Schodek D. Smart Materials and Technologies for the architecture and design profession. Amsterdam: Elsevier, Architectural Press; 2005.
Park, Krarti (b0100) 2016; 124
Juaristi, Gómez-Acebo, Monge-Barrio (b0090) 2018; 144
Deru M, Field K, Studer D, Benne K, Griffith B, Torcellini P, Halverson M., Winiarski D, Liu B, Rosenberg M, Huang J, Yazdanian M, Crawley D. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock. Washington, DC: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Building Technologies; 2010.
Karlessi, Santamouris, Apostolakis, Synnefa, Livada (b0155) 2008; 83
.
Loonen, de Klijn-Chevalerias, Hensen (b0160) 2019; 12
Hildebrandt, Bos, Moore (b0055) 1998; 1998
Testa, Krarti (b0105) 2017; 31
Philip S. Eppy scripting language for Energyplus, Github Repository; 2019. Retrieved 20 January 2020, from
Wang, Zhu, Guo (b0125) 2019; 253
D’Antoni M, Geisler-Moroder D, Ochs F. Definition of a reference office building for simulation based evaluation of solar envelope systems. at EuroSun; 2018.
Parker D, Sonne J, Sherwin J. Demonstration of cooling savings of light-colored roof surfacing in Florida commercial buildings: retail strip mall. Cocoa (FL): Florida Solar Energy Center, Report FSEC-CR-964-97; 1997.
Yang, Wang, Kaloush (b0195) 2015; 47
Custers (b0210) 2013
Tabares-Velasco, Griffith (b0185) 2011; 5
Lee, Pang, Hoffmann, Goudey, Thanachareonkit (b0165) 2013; 116
Wu, Fan, Liu, Chen, Huang, Chen (b0145) 2015; 5
Tabares-Velasco PC, Christensen C, Bianchi M, Booten C., 2012. Verification and validation of EnergyPlus conduction finite difference and phase change material models for opaque wall assemblies (No. NREL/TP-5500-55792). National Renewable Energy Lab.(NREL), Golden, CO (United States).
Cao, Dai, Liu (b0010) 2016; 128
10.1016/j.apenergy.2021.116788_b0200
10.1016/j.apenergy.2021.116788_b0005
10.1016/j.apenergy.2021.116788_b0225
10.1016/j.apenergy.2021.116788_b0205
Loonen (10.1016/j.apenergy.2021.116788_b0020) 2017; 10
Cao (10.1016/j.apenergy.2021.116788_b0010) 2016; 128
Gray (10.1016/j.apenergy.2021.116788_b0075) 2015
Taylor (10.1016/j.apenergy.2021.116788_b0150) 2017; 197
Levinson (10.1016/j.apenergy.2021.116788_b0030) 2009; 3
Garshasbi (10.1016/j.apenergy.2021.116788_b0115) 2019; 191
Testa (10.1016/j.apenergy.2021.116788_b0015) 2017; 77
Akbari (10.1016/j.apenergy.2021.116788_b0045) 2003; 28
Park (10.1016/j.apenergy.2021.116788_b0100) 2016; 124
Wang (10.1016/j.apenergy.2021.116788_b0125) 2019; 253
10.1016/j.apenergy.2021.116788_b0190
Wu (10.1016/j.apenergy.2021.116788_b0145) 2015; 5
10.1016/j.apenergy.2021.116788_b0170
Juaristi (10.1016/j.apenergy.2021.116788_b0090) 2018; 144
10.1016/j.apenergy.2021.116788_b0095
Lee (10.1016/j.apenergy.2021.116788_b0165) 2013; 116
10.1016/j.apenergy.2021.116788_b0175
10.1016/j.apenergy.2021.116788_b0035
Jorgenson (10.1016/j.apenergy.2021.116788_b0130) 1986; 14
Loonen (10.1016/j.apenergy.2021.116788_b0160) 2019; 12
Loonen (10.1016/j.apenergy.2021.116788_b0255) 2014; 45
Testa (10.1016/j.apenergy.2021.116788_b0105) 2017; 31
Hu (10.1016/j.apenergy.2021.116788_b0110) 2019; 193
10.1016/j.apenergy.2021.116788_b0215
Parker (10.1016/j.apenergy.2021.116788_b0270) 1998; 104
Hildebrandt (10.1016/j.apenergy.2021.116788_b0055) 1998; 1998
Guinneton (10.1016/j.apenergy.2021.116788_b0135) 2004; 446
Favoino (10.1016/j.apenergy.2021.116788_b0025) 2015; 156
Mlyuka (10.1016/j.apenergy.2021.116788_b0080) 2009; 93
Tabares-Velasco (10.1016/j.apenergy.2021.116788_b0185) 2011; 5
Niklasson (10.1016/j.apenergy.2021.116788_b0140) 2014; 559
Yang (10.1016/j.apenergy.2021.116788_b0195) 2015; 47
Majcen (10.1016/j.apenergy.2021.116788_b0220) 2016
Akbari (10.1016/j.apenergy.2021.116788_b0050) 2005; 33
Fabiani (10.1016/j.apenergy.2021.116788_b0120) 2019; 247
Custers (10.1016/j.apenergy.2021.116788_b0210) 2013
Karlessi (10.1016/j.apenergy.2021.116788_b0155) 2008; 83
10.1016/j.apenergy.2021.116788_b0180
10.1016/j.apenergy.2021.116788_b0060
10.1016/j.apenergy.2021.116788_b0040
Akbari (10.1016/j.apenergy.2021.116788_b0070) 1999; 24
10.1016/j.apenergy.2021.116788_b0085
10.1016/j.apenergy.2021.116788_b0065
References_xml – volume: 104
  start-page: 963
  year: 1998
  end-page: 975
  ident: b0270
  article-title: Measured and simulated performance of reflective roofing systems in residential buildings
  publication-title: ASHRAE Trans
– reference: Philip S. Eppy scripting language for Energyplus, Github Repository; 2019. Retrieved 20 January 2020, from
– reference: DOE. EnergyPlus EMS Application Guide. US Department of Energy; 2019b.
– reference: Bedford H, Birchall S, Bleicher D, Wallis I, Causse E. Inspire Project, Development of Systemic Packages for Deep Energy Renovation of Residential and Tertiary Buildings including Envelope and Systems; 2014.
– volume: 93
  start-page: 1685
  year: 2009
  end-page: 1687
  ident: b0080
  article-title: Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance
  publication-title: Solar Energy Mater And Solar Cells
– volume: 28
  start-page: 953
  year: 2003
  end-page: 967
  ident: b0045
  article-title: Measured energy savings from the application of reflective roofs in 2 small non-residential buildings
  publication-title: Energy
– volume: 3
  start-page: 53
  year: 2009
  end-page: 109
  ident: b0030
  article-title: Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing the emission of greenhouse gases and air pollutants
  publication-title: Energ Effi
– volume: 83
  start-page: 538
  year: 2008
  end-page: 551
  ident: b0155
  article-title: Development and testing of thermochromic coatings for buildings and urban structures
  publication-title: Sol Energy
– volume: 14
  start-page: 205
  year: 1986
  end-page: 214
  ident: b0130
  article-title: Doped vanadium oxide for optical switching films
  publication-title: Solar Energy Mater
– volume: 191
  start-page: 21
  year: 2019
  end-page: 32
  ident: b0115
  article-title: Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating
  publication-title: Sol Energy Mater Sol Cells
– year: 2013
  ident: b0210
  article-title: Flexible city structures (Masters)
– reference: Addington D, Schodek D. Smart Materials and Technologies for the architecture and design profession. Amsterdam: Elsevier, Architectural Press; 2005.
– reference: Hooshangi H. Energy performance modeling of buildings with directional reflective roofs [A Thesis]. Montreal, Quebec, Canada: Concordia University; 2015.
– volume: 247
  start-page: 155
  year: 2019
  end-page: 170
  ident: b0120
  article-title: Adaptive measures for mitigating urban heat islands: the potential of thermochromic materials to control roofing energy balance
  publication-title: Appl Energy
– reference: D’Antoni M, Geisler-Moroder D, Ochs F. Definition of a reference office building for simulation based evaluation of solar envelope systems. at EuroSun; 2018.
– volume: 5
  start-page: 329
  year: 2011
  end-page: 346
  ident: b0185
  article-title: Diagnostic test cases for verifying surface heat transfer algorithms and boundary conditions in building energy simulation programs
  publication-title: J Build Perform Simul
– volume: 446
  start-page: 287
  year: 2004
  end-page: 295
  ident: b0135
  article-title: Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure
  publication-title: Thin Solid Films
– reference: Konopacki S, Akbari H, Gartland L, Rainer L. Demonstration of energy savings of cool roofs. Berkeley (CA): Lawrence Berkeley National Laboratory, Report number LBNL-40673; 1998.
– reference: Parker D, Sonne J, Sherwin J. Demonstration of cooling savings of light-colored roof surfacing in Florida commercial buildings: retail strip mall. Cocoa (FL): Florida Solar Energy Center, Report FSEC-CR-964-97; 1997.
– reference: Konopacki S, Akbari H. Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin. Berkeley (CA): Lawrence Berkeley National Laboratory, Report number LBNL-47149; 2001.
– volume: 31
  start-page: 62
  year: 2017
  end-page: 73
  ident: b0105
  article-title: Evaluation of energy savings potential of variable reflective roofing systems for US buildings
  publication-title: Sustainable Cities Soc
– volume: 197
  start-page: 76
  year: 2017
  end-page: 83
  ident: b0150
  article-title: Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications
  publication-title: J Quant Spectrosc Radiat Transfer
– reference: IEA. TCEP: Building envelopes, IEA; 2019. Retrieved 3 September 2019, from
– volume: 10
  start-page: 205
  year: 2017
  end-page: 223
  ident: b0020
  article-title: Review of current status, requirements and opportunities for building performance simulation of adaptive facades
  publication-title: J Build Perform Simul
– volume: 5
  year: 2015
  ident: b0145
  article-title: Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO2 by titanium (Ti4+) doping
  publication-title: Sci Rep
– volume: 116
  start-page: 14
  year: 2013
  end-page: 26
  ident: b0165
  article-title: An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives
  publication-title: Sol Energy Mater Sol Cells
– reference: Favoino F, Cascone Y, Bianco L, Goia F, Zinzi M, Overend M, et al. Simulating switchable glazing with energyplus: an empirical validation and calibration of a thermotropic glazing model. In Proceedings of building simulation; 2015b, December.
– volume: 559
  start-page: 012001
  year: 2014
  ident: b0140
  article-title: Thermochromic vanadium oxide thin films: electronic and optical properties
  publication-title: J Phys Conf Ser
– volume: 1998
  start-page: 14
  year: 1998
  ident: b0055
  article-title: Assessing the impacts of white roofs on building energy loads
  publication-title: ASHRAE Tech Data Bull
– volume: 24
  start-page: 391
  year: 1999
  end-page: 407
  ident: b0070
  article-title: Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States
  publication-title: Energy
– volume: 144
  start-page: 482
  year: 2018
  end-page: 501
  ident: b0090
  article-title: Qualitative analysis of promising materials and technologies for the design and evaluation of Climate Adaptive Opaque Facades
  publication-title: Build Environ
– volume: 124
  start-page: 88
  year: 2016
  end-page: 98
  ident: b0100
  article-title: Energy performance analysis of variable reflectivity envelope systems for commercial buildings
  publication-title: Energy Build
– volume: 47
  start-page: 830
  year: 2015
  end-page: 843
  ident: b0195
  article-title: Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?
  publication-title: Renew Sustain Energy Rev
– year: 2015
  ident: b0075
  article-title: Application of adaptive albedo roofing coatings in the south eastern United States
  publication-title: A Diss – Univ Ala Birm
– reference: .
– reference: DOE. Input/Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output. US Department of Energy; 2019a.
– volume: 77
  start-page: 451
  year: 2017
  end-page: 460
  ident: b0015
  article-title: A review of benefits and limitations of static and switchable cool roof systems
  publication-title: Renew Sustain Energy Rev
– volume: 12
  start-page: 272
  year: 2019
  end-page: 288
  ident: b0160
  article-title: Opportunities and pitfalls of using building performance simulation in explorative R&D contexts
  publication-title: J Build Perform Simul
– year: 2016
  ident: b0220
  article-title: Predicting energy consumption and savings in the housing stock
– volume: 45
  start-page: 86
  year: 2014
  end-page: 95
  ident: b0255
  article-title: Simulation-based support for product development of innovative building envelope components
  publication-title: Autom Constr
– volume: 253
  start-page: 113506
  year: 2019
  ident: b0125
  article-title: Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement
  publication-title: Appl Energy
– volume: 193
  start-page: 866
  year: 2019
  end-page: 877
  ident: b0110
  article-title: Thermo and light-responsive building envelope: energy analysis under different climate conditions
  publication-title: Sol Energy
– reference: Tabares-Velasco PC, Christensen C, Bianchi M, Booten C., 2012. Verification and validation of EnergyPlus conduction finite difference and phase change material models for opaque wall assemblies (No. NREL/TP-5500-55792). National Renewable Energy Lab.(NREL), Golden, CO (United States).
– reference: Deru M, Field K, Studer D, Benne K, Griffith B, Torcellini P, Halverson M., Winiarski D, Liu B, Rosenberg M, Huang J, Yazdanian M, Crawley D. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock. Washington, DC: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office of Building Technologies; 2010.
– volume: 128
  start-page: 198
  year: 2016
  end-page: 213
  ident: b0010
  article-title: Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade
  publication-title: Energy Build
– volume: 156
  start-page: 1
  year: 2015
  end-page: 15
  ident: b0025
  article-title: The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies
  publication-title: Appl Energy
– reference: Akbari H, Bretz S, Kurn D, Haniford J. (1997) Peak power and cooling energy savings of high-albedo roofs. Energy Build 1997; 25:117–26.
– volume: 33
  start-page: 721
  year: 2005
  end-page: 756
  ident: b0050
  article-title: Calculating energy-saving potentials of heat-island reduction strategies
  publication-title: Energy Policy
– volume: 124
  start-page: 88
  year: 2016
  ident: 10.1016/j.apenergy.2021.116788_b0100
  article-title: Energy performance analysis of variable reflectivity envelope systems for commercial buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.04.070
– volume: 253
  start-page: 113506
  year: 2019
  ident: 10.1016/j.apenergy.2021.116788_b0125
  article-title: Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113506
– ident: 10.1016/j.apenergy.2021.116788_b0175
– volume: 104
  start-page: 963
  year: 1998
  ident: 10.1016/j.apenergy.2021.116788_b0270
  article-title: Measured and simulated performance of reflective roofing systems in residential buildings
  publication-title: ASHRAE Trans
– volume: 28
  start-page: 953
  year: 2003
  ident: 10.1016/j.apenergy.2021.116788_b0045
  article-title: Measured energy savings from the application of reflective roofs in 2 small non-residential buildings
  publication-title: Energy
  doi: 10.1016/S0360-5442(03)00032-X
– volume: 77
  start-page: 451
  year: 2017
  ident: 10.1016/j.apenergy.2021.116788_b0015
  article-title: A review of benefits and limitations of static and switchable cool roof systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.030
– volume: 5
  start-page: 329
  issue: 5
  year: 2011
  ident: 10.1016/j.apenergy.2021.116788_b0185
  article-title: Diagnostic test cases for verifying surface heat transfer algorithms and boundary conditions in building energy simulation programs
  publication-title: J Build Perform Simul
  doi: 10.1080/19401493.2011.595501
– ident: 10.1016/j.apenergy.2021.116788_b0035
  doi: 10.1016/S0378-7788(96)01001-8
– ident: 10.1016/j.apenergy.2021.116788_b0095
– year: 2013
  ident: 10.1016/j.apenergy.2021.116788_b0210
– volume: 193
  start-page: 866
  year: 2019
  ident: 10.1016/j.apenergy.2021.116788_b0110
  article-title: Thermo and light-responsive building envelope: energy analysis under different climate conditions
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.10.021
– volume: 33
  start-page: 721
  year: 2005
  ident: 10.1016/j.apenergy.2021.116788_b0050
  article-title: Calculating energy-saving potentials of heat-island reduction strategies
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2003.10.001
– volume: 247
  start-page: 155
  year: 2019
  ident: 10.1016/j.apenergy.2021.116788_b0120
  article-title: Adaptive measures for mitigating urban heat islands: the potential of thermochromic materials to control roofing energy balance
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.020
– year: 2016
  ident: 10.1016/j.apenergy.2021.116788_b0220
– ident: 10.1016/j.apenergy.2021.116788_b0005
– volume: 1998
  start-page: 14
  year: 1998
  ident: 10.1016/j.apenergy.2021.116788_b0055
  article-title: Assessing the impacts of white roofs on building energy loads
  publication-title: ASHRAE Tech Data Bull
– volume: 83
  start-page: 538
  issue: 4
  year: 2008
  ident: 10.1016/j.apenergy.2021.116788_b0155
  article-title: Development and testing of thermochromic coatings for buildings and urban structures
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2008.10.005
– ident: 10.1016/j.apenergy.2021.116788_b0190
  doi: 10.26868/25222708.2015.2317
– ident: 10.1016/j.apenergy.2021.116788_b0225
– volume: 197
  start-page: 76
  year: 2017
  ident: 10.1016/j.apenergy.2021.116788_b0150
  article-title: Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications
  publication-title: J Quant Spectrosc Radiat Transfer
  doi: 10.1016/j.jqsrt.2017.01.014
– volume: 5
  issue: 1
  year: 2015
  ident: 10.1016/j.apenergy.2021.116788_b0145
  article-title: Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO2 by titanium (Ti4+) doping
  publication-title: Sci Rep
– ident: 10.1016/j.apenergy.2021.116788_b0085
– volume: 45
  start-page: 86
  year: 2014
  ident: 10.1016/j.apenergy.2021.116788_b0255
  article-title: Simulation-based support for product development of innovative building envelope components
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2014.05.008
– volume: 10
  start-page: 205
  issue: 2
  year: 2017
  ident: 10.1016/j.apenergy.2021.116788_b0020
  article-title: Review of current status, requirements and opportunities for building performance simulation of adaptive facades
  publication-title: J Build Perform Simul
  doi: 10.1080/19401493.2016.1152303
– volume: 446
  start-page: 287
  issue: 2
  year: 2004
  ident: 10.1016/j.apenergy.2021.116788_b0135
  article-title: Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2003.09.062
– volume: 128
  start-page: 198
  year: 2016
  ident: 10.1016/j.apenergy.2021.116788_b0010
  article-title: Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.06.089
– ident: 10.1016/j.apenergy.2021.116788_b0180
  doi: 10.2172/1050120
– volume: 3
  start-page: 53
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2021.116788_b0030
  article-title: Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing the emission of greenhouse gases and air pollutants
  publication-title: Energ Effi
  doi: 10.1007/s12053-008-9038-2
– volume: 31
  start-page: 62
  year: 2017
  ident: 10.1016/j.apenergy.2021.116788_b0105
  article-title: Evaluation of energy savings potential of variable reflective roofing systems for US buildings
  publication-title: Sustainable Cities Soc
  doi: 10.1016/j.scs.2017.01.016
– ident: 10.1016/j.apenergy.2021.116788_b0205
  doi: 10.18086/eurosun2018.06.13
– volume: 12
  start-page: 272
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2021.116788_b0160
  article-title: Opportunities and pitfalls of using building performance simulation in explorative R&D contexts
  publication-title: J Build Perform Simul
  doi: 10.1080/19401493.2018.1561754
– ident: 10.1016/j.apenergy.2021.116788_b0200
– year: 2015
  ident: 10.1016/j.apenergy.2021.116788_b0075
  article-title: Application of adaptive albedo roofing coatings in the south eastern United States
  publication-title: A Diss – Univ Ala Birm
– volume: 559
  start-page: 012001
  year: 2014
  ident: 10.1016/j.apenergy.2021.116788_b0140
  article-title: Thermochromic vanadium oxide thin films: electronic and optical properties
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/559/1/012001
– ident: 10.1016/j.apenergy.2021.116788_b0215
  doi: 10.2172/1009264
– ident: 10.1016/j.apenergy.2021.116788_b0065
  doi: 10.2172/787107
– volume: 14
  start-page: 205
  issue: 3–5
  year: 1986
  ident: 10.1016/j.apenergy.2021.116788_b0130
  article-title: Doped vanadium oxide for optical switching films
  publication-title: Solar Energy Mater
  doi: 10.1016/0165-1633(86)90047-X
– ident: 10.1016/j.apenergy.2021.116788_b0060
  doi: 10.2172/296885
– volume: 24
  start-page: 391
  year: 1999
  ident: 10.1016/j.apenergy.2021.116788_b0070
  article-title: Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States
  publication-title: Energy
  doi: 10.1016/S0360-5442(98)00105-4
– volume: 47
  start-page: 830
  year: 2015
  ident: 10.1016/j.apenergy.2021.116788_b0195
  article-title: Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.03.092
– volume: 156
  start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2021.116788_b0025
  article-title: The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.065
– volume: 116
  start-page: 14
  year: 2013
  ident: 10.1016/j.apenergy.2021.116788_b0165
  article-title: An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2013.03.043
– ident: 10.1016/j.apenergy.2021.116788_b0170
– ident: 10.1016/j.apenergy.2021.116788_b0040
– volume: 144
  start-page: 482
  year: 2018
  ident: 10.1016/j.apenergy.2021.116788_b0090
  article-title: Qualitative analysis of promising materials and technologies for the design and evaluation of Climate Adaptive Opaque Facades
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2018.08.028
– volume: 93
  start-page: 1685
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2021.116788_b0080
  article-title: Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance
  publication-title: Solar Energy Mater And Solar Cells
  doi: 10.1016/j.solmat.2009.03.021
– volume: 191
  start-page: 21
  year: 2019
  ident: 10.1016/j.apenergy.2021.116788_b0115
  article-title: Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2018.10.023
SSID ssj0002120
Score 2.5494518
Snippet •Thermochromic (TC) coatings provide heating and cooling savings in buildings.•5 building types and 3 climates were studied.•TC coating properties were...
Thermochromic (TC) materials can switch solar absorptance (α) based on temperature stimuli. When coatings with TC properties are applied on building envelope...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116788
SubjectTerms absorption
Building energy savings
Building envelopes
climate
heat
potential energy
Simulation-based optimization
solar radiation
temperature
terracing
Thermochromic coating
Title Investigating the energy saving potential of thermochromic coatings on building envelopes
URI https://dx.doi.org/10.1016/j.apenergy.2021.116788
https://www.proquest.com/docview/2574314253
Volume 291
WOSCitedRecordID wos000640381100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg4wAHBIOJ8SUjIS5VQhwncXwsU8eYSkGom8rJchJHMG1J1rRofz7PsZ1maGjjwCWqkjw36e_1vef3idBbFZAypVkGlhspvIjJxJNRUHigbGQhc7Dwu3ZNJ1M2m6WLBf9qA-1tN06AVVV6ecmb_wo1nAOwdensP8DdLwon4DOADkeAHY63An7QOcNWQilT39fKznnQ1CudIWSMUG3-ndf5j6UuTh7ldUfURRAyOy9bl8LptCKba-ga1lrj1Szd7-nXJtQ0LuXFxklaqNGJ3pAbB_T5Wp2NPvh9IlBdV0byfdNJtvv-R_9zf_FQVdZBdKSnC7sr1kkRDpKpXHEWnNCbtaHgDTkZNb4OBAGE14pz41k49WVjXsfXa1uKjQJzQfvZF3FwPJ2K-WQxf9dceHq0mA7B2zkrd9F2yGIOom97_GmyOOoVdmi7d7pnHBSSX__Vf7Nh_tDmnYkyf4Qe2r0FHhueeIzuqGoHPRh0nNxBu5NNYSPcaiV7-wR9v8I2GPgCmyfChm1wzza4LvEVtsGObXBdYcc2uGebp-j4YDLfP_Ts2A0vp5yuPBblZZiUFExXpjIG-4c444xGGYV3L0hGSB7KiMVKF0XHKYlkkASUqwRUZViSgO6irQp45xnCPCGER0wBmZ5xTSQvQ5JIlhIZSaWCPRS7H1Lktie9Ho1yJlzy4alwAAgNgDAA7KH3PV1jurLcSMEdTsLalsZmFMBrN9K-ccAKEL46oiYrVa9bAfoODHBQe_T5Le55ge5v_hsv0dZquVav0L381-pnu3xtufI3D6Cnug
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+energy+saving+potential+of+thermochromic+coatings+on+building+envelopes&rft.jtitle=Applied+energy&rft.au=Butt%2C+Afaq+A&rft.au=de+Vries%2C+Samuel+B.&rft.au=Loonen%2C+Roel+C.G.M.&rft.au=Hensen%2C+Jan+L.M.&rft.date=2021-06-01&rft.issn=0306-2619&rft.volume=291+p.116788-&rft_id=info:doi/10.1016%2Fj.apenergy.2021.116788&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon