Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation

•Teaching-learning-based artificial bee colony algorithm is proposed.•Three hybrid teaching-learning-based bee search phases are presented.•The method is applied to solve three photovoltaic parameters estimation problems.•It achievesvery competitive results in terms of accuracy and reliability. Para...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 212; s. 1578 - 1588
Hlavní autoři: Chen, Xu, Xu, Bin, Mei, Congli, Ding, Yuhan, Li, Kangji
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.02.2018
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Teaching-learning-based artificial bee colony algorithm is proposed.•Three hybrid teaching-learning-based bee search phases are presented.•The method is applied to solve three photovoltaic parameters estimation problems.•It achievesvery competitive results in terms of accuracy and reliability. Parameters estimation of photovoltaic (PV) model based on experimental data plays an important role in the simulation, evaluation, control, and optimization of PV systems. In the past decade, many metaheuristic algorithms have been used to extract the PV parameters; however, developing hybrid algorithms based on two or more metaheuristic algorithms may further improve the accuracy and reliability of single metaheuristic algorithms. In this paper, by combining teaching-learning-based optimization (TLBO) and artificial bee colony (ABC), we propose a new hybrid teaching-learning-based artificial bee colony (TLABC) for the solar PV parameter estimation problems. The proposed TLABC employs three hybrid search phases, namely teaching-based employed bee phase, learning-based on looker bee phase, and generalized oppositional scout bee phase to efficiently search the optimization parameters. TLABC is applied to identify parameters of different PV models, including single diode, double diode, and PV module, and the results of TLABC are compared with well-established TLBO and ABC algorithms, as well as those results reported in the literature. Experimental results show that TLABC can achieve superior performance in terms of accuracy and reliability for different PV parameter estimation problems.
AbstractList Parameters estimation of photovoltaic (PV) model based on experimental data plays an important role in the simulation, evaluation, control, and optimization of PV systems. In the past decade, many metaheuristic algorithms have been used to extract the PV parameters; however, developing hybrid algorithms based on two or more metaheuristic algorithms may further improve the accuracy and reliability of single metaheuristic algorithms. In this paper, by combining teaching-learning-based optimization (TLBO) and artificial bee colony (ABC), we propose a new hybrid teaching-learning-based artificial bee colony (TLABC) for the solar PV parameter estimation problems. The proposed TLABC employs three hybrid search phases, namely teaching-based employed bee phase, learning-based on looker bee phase, and generalized oppositional scout bee phase to efficiently search the optimization parameters. TLABC is applied to identify parameters of different PV models, including single diode, double diode, and PV module, and the results of TLABC are compared with well-established TLBO and ABC algorithms, as well as those results reported in the literature. Experimental results show that TLABC can achieve superior performance in terms of accuracy and reliability for different PV parameter estimation problems.
•Teaching-learning-based artificial bee colony algorithm is proposed.•Three hybrid teaching-learning-based bee search phases are presented.•The method is applied to solve three photovoltaic parameters estimation problems.•It achievesvery competitive results in terms of accuracy and reliability. Parameters estimation of photovoltaic (PV) model based on experimental data plays an important role in the simulation, evaluation, control, and optimization of PV systems. In the past decade, many metaheuristic algorithms have been used to extract the PV parameters; however, developing hybrid algorithms based on two or more metaheuristic algorithms may further improve the accuracy and reliability of single metaheuristic algorithms. In this paper, by combining teaching-learning-based optimization (TLBO) and artificial bee colony (ABC), we propose a new hybrid teaching-learning-based artificial bee colony (TLABC) for the solar PV parameter estimation problems. The proposed TLABC employs three hybrid search phases, namely teaching-based employed bee phase, learning-based on looker bee phase, and generalized oppositional scout bee phase to efficiently search the optimization parameters. TLABC is applied to identify parameters of different PV models, including single diode, double diode, and PV module, and the results of TLABC are compared with well-established TLBO and ABC algorithms, as well as those results reported in the literature. Experimental results show that TLABC can achieve superior performance in terms of accuracy and reliability for different PV parameter estimation problems.
Author Xu, Bin
Mei, Congli
Chen, Xu
Ding, Yuhan
Li, Kangji
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0003-2779-9978
  surname: Chen
  fullname: Chen, Xu
  email: xuchen@ujs.edu.cn
  organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
– sequence: 2
  givenname: Bin
  surname: Xu
  fullname: Xu, Bin
  organization: School of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
– sequence: 3
  givenname: Congli
  surname: Mei
  fullname: Mei, Congli
  organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
– sequence: 4
  givenname: Yuhan
  surname: Ding
  fullname: Ding, Yuhan
  organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
– sequence: 5
  givenname: Kangji
  surname: Li
  fullname: Li, Kangji
  organization: School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
BookMark eNqFkL9OHDEQh60IpNwBrxBtmWYXj33eP1KKRKcEIp1EAyWyZr2z4JPP3tjmpOvyDnnDPAkLlzQ0VDPFfL-Z-ZbsxAdPjH0CXgGH-nJb4USe4sOhEhyaCkQFoD6wBbSNKDuA9oQtuOR1KWroPrJlSlvOuQDBF-z-ltA8Wv_w9_cfRxj9se0x0VBgzHa0xqIreqLCBBf8oRhDLFJwGIvpMeSwDy6jNcWEEXeUKRaUst1htsGfs9MRXaKLf_WM3f34fru-Ljc3Vz_X3zalkZ3MZcO7kSvVNzgi9H0rhxWBARTYolB1L1QjFSgYxCD5QCvetZKgJj62qm5rJc_Y52PuFMOvp3m_3tlkyDn0FJ6SFrMoCc2qW82j9XHUxJBSpFFPcb42HjRw_eJTb_V_n_rFpwahZ58z-OUNaGx-_TJHtO59_OsRp9nD3lLUyVjyhgYbyWQ9BPtexDPjsJu3
CitedBy_id crossref_primary_10_1007_s12065_021_00640_8
crossref_primary_10_1016_j_enconman_2019_112132
crossref_primary_10_1007_s13369_022_07364_6
crossref_primary_10_1016_j_knosys_2021_106792
crossref_primary_10_1016_j_egyr_2021_01_096
crossref_primary_10_1016_j_enconman_2024_118258
crossref_primary_10_1016_j_energy_2020_117874
crossref_primary_10_1016_j_iswa_2022_200163
crossref_primary_10_1007_s40996_024_01488_5
crossref_primary_10_1016_j_enconman_2019_112138
crossref_primary_10_3390_math11081861
crossref_primary_10_1016_j_asoc_2024_112221
crossref_primary_10_1016_j_engappai_2023_107579
crossref_primary_10_1371_journal_pone_0308110
crossref_primary_10_1016_j_energy_2022_125259
crossref_primary_10_1109_TEC_2022_3198883
crossref_primary_10_1155_2022_5013146
crossref_primary_10_3390_su15043312
crossref_primary_10_1155_2024_8913560
crossref_primary_10_3390_s22218281
crossref_primary_10_1109_ACCESS_2020_2984728
crossref_primary_10_1007_s10825_022_01891_z
crossref_primary_10_1007_s11831_025_10269_w
crossref_primary_10_1080_1206212X_2019_1686562
crossref_primary_10_1016_j_egyr_2022_11_092
crossref_primary_10_1016_j_ijleo_2024_171890
crossref_primary_10_1007_s13762_021_03286_2
crossref_primary_10_1016_j_egyr_2023_11_012
crossref_primary_10_1016_j_eswa_2020_113917
crossref_primary_10_1016_j_jocs_2018_11_001
crossref_primary_10_1016_j_enconman_2019_112243
crossref_primary_10_1016_j_solener_2022_06_043
crossref_primary_10_1088_1361_6463_ab8036
crossref_primary_10_1007_s43937_024_00063_3
crossref_primary_10_1016_j_enconman_2020_112716
crossref_primary_10_1140_epjp_s13360_021_01462_4
crossref_primary_10_1016_j_enconman_2024_118387
crossref_primary_10_3390_en11051060
crossref_primary_10_1109_ACCESS_2021_3069748
crossref_primary_10_1016_j_enconman_2022_116523
crossref_primary_10_1080_15325008_2023_2283843
crossref_primary_10_1038_s41598_024_81144_0
crossref_primary_10_3390_app8112155
crossref_primary_10_3390_math10071057
crossref_primary_10_1016_j_enconman_2021_115134
crossref_primary_10_1016_j_egyr_2022_01_008
crossref_primary_10_1016_j_heliyon_2024_e39902
crossref_primary_10_1016_j_enconman_2020_113491
crossref_primary_10_1080_15567036_2022_2041768
crossref_primary_10_3389_fenrg_2022_794732
crossref_primary_10_3390_en13154037
crossref_primary_10_1016_j_aej_2025_04_020
crossref_primary_10_1016_j_engappai_2023_106225
crossref_primary_10_1016_j_knosys_2024_111725
crossref_primary_10_1039_D0SE01000F
crossref_primary_10_1007_s00521_022_07047_1
crossref_primary_10_1016_j_apenergy_2019_05_013
crossref_primary_10_1016_j_enconman_2020_113266
crossref_primary_10_1016_j_enconman_2022_115403
crossref_primary_10_1016_j_enconman_2020_113388
crossref_primary_10_1109_ACCESS_2020_3000770
crossref_primary_10_1016_j_energy_2022_126366
crossref_primary_10_1080_15567036_2023_2181888
crossref_primary_10_1016_j_egyr_2021_08_188
crossref_primary_10_1016_j_rser_2021_110828
crossref_primary_10_3389_fenrg_2022_1028816
crossref_primary_10_1002_2050_7038_13244
crossref_primary_10_1016_j_egyr_2022_05_160
crossref_primary_10_3390_eng4030103
crossref_primary_10_1016_j_asoc_2021_107134
crossref_primary_10_1016_j_asoc_2021_108345
crossref_primary_10_1016_j_enconman_2025_120029
crossref_primary_10_1155_2022_6841861
crossref_primary_10_1016_j_ijleo_2021_166439
crossref_primary_10_1109_ACCESS_2021_3064757
crossref_primary_10_3390_en14071867
crossref_primary_10_1371_journal_pone_0267633
crossref_primary_10_3390_su13105724
crossref_primary_10_1155_2023_3788453
crossref_primary_10_1016_j_enconman_2020_112856
crossref_primary_10_1016_j_enconman_2020_112615
crossref_primary_10_1016_j_enconman_2020_113820
crossref_primary_10_1016_j_dt_2023_04_010
crossref_primary_10_1016_j_enconman_2021_113971
crossref_primary_10_1016_j_enconman_2022_115414
crossref_primary_10_1016_j_energy_2022_124511
crossref_primary_10_1016_j_eswa_2022_117389
crossref_primary_10_1007_s00521_022_07142_3
crossref_primary_10_1016_j_enconman_2020_113395
crossref_primary_10_1016_j_micpro_2020_103050
crossref_primary_10_1108_COMPEL_09_2022_0306
crossref_primary_10_1016_j_apenergy_2024_123208
crossref_primary_10_1016_j_solener_2020_09_047
crossref_primary_10_1155_2021_8878686
crossref_primary_10_1016_j_enconman_2019_112450
crossref_primary_10_1007_s41403_021_00246_7
crossref_primary_10_1016_j_energy_2020_118644
crossref_primary_10_1016_j_enconman_2020_112509
crossref_primary_10_1016_j_asoc_2020_106934
crossref_primary_10_1007_s00500_021_06010_x
crossref_primary_10_1016_j_egyr_2023_03_105
crossref_primary_10_1016_j_enconman_2020_112990
crossref_primary_10_1007_s11227_019_03098_9
crossref_primary_10_1016_j_asoc_2023_110597
crossref_primary_10_1016_j_nucengdes_2025_114013
crossref_primary_10_1016_j_solener_2022_03_019
crossref_primary_10_1016_j_csite_2024_104917
crossref_primary_10_1016_j_jclepro_2021_128080
crossref_primary_10_3390_su15108238
crossref_primary_10_3390_math10020183
crossref_primary_10_1007_s42979_023_02008_4
crossref_primary_10_1016_j_asoc_2023_110916
crossref_primary_10_34248_bsengineering_1490859
crossref_primary_10_1016_j_enconman_2019_112443
crossref_primary_10_1016_j_enconman_2019_112204
crossref_primary_10_1109_ACCESS_2020_3024975
crossref_primary_10_1016_j_enconman_2020_113722
crossref_primary_10_1186_s13638_021_02018_x
crossref_primary_10_1016_j_asoc_2025_113117
crossref_primary_10_1080_02286203_2018_1525938
crossref_primary_10_3390_en14112980
crossref_primary_10_1007_s11831_024_10214_3
crossref_primary_10_1016_j_enconman_2021_114484
crossref_primary_10_3390_en14185735
crossref_primary_10_1080_15567036_2022_2125126
crossref_primary_10_1007_s00500_022_07109_5
crossref_primary_10_1016_j_heliyon_2024_e37887
crossref_primary_10_1016_j_engappai_2022_104763
crossref_primary_10_1016_j_renene_2021_10_063
crossref_primary_10_1007_s10462_025_11125_w
crossref_primary_10_1016_j_eswa_2024_124882
crossref_primary_10_1016_j_eswa_2025_126425
crossref_primary_10_1016_j_prime_2024_100621
crossref_primary_10_1016_j_solener_2021_02_038
crossref_primary_10_3390_math10234617
crossref_primary_10_1016_j_enconman_2020_113614
crossref_primary_10_1109_ACCESS_2020_3046536
crossref_primary_10_1007_s10462_023_10446_y
crossref_primary_10_1007_s42341_021_00312_5
crossref_primary_10_1038_s41598_024_58503_y
crossref_primary_10_1155_2020_6873847
crossref_primary_10_3390_s22114173
crossref_primary_10_1016_j_solener_2021_06_015
crossref_primary_10_1007_s10825_024_02153_w
crossref_primary_10_1016_j_enconman_2018_12_022
crossref_primary_10_1109_ACCESS_2020_3003814
crossref_primary_10_1007_s00202_024_02375_y
crossref_primary_10_1016_j_csite_2024_104938
crossref_primary_10_3389_fenrg_2021_675925
crossref_primary_10_1002_er_5756
crossref_primary_10_3390_su151813916
crossref_primary_10_1016_j_ijhydene_2025_05_208
crossref_primary_10_1002_er_5747
crossref_primary_10_3390_su151310510
crossref_primary_10_3390_rs11232795
crossref_primary_10_1007_s40747_023_01085_5
crossref_primary_10_1088_1402_4896_ad4922
crossref_primary_10_1016_j_neucom_2018_06_076
crossref_primary_10_1016_j_aej_2025_03_024
crossref_primary_10_3233_ICA_220693
crossref_primary_10_1016_j_apenergy_2019_01_009
crossref_primary_10_1016_j_apenergy_2019_01_008
crossref_primary_10_1016_j_asoc_2023_110386
crossref_primary_10_1016_j_heliyon_2024_e33946
crossref_primary_10_1016_j_enconman_2020_113751
crossref_primary_10_3390_electronics10151846
crossref_primary_10_1049_rpg2_13057
crossref_primary_10_3390_biomimetics8060490
crossref_primary_10_1007_s40998_019_00257_9
crossref_primary_10_1155_2018_1806947
crossref_primary_10_1016_j_egyr_2022_09_193
crossref_primary_10_1016_j_ijleo_2023_171465
crossref_primary_10_1016_j_solener_2019_08_022
crossref_primary_10_1049_rpg2_12523
crossref_primary_10_3390_math11224565
crossref_primary_10_1016_j_enconman_2023_116994
crossref_primary_10_1016_j_engappai_2024_108544
crossref_primary_10_1016_j_solener_2022_08_046
crossref_primary_10_1109_ACCESS_2019_2939653
crossref_primary_10_1109_ACCESS_2024_3504559
crossref_primary_10_3390_pr12122718
crossref_primary_10_1016_j_solener_2020_09_080
crossref_primary_10_1016_j_matpr_2021_11_106
crossref_primary_10_1016_j_engappai_2024_109879
crossref_primary_10_1007_s10825_022_01931_8
crossref_primary_10_1155_2021_6660115
crossref_primary_10_1016_j_enconman_2020_113521
crossref_primary_10_1049_rpg2_13061
crossref_primary_10_1016_j_ijleo_2019_164034
crossref_primary_10_1016_j_solener_2024_112953
crossref_primary_10_1007_s10489_021_02849_7
crossref_primary_10_1002_rnc_7047
crossref_primary_10_1007_s11047_020_09808_0
crossref_primary_10_1007_s10462_020_09902_w
crossref_primary_10_3390_su162310603
crossref_primary_10_1016_j_egyr_2021_06_085
crossref_primary_10_1038_s41598_024_81125_3
crossref_primary_10_1016_j_asoc_2024_112295
crossref_primary_10_3390_en15197212
crossref_primary_10_1016_j_enconman_2023_117831
crossref_primary_10_3390_polym17111583
crossref_primary_10_1016_j_enconman_2020_113522
crossref_primary_10_3389_fenrg_2022_883856
crossref_primary_10_1016_j_energy_2019_116247
crossref_primary_10_1007_s00521_024_09534_z
crossref_primary_10_3390_machines13080706
crossref_primary_10_1016_j_enconman_2019_02_003
crossref_primary_10_1007_s10825_020_01617_z
crossref_primary_10_1007_s10825_023_02095_9
crossref_primary_10_1016_j_solener_2019_10_093
crossref_primary_10_1016_j_heliyon_2024_e38412
crossref_primary_10_3390_electronics13091611
crossref_primary_10_3390_app13189997
crossref_primary_10_1016_j_enconman_2023_117621
crossref_primary_10_1007_s00521_021_05822_0
crossref_primary_10_1080_01430750_2024_2304331
crossref_primary_10_1016_j_enconman_2021_114667
crossref_primary_10_1155_2023_4831209
crossref_primary_10_1016_j_enconman_2020_113661
crossref_primary_10_1016_j_jobe_2021_102643
crossref_primary_10_1155_2021_4343203
crossref_primary_10_1016_j_ijleo_2022_168873
crossref_primary_10_1016_j_ijleo_2023_170900
crossref_primary_10_1038_s41598_024_52416_6
crossref_primary_10_1016_j_eswa_2024_126186
crossref_primary_10_1049_stg2_12198
crossref_primary_10_1007_s42452_025_06756_1
crossref_primary_10_1016_j_solener_2020_04_036
crossref_primary_10_1016_j_ins_2024_120627
crossref_primary_10_3390_en16145425
crossref_primary_10_1016_j_egyr_2021_06_064
crossref_primary_10_1016_j_engappai_2021_104374
crossref_primary_10_1109_ACCESS_2021_3061529
crossref_primary_10_1016_j_ins_2019_02_014
crossref_primary_10_1109_ACCESS_2022_3142779
crossref_primary_10_1155_2022_2762554
crossref_primary_10_3390_electronics12244990
crossref_primary_10_1016_j_egyr_2021_05_030
crossref_primary_10_1016_j_enconman_2019_01_102
crossref_primary_10_1016_j_ijleo_2019_164041
crossref_primary_10_1038_s41598_025_04589_x
crossref_primary_10_1080_15567036_2020_1806956
crossref_primary_10_1016_j_egyr_2023_08_019
crossref_primary_10_1016_j_enconman_2018_08_053
crossref_primary_10_1038_s41598_023_37824_4
crossref_primary_10_1108_COMPEL_12_2019_0495
crossref_primary_10_1016_j_ijhydene_2024_08_048
crossref_primary_10_1016_j_enconman_2023_117365
crossref_primary_10_1016_j_knosys_2019_105002
crossref_primary_10_1007_s12652_022_04412_9
crossref_primary_10_1039_D5RA04785D
crossref_primary_10_1007_s11740_019_00906_2
crossref_primary_10_1016_j_enconman_2020_112595
crossref_primary_10_1007_s00202_024_02547_w
crossref_primary_10_1016_j_asoc_2023_110513
crossref_primary_10_1016_j_solener_2020_10_062
crossref_primary_10_1080_0305215X_2020_1839443
crossref_primary_10_1049_gtd2_13279
crossref_primary_10_1002_tee_24155
crossref_primary_10_3390_en12132568
crossref_primary_10_1016_j_energy_2020_117040
crossref_primary_10_1038_s41598_024_61434_3
crossref_primary_10_1007_s40435_023_01165_x
crossref_primary_10_1109_ACCESS_2019_2922327
crossref_primary_10_1007_s00500_020_04863_2
crossref_primary_10_1016_j_asoc_2024_112371
crossref_primary_10_1016_j_ijhydene_2024_06_424
crossref_primary_10_1109_ACCESS_2020_2966268
crossref_primary_10_1007_s00521_024_09928_z
crossref_primary_10_1016_j_enconman_2024_118627
crossref_primary_10_1002_gch2_202300355
crossref_primary_10_1155_2021_7902783
crossref_primary_10_3390_a12050094
crossref_primary_10_1016_j_heliyon_2021_e06673
crossref_primary_10_1016_j_enconman_2019_02_048
crossref_primary_10_1155_2019_3923691
crossref_primary_10_1016_j_asoc_2019_105680
crossref_primary_10_1016_j_energy_2020_117054
crossref_primary_10_1016_j_swevo_2025_101844
crossref_primary_10_1016_j_jclepro_2019_118778
crossref_primary_10_3390_su15107896
crossref_primary_10_1002_2050_7038_13113
crossref_primary_10_1155_2019_4692108
crossref_primary_10_1049_rpg2_12465
crossref_primary_10_1016_j_egyr_2021_06_097
crossref_primary_10_1007_s10825_022_01881_1
crossref_primary_10_1109_ACCESS_2020_3005711
crossref_primary_10_1016_j_solmat_2021_111494
crossref_primary_10_1080_15567036_2023_2211032
crossref_primary_10_1007_s11356_022_24941_2
crossref_primary_10_1007_s10825_022_01870_4
crossref_primary_10_1007_s42235_024_00553_z
crossref_primary_10_3390_en15238941
crossref_primary_10_1016_j_ijhydene_2020_11_119
crossref_primary_10_1016_j_solener_2022_05_007
crossref_primary_10_1002_ese3_1109
crossref_primary_10_1016_j_enconman_2019_06_037
crossref_primary_10_1016_j_asoc_2021_107451
crossref_primary_10_1016_j_isatra_2025_07_023
crossref_primary_10_1016_j_solener_2019_01_025
crossref_primary_10_1016_j_apenergy_2018_06_010
crossref_primary_10_1016_j_swevo_2019_01_003
crossref_primary_10_1007_s10586_025_05228_w
crossref_primary_10_3390_en15186567
crossref_primary_10_1016_j_asoc_2021_107218
crossref_primary_10_1016_j_asoc_2020_106504
crossref_primary_10_1007_s12652_022_03896_9
crossref_primary_10_1016_j_energy_2020_116979
crossref_primary_10_1016_j_enconman_2020_113474
crossref_primary_10_1016_j_solener_2023_111930
crossref_primary_10_1038_s41598_025_99105_6
crossref_primary_10_1016_j_solener_2018_06_092
crossref_primary_10_1002_ese3_1115
crossref_primary_10_1016_j_susoc_2021_10_002
crossref_primary_10_1016_j_ijhydene_2024_10_297
crossref_primary_10_1007_s40095_022_00523_3
crossref_primary_10_1155_2021_6697942
Cites_doi 10.1016/j.enconman.2016.01.071
10.1016/j.enconman.2014.06.026
10.1016/j.renene.2012.01.082
10.1016/j.ins.2014.03.038
10.1016/j.ins.2011.08.006
10.1016/j.solener.2010.02.012
10.1016/j.solener.2016.03.033
10.1109/TSTE.2015.2389858
10.1007/s10898-007-9149-x
10.1016/j.apenergy.2012.05.017
10.1016/j.solener.2014.07.013
10.1109/ICEICE.2011.5777246
10.1080/01425918608909835
10.1016/j.solener.2011.09.032
10.1155/2013/362619
10.1016/0038-1101(86)90212-1
10.1016/j.solener.2012.08.018
10.1016/j.enconman.2017.04.042
10.1016/j.energy.2015.08.019
10.1016/j.renene.2016.06.024
10.1016/j.ins.2010.07.015
10.1109/TEVC.2010.2059031
10.1016/j.apenergy.2016.08.083
10.1016/j.enconman.2017.08.088
10.1016/j.ins.2011.03.016
10.1016/j.enconman.2015.11.041
10.1155/2015/292576
10.1016/j.energy.2016.01.052
10.1016/j.enconman.2015.08.023
10.1016/j.apenergy.2017.05.029
10.1016/j.enconman.2017.04.054
10.1088/0957-0233/12/11/322
10.1016/j.ijleo.2017.10.081
10.1016/j.enconman.2016.12.082
10.1016/j.solener.2013.05.007
10.1016/j.enconman.2016.06.052
10.1016/j.enconman.2017.08.063
10.1016/j.solener.2011.04.013
10.1016/j.energy.2014.05.011
10.1016/j.energy.2013.02.057
10.1016/j.solmat.2005.04.023
10.1016/j.asoc.2015.08.047
10.1016/j.ijhydene.2013.12.110
10.1016/j.enconman.2016.09.085
10.1016/j.renene.2017.04.014
10.1016/j.swevo.2017.02.005
10.1016/j.enconman.2015.05.074
10.1016/j.apenergy.2012.09.052
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2017.12.115
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 1588
ExternalDocumentID 10_1016_j_apenergy_2017_12_115
S0306261917318391
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c393t-709f055b7afa1bb83d4e1c1a2a8a256b25735151d2d30de40983e16e0f8568653
ISICitedReferencesCount 352
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425200700117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 08:34:43 EDT 2025
Sat Nov 29 07:24:10 EST 2025
Tue Nov 18 22:28:38 EST 2025
Fri Feb 23 02:46:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Artificial bee colony
Hybridization
Metaheuristic algorithm
Photovoltaic parameter estimation
Teaching-learning-based optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-709f055b7afa1bb83d4e1c1a2a8a256b25735151d2d30de40983e16e0f8568653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2779-9978
PQID 2101317494
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2101317494
crossref_primary_10_1016_j_apenergy_2017_12_115
crossref_citationtrail_10_1016_j_apenergy_2017_12_115
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_12_115
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Fu, Xue (b0250) 2015; 2015
Zou, Wang, Hei, Chen (b0255) 2015; 37
Yuan, Xiang, He (b0265) 2014; 108
Hasanien (b0145) 2015; 6
Easwarakhanthan, Bottin, Bouhouch, Boutrit (b0050) 1986; 4
Akay, Karaboga (b0260) 2012; 192
Chellaswamy, Ramesh (b0110) 2016; 97
Chen, Wu, Lin, Wu, Cheng (b0030) 2016; 182
Jordehi (b0090) 2016; 129
Zhu, Kwong (b0225) 2010; 217
Yu, Liang, Qu, Chen, Wang (b0195) 2017; 150
Jervase, Bourdoucen, Al-Lawati (b0070) 2001; 12
Awadallah (b0165) 2016; 113
Alam, Yousri, Eteiba (b0155) 2015; 101
Ram, Babu, Dragicevic, Rajasekar (b0160) 2017; 135
Zagrouba, Sellami, Bouaïcha, Ksouri (b0075) 2010; 84
Guo, Meng, Sun, Wang (b0045) 2016; 108
.
El-Naggar, AlRashidi, AlHajri, Al-Othman (b0115) 2012; 86
Yu, Chen, Wang, Wang (b0035) 2017; 145
Askarzadeh, Rezazadeh (b0130) 2013; 102
Ma, Bi, Ting, Hao, Hao (b0040) 2016; 132
Askarzadeh, Rezazadeh (b0120) 2012; 86
Niu, Zhang, Li (b0140) 2014; 86
Niu, Zhang, Li (b0125) 2014; 39
Karaboga, Basturk (b0215) 2007; 39
[REN21]–Renewable Energy Policy Network for the 21st Century, 2017. Renewables 2017—global status report. Paris: REN21; 2017.
Kler, Sharma, Banerjee, Rana, Kumar (b0180) 2017
Zhou, Wu, Wang, Rahnamayan (b0235) 2014
AlRashidi, AlHajri, El-Naggar, Al-Othman (b0080) 2011; 85
AlHajri, El-Naggar, AlRashidi, Al-Othman (b0245) 2012; 44
Xu, Wang (b0010) 2017; 144
Singh (b0025) 2013; 53
Price K, Storn RM, Lampinen JA. Differential evolution: a practical approach to global optimization. Springer Science & Business Media; 2006.
Chan, Phillips, Phang (b0060) 1986; 29
Wang, Wu, Rahnamayan, Liu, Ventresca (b0240) 2011; 181
Ortiz-Conde, Sánchez, Muci (b0055) 2006; 90
Oliva, Cuevas, Pajares (b0135) 2014; 72
Fathy, Rezk (b0175) 2017; 111
Wu, Yu, Kang (b0185) 2017; 151
Ma, Ting, Man, Zhang, Guan, Wong (b0150) 2013; 2013
Oliva, El Aziz, Hassanien (b0020) 2017; 200
Zou, Wang, Hei, Chen, Yang (b0220) 2014; 273
Wang, Huang (b0200) 2018; 155
Chen, Yu, Du, Zhao, Liu (b0065) 2016; 99
Muhsen, Ghazali, Khatib, Abed (b0005) 2015; 105
Ayala, dos Santos Coelho, Mariani, Askarzadeh (b0105) 2015; 93
Gong, Cai (b0095) 2013; 94
Rao, Savsani, Vakharia (b0210) 2012; 183
Wei H, Cong J, Lingyun X, Deyun S. Extracting solar cell model parameters based on chaos particle swarm algorithm. In: International conference on electric information and control engineering (ICEICE), IEEE; 2011. p. 398–402.
Allam, Yousri, Eteiba (b0170) 2016; 123
Ali, El-Hameed, El-Fergany, El-Arini (b0190) 2016; 17
Ishaque, Salam, Mekhilef, Shamsudin (b0100) 2012; 99
Das, Suganthan (b0205) 2011; 15
Jervase (10.1016/j.apenergy.2017.12.115_b0070) 2001; 12
Ayala (10.1016/j.apenergy.2017.12.115_b0105) 2015; 93
10.1016/j.apenergy.2017.12.115_b0230
Fathy (10.1016/j.apenergy.2017.12.115_b0175) 2017; 111
Zou (10.1016/j.apenergy.2017.12.115_b0220) 2014; 273
Ma (10.1016/j.apenergy.2017.12.115_b0040) 2016; 132
Zou (10.1016/j.apenergy.2017.12.115_b0255) 2015; 37
Wu (10.1016/j.apenergy.2017.12.115_b0250) 2015; 2015
Ishaque (10.1016/j.apenergy.2017.12.115_b0100) 2012; 99
Ali (10.1016/j.apenergy.2017.12.115_b0190) 2016; 17
Yu (10.1016/j.apenergy.2017.12.115_b0195) 2017; 150
Hasanien (10.1016/j.apenergy.2017.12.115_b0145) 2015; 6
Alam (10.1016/j.apenergy.2017.12.115_b0155) 2015; 101
Yu (10.1016/j.apenergy.2017.12.115_b0035) 2017; 145
Jordehi (10.1016/j.apenergy.2017.12.115_b0090) 2016; 129
Chen (10.1016/j.apenergy.2017.12.115_b0030) 2016; 182
Ma (10.1016/j.apenergy.2017.12.115_b0150) 2013; 2013
Akay (10.1016/j.apenergy.2017.12.115_b0260) 2012; 192
Awadallah (10.1016/j.apenergy.2017.12.115_b0165) 2016; 113
Niu (10.1016/j.apenergy.2017.12.115_b0140) 2014; 86
Ram (10.1016/j.apenergy.2017.12.115_b0160) 2017; 135
Wu (10.1016/j.apenergy.2017.12.115_b0185) 2017; 151
Karaboga (10.1016/j.apenergy.2017.12.115_b0215) 2007; 39
Zhu (10.1016/j.apenergy.2017.12.115_b0225) 2010; 217
10.1016/j.apenergy.2017.12.115_b0015
Chen (10.1016/j.apenergy.2017.12.115_b0065) 2016; 99
AlHajri (10.1016/j.apenergy.2017.12.115_b0245) 2012; 44
Yuan (10.1016/j.apenergy.2017.12.115_b0265) 2014; 108
Niu (10.1016/j.apenergy.2017.12.115_b0125) 2014; 39
Chan (10.1016/j.apenergy.2017.12.115_b0060) 1986; 29
Gong (10.1016/j.apenergy.2017.12.115_b0095) 2013; 94
AlRashidi (10.1016/j.apenergy.2017.12.115_b0080) 2011; 85
Chellaswamy (10.1016/j.apenergy.2017.12.115_b0110) 2016; 97
Oliva (10.1016/j.apenergy.2017.12.115_b0020) 2017; 200
Rao (10.1016/j.apenergy.2017.12.115_b0210) 2012; 183
Wang (10.1016/j.apenergy.2017.12.115_b0200) 2018; 155
Ortiz-Conde (10.1016/j.apenergy.2017.12.115_b0055) 2006; 90
Askarzadeh (10.1016/j.apenergy.2017.12.115_b0130) 2013; 102
10.1016/j.apenergy.2017.12.115_b0085
Oliva (10.1016/j.apenergy.2017.12.115_b0135) 2014; 72
El-Naggar (10.1016/j.apenergy.2017.12.115_b0115) 2012; 86
Das (10.1016/j.apenergy.2017.12.115_b0205) 2011; 15
Zagrouba (10.1016/j.apenergy.2017.12.115_b0075) 2010; 84
Allam (10.1016/j.apenergy.2017.12.115_b0170) 2016; 123
Kler (10.1016/j.apenergy.2017.12.115_b0180) 2017
Askarzadeh (10.1016/j.apenergy.2017.12.115_b0120) 2012; 86
Zhou (10.1016/j.apenergy.2017.12.115_b0235) 2014
Xu (10.1016/j.apenergy.2017.12.115_b0010) 2017; 144
Guo (10.1016/j.apenergy.2017.12.115_b0045) 2016; 108
Muhsen (10.1016/j.apenergy.2017.12.115_b0005) 2015; 105
Easwarakhanthan (10.1016/j.apenergy.2017.12.115_b0050) 1986; 4
Wang (10.1016/j.apenergy.2017.12.115_b0240) 2011; 181
Singh (10.1016/j.apenergy.2017.12.115_b0025) 2013; 53
References_xml – reference: Wei H, Cong J, Lingyun X, Deyun S. Extracting solar cell model parameters based on chaos particle swarm algorithm. In: International conference on electric information and control engineering (ICEICE), IEEE; 2011. p. 398–402.
– reference: Price K, Storn RM, Lampinen JA. Differential evolution: a practical approach to global optimization. Springer Science & Business Media; 2006.
– start-page: 1
  year: 2014
  end-page: 18
  ident: b0235
  article-title: Gaussian bare-bones artificial bee colony algorithm
  publication-title: Soft Comput
– volume: 90
  start-page: 352
  year: 2006
  end-page: 361
  ident: b0055
  article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics
  publication-title: Sol Energy Mater Sol Cells
– volume: 99
  start-page: 170
  year: 2016
  end-page: 180
  ident: b0065
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
– volume: 192
  start-page: 120
  year: 2012
  end-page: 142
  ident: b0260
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf Sci
– volume: 53
  start-page: 1
  year: 2013
  end-page: 13
  ident: b0025
  article-title: Solar power generation by PV (photovoltaic) technology: a review
  publication-title: Energy
– volume: 151
  start-page: 107
  year: 2017
  end-page: 115
  ident: b0185
  article-title: Parameter identification of photovoltaic cell model based on improved ant lion optimizer
  publication-title: Energy Convers Manage
– volume: 144
  start-page: 53
  year: 2017
  end-page: 68
  ident: b0010
  article-title: Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm
  publication-title: Energy Convers Manage
– volume: 101
  start-page: 410
  year: 2015
  end-page: 422
  ident: b0155
  article-title: Flower pollination algorithm based solar PV parameter estimation
  publication-title: Energy Convers Manage
– volume: 37
  start-page: 725
  year: 2015
  end-page: 736
  ident: b0255
  article-title: Teaching–learning-based optimization with learning experience of other learners and its application
  publication-title: Appl Soft Comput
– volume: 108
  start-page: 238
  year: 2014
  end-page: 251
  ident: b0265
  article-title: Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm
  publication-title: Sol Energy
– volume: 217
  start-page: 3166
  year: 2010
  end-page: 3173
  ident: b0225
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl Math Comput
– volume: 102
  start-page: 943
  year: 2013
  end-page: 949
  ident: b0130
  article-title: Artificial bee swarm optimization algorithm for parameters identification of solar cell models
  publication-title: Appl Energy
– volume: 135
  start-page: 463
  year: 2017
  end-page: 476
  ident: b0160
  article-title: A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation
  publication-title: Energy Convers Manage
– volume: 4
  start-page: 1
  year: 1986
  end-page: 12
  ident: b0050
  article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers
  publication-title: Int J Sol Energy
– volume: 85
  start-page: 1543
  year: 2011
  end-page: 1550
  ident: b0080
  article-title: A new estimation approach for determining the I-V characteristics of solar cells
  publication-title: Sol Energy
– volume: 123
  start-page: 535
  year: 2016
  end-page: 548
  ident: b0170
  article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm
  publication-title: Energy Convers Manage
– volume: 150
  start-page: 742
  year: 2017
  end-page: 753
  ident: b0195
  article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
  publication-title: Energy Convers Manage
– volume: 86
  start-page: 3241
  year: 2012
  end-page: 3249
  ident: b0120
  article-title: Parameter identification for solar cell models using harmony search-based algorithms
  publication-title: Sol Energy
– volume: 113
  start-page: 312
  year: 2016
  end-page: 320
  ident: b0165
  article-title: Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data
  publication-title: Energy Convers Manage
– volume: 111
  start-page: 307
  year: 2017
  end-page: 320
  ident: b0175
  article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm
  publication-title: Renew Energy
– volume: 132
  start-page: 606
  year: 2016
  end-page: 616
  ident: b0040
  article-title: Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms
  publication-title: Sol Energy
– volume: 94
  start-page: 209
  year: 2013
  end-page: 220
  ident: b0095
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol Energy
– volume: 105
  start-page: 552
  year: 2015
  end-page: 561
  ident: b0005
  article-title: Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm
  publication-title: Energy Convers Manage
– reference: [REN21]–Renewable Energy Policy Network for the 21st Century, 2017. Renewables 2017—global status report. Paris: REN21; 2017.
– volume: 155
  start-page: 351
  year: 2018
  end-page: 356
  ident: b0200
  article-title: A novel Elite Opposition-based Jaya algorithm for parameter estimation of photovoltaic cell models
  publication-title: Optik-Int J Light Electron Opt
– year: 2017
  ident: b0180
  article-title: PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm
  publication-title: Swarm Evol Comput
– volume: 86
  start-page: 266
  year: 2012
  end-page: 274
  ident: b0115
  article-title: Simulated annealing algorithm for photovoltaic parameters identification
  publication-title: Sol Energy
– volume: 182
  start-page: 47
  year: 2016
  end-page: 57
  ident: b0030
  article-title: Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy
  publication-title: Appl Energy
– volume: 2013
  year: 2013
  ident: b0150
  article-title: Parameter estimation of photovoltaic models via cuckoo search
  publication-title: J Appl Math
– volume: 145
  start-page: 233
  year: 2017
  end-page: 246
  ident: b0035
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers Manage
– volume: 273
  start-page: 112
  year: 2014
  end-page: 131
  ident: b0220
  article-title: Teaching–learning-based optimization with dynamic group strategy for global optimization
  publication-title: Inf Sci
– volume: 97
  start-page: 823
  year: 2016
  end-page: 837
  ident: b0110
  article-title: Parameter extraction of solar cell models based on adaptive differential evolution algorithm
  publication-title: Renew Energy
– volume: 108
  start-page: 520
  year: 2016
  end-page: 528
  ident: b0045
  article-title: Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm
  publication-title: Energy Convers Manage
– volume: 93
  start-page: 1515
  year: 2015
  end-page: 1522
  ident: b0105
  article-title: An improved free search differential evolution algorithm: a case study on parameters identification of one diode equivalent circuit of a solar cell module
  publication-title: Energy
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: b0210
  article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf Sci
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: b0205
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans Evol Comput
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  ident: b0020
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl Energy
– volume: 12
  start-page: 1922
  year: 2001
  ident: b0070
  article-title: Solar cell parameter extraction using genetic algorithms
  publication-title: Meas Sci Technol
– volume: 2015
  start-page: 87
  year: 2015
  ident: b0250
  article-title: Nonlinear inertia weighted teaching-learning-based optimization for solving global optimization problem
  publication-title: Comput Intell Neurosci
– volume: 99
  start-page: 297
  year: 2012
  end-page: 308
  ident: b0100
  article-title: Parameter extraction of solar photovoltaic modules using penalty-based differential evolution
  publication-title: Appl Energy
– reference: .
– volume: 72
  start-page: 93
  year: 2014
  end-page: 102
  ident: b0135
  article-title: Parameter identification of solar cells using artificial bee colony optimization
  publication-title: Energy
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b0215
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Global Optim
– volume: 29
  start-page: 329
  year: 1986
  end-page: 337
  ident: b0060
  article-title: A comparative study of extraction methods for solar cell model parameters
  publication-title: Solid-State Electron
– volume: 6
  start-page: 509
  year: 2015
  end-page: 515
  ident: b0145
  article-title: Shuffled frog leaping algorithm for photovoltaic model identification
  publication-title: IEEE Trans Sustain Energy
– volume: 181
  start-page: 4699
  year: 2011
  end-page: 4714
  ident: b0240
  article-title: Enhancing particle swarm optimization using generalized opposition-based learning
  publication-title: Inf Sci
– volume: 44
  start-page: 238
  year: 2012
  end-page: 245
  ident: b0245
  article-title: Optimal extraction of solar cell parameters using pattern search
  publication-title: Renew Energy
– volume: 39
  start-page: 3837
  year: 2014
  end-page: 3854
  ident: b0125
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int J Hydrogen Energy
– volume: 84
  start-page: 860
  year: 2010
  end-page: 866
  ident: b0075
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction
  publication-title: Solar Energy
– volume: 129
  start-page: 262
  year: 2016
  end-page: 274
  ident: b0090
  article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules
  publication-title: Energy Convers Manage
– volume: 86
  start-page: 1173
  year: 2014
  end-page: 1185
  ident: b0140
  article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells
  publication-title: Energy Convers Manage
– volume: 17
  start-page: 68
  year: 2016
  end-page: 76
  ident: b0190
  article-title: Parameter extraction of photovoltaic generating units using multi-verse optimizer
  publication-title: Sustain Energy Technol Assess
– volume: 113
  start-page: 312
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.115_b0165
  article-title: Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.01.071
– volume: 86
  start-page: 1173
  year: 2014
  ident: 10.1016/j.apenergy.2017.12.115_b0140
  article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.06.026
– volume: 44
  start-page: 238
  year: 2012
  ident: 10.1016/j.apenergy.2017.12.115_b0245
  article-title: Optimal extraction of solar cell parameters using pattern search
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.01.082
– volume: 273
  start-page: 112
  year: 2014
  ident: 10.1016/j.apenergy.2017.12.115_b0220
  article-title: Teaching–learning-based optimization with dynamic group strategy for global optimization
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.03.038
– volume: 183
  start-page: 1
  year: 2012
  ident: 10.1016/j.apenergy.2017.12.115_b0210
  article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.08.006
– volume: 84
  start-page: 860
  year: 2010
  ident: 10.1016/j.apenergy.2017.12.115_b0075
  article-title: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2010.02.012
– volume: 132
  start-page: 606
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.115_b0040
  article-title: Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.03.033
– volume: 6
  start-page: 509
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.115_b0145
  article-title: Shuffled frog leaping algorithm for photovoltaic model identification
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2389858
– volume: 217
  start-page: 3166
  year: 2010
  ident: 10.1016/j.apenergy.2017.12.115_b0225
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl Math Comput
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.apenergy.2017.12.115_b0215
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Global Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 99
  start-page: 297
  year: 2012
  ident: 10.1016/j.apenergy.2017.12.115_b0100
  article-title: Parameter extraction of solar photovoltaic modules using penalty-based differential evolution
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.05.017
– volume: 108
  start-page: 238
  year: 2014
  ident: 10.1016/j.apenergy.2017.12.115_b0265
  article-title: Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2014.07.013
– ident: 10.1016/j.apenergy.2017.12.115_b0085
  doi: 10.1109/ICEICE.2011.5777246
– volume: 4
  start-page: 1
  year: 1986
  ident: 10.1016/j.apenergy.2017.12.115_b0050
  article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers
  publication-title: Int J Sol Energy
  doi: 10.1080/01425918608909835
– volume: 86
  start-page: 266
  year: 2012
  ident: 10.1016/j.apenergy.2017.12.115_b0115
  article-title: Simulated annealing algorithm for photovoltaic parameters identification
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.09.032
– volume: 2013
  year: 2013
  ident: 10.1016/j.apenergy.2017.12.115_b0150
  article-title: Parameter estimation of photovoltaic models via cuckoo search
  publication-title: J Appl Math
  doi: 10.1155/2013/362619
– volume: 29
  start-page: 329
  year: 1986
  ident: 10.1016/j.apenergy.2017.12.115_b0060
  article-title: A comparative study of extraction methods for solar cell model parameters
  publication-title: Solid-State Electron
  doi: 10.1016/0038-1101(86)90212-1
– volume: 86
  start-page: 3241
  year: 2012
  ident: 10.1016/j.apenergy.2017.12.115_b0120
  article-title: Parameter identification for solar cell models using harmony search-based algorithms
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2012.08.018
– volume: 144
  start-page: 53
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.115_b0010
  article-title: Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.042
– volume: 93
  start-page: 1515
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.115_b0105
  article-title: An improved free search differential evolution algorithm: a case study on parameters identification of one diode equivalent circuit of a solar cell module
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.019
– volume: 97
  start-page: 823
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.115_b0110
  article-title: Parameter extraction of solar cell models based on adaptive differential evolution algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.06.024
– volume: 192
  start-page: 120
  year: 2012
  ident: 10.1016/j.apenergy.2017.12.115_b0260
  article-title: A modified artificial bee colony algorithm for real-parameter optimization
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2010.07.015
– volume: 15
  start-page: 4
  year: 2011
  ident: 10.1016/j.apenergy.2017.12.115_b0205
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2010.2059031
– volume: 182
  start-page: 47
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.115_b0030
  article-title: Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.083
– volume: 151
  start-page: 107
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.115_b0185
  article-title: Parameter identification of photovoltaic cell model based on improved ant lion optimizer
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.08.088
– ident: 10.1016/j.apenergy.2017.12.115_b0230
– volume: 181
  start-page: 4699
  year: 2011
  ident: 10.1016/j.apenergy.2017.12.115_b0240
  article-title: Enhancing particle swarm optimization using generalized opposition-based learning
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.03.016
– volume: 108
  start-page: 520
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.115_b0045
  article-title: Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.11.041
– volume: 2015
  start-page: 87
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.115_b0250
  article-title: Nonlinear inertia weighted teaching-learning-based optimization for solving global optimization problem
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2015/292576
– volume: 99
  start-page: 170
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.115_b0065
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.052
– volume: 105
  start-page: 552
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.115_b0005
  article-title: Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.08.023
– volume: 200
  start-page: 141
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.115_b0020
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.029
– volume: 145
  start-page: 233
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.115_b0035
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.054
– volume: 12
  start-page: 1922
  year: 2001
  ident: 10.1016/j.apenergy.2017.12.115_b0070
  article-title: Solar cell parameter extraction using genetic algorithms
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/12/11/322
– start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2017.12.115_b0235
  article-title: Gaussian bare-bones artificial bee colony algorithm
  publication-title: Soft Comput
– volume: 155
  start-page: 351
  year: 2018
  ident: 10.1016/j.apenergy.2017.12.115_b0200
  article-title: A novel Elite Opposition-based Jaya algorithm for parameter estimation of photovoltaic cell models
  publication-title: Optik-Int J Light Electron Opt
  doi: 10.1016/j.ijleo.2017.10.081
– volume: 135
  start-page: 463
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.115_b0160
  article-title: A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.12.082
– ident: 10.1016/j.apenergy.2017.12.115_b0015
– volume: 94
  start-page: 209
  year: 2013
  ident: 10.1016/j.apenergy.2017.12.115_b0095
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.05.007
– volume: 123
  start-page: 535
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.115_b0170
  article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.06.052
– volume: 150
  start-page: 742
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.115_b0195
  article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.08.063
– volume: 85
  start-page: 1543
  year: 2011
  ident: 10.1016/j.apenergy.2017.12.115_b0080
  article-title: A new estimation approach for determining the I-V characteristics of solar cells
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2011.04.013
– volume: 72
  start-page: 93
  year: 2014
  ident: 10.1016/j.apenergy.2017.12.115_b0135
  article-title: Parameter identification of solar cells using artificial bee colony optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.011
– volume: 53
  start-page: 1
  year: 2013
  ident: 10.1016/j.apenergy.2017.12.115_b0025
  article-title: Solar power generation by PV (photovoltaic) technology: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.057
– volume: 90
  start-page: 352
  year: 2006
  ident: 10.1016/j.apenergy.2017.12.115_b0055
  article-title: New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2005.04.023
– volume: 37
  start-page: 725
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.115_b0255
  article-title: Teaching–learning-based optimization with learning experience of other learners and its application
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.08.047
– volume: 39
  start-page: 3837
  year: 2014
  ident: 10.1016/j.apenergy.2017.12.115_b0125
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.110
– volume: 129
  start-page: 262
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.115_b0090
  article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.09.085
– volume: 111
  start-page: 307
  year: 2017
  ident: 10.1016/j.apenergy.2017.12.115_b0175
  article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.04.014
– year: 2017
  ident: 10.1016/j.apenergy.2017.12.115_b0180
  article-title: PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2017.02.005
– volume: 101
  start-page: 410
  year: 2015
  ident: 10.1016/j.apenergy.2017.12.115_b0155
  article-title: Flower pollination algorithm based solar PV parameter estimation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.05.074
– volume: 102
  start-page: 943
  year: 2013
  ident: 10.1016/j.apenergy.2017.12.115_b0130
  article-title: Artificial bee swarm optimization algorithm for parameters identification of solar cell models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.09.052
– volume: 17
  start-page: 68
  year: 2016
  ident: 10.1016/j.apenergy.2017.12.115_b0190
  article-title: Parameter extraction of photovoltaic generating units using multi-verse optimizer
  publication-title: Sustain Energy Technol Assess
SSID ssj0002120
Score 2.6583874
Snippet •Teaching-learning-based artificial bee colony algorithm is proposed.•Three hybrid teaching-learning-based bee search phases are presented.•The method is...
Parameters estimation of photovoltaic (PV) model based on experimental data plays an important role in the simulation, evaluation, control, and optimization of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1578
SubjectTerms algorithms
Artificial bee colony
bees
diodes
Hybridization
Metaheuristic algorithm
Photovoltaic parameter estimation
solar collectors
Teaching-learning-based optimization
Title Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
URI https://dx.doi.org/10.1016/j.apenergy.2017.12.115
https://www.proquest.com/docview/2101317494
Volume 212
WOSCitedRecordID wos000425200700117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlgMcKihUlAIyEuISuXjtbLx7rKpUgELgkCJzQCuvvVZTpbZp7KhH_gP_kF_CjL1rhy-1HLhY1vpLzrzMvF3PvCHkRaKZAt6gXKYSzx1xP3YV4MRNWRYHgRoL0bTp_DgNZzMeReLDYLC2tTDrZZjn_OpKlP_V1DAGxsbS2X8wd3dTGIB9MDpsweywvZnhTX6kTWMITGOIfgAjV4rqRgsjH6E05qwvi7zN3lzhdHdYnhVVAc6rihfJEBXCLzBzZoiqHBe9Oa2ArSGzuikl7HMGWqcW1XYkqhtALTpIvtNNOsFxgeXEHas2jVY-1WcGvGZdgnJMZW4rM209ljd2cX626WshUA7LQ8pw6srafn7Gc-LYRhS2R3_z8O1iw_lhXLZvhNl5Ia7oUvPwnyS1Z-_lyel0KueTaP6y_OJitzH8Km9ar9wi237IBHjD7aM3k-htF8N9I-hp32GjtvzPj_4brfklwDesZX6P7JjphnPUwuQ-Geh8l9zdEKHcJXuTvtYRTjXOfvWAfLZI-v71m8UQ7DbocXr0OIAep0WPA-hxGvQ4m-hxOvQ4PXoektOTyfz4tWu6cbhJIILKDT2ReYypMM5iqhQP0pGmCY39mMfAmxX4_gDIMU39NPBSPfIEDzQday_jbMzHLNgjW3mR60fEoSHVGTBtxQXQcZZCzEg5cN8U7u8nXOwTZn9MmRipeuyYspQ2J_FcWiNINIKkPkxl2T551V1XtmIt114hrK2koZwtlZSAt2uvfW6NK8En44e2ONdFvZI-RRWrcCRGj29wzgG50_9_npCt6rLWT8ntZF0tVpfPDDJ_AMkKr8A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Teaching%E2%80%93learning%E2%80%93based+artificial+bee+colony+for+solar+photovoltaic+parameter+estimation&rft.jtitle=Applied+energy&rft.au=Chen%2C+Xu&rft.au=Xu%2C+Bin&rft.au=Mei%2C+Congli&rft.au=Ding%2C+Yuhan&rft.date=2018-02-15&rft.issn=0306-2619&rft.volume=212+p.1578-1588&rft.spage=1578&rft.epage=1588&rft_id=info:doi/10.1016%2Fj.apenergy.2017.12.115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon