Unsupervised Convolutional Transformer Autoencoder for Robust Health Indicator Construction and RUL Prediction in Rotating Machinery

Prognostics for rotating machinery, particularly bearings, encounter significant challenges in constructing reliable health indicators (HIs) that accurately reflect degradation trajectories, thereby enabling precise remaining useful life (RUL) predictions. This article proposes a novel integrated ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 15; H. 20; S. 10972
Hauptverfasser: Dahal, Amrit, Huang, Hong-Zhong, Huang, Cheng-Geng, Huang, Tudi, Khanal, Smaran, Niazi, Sajawal Gul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2025
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Prognostics for rotating machinery, particularly bearings, encounter significant challenges in constructing reliable health indicators (HIs) that accurately reflect degradation trajectories, thereby enabling precise remaining useful life (RUL) predictions. This article proposes a novel integrated approach for predicting the RUL of bearings without manual feature engineering. Specifically, a sequential autoencoder integrating a convolutional neural network (CNN) and vision Transformer (Vi-T) is employed to capture the local spatial patterns and global temporal correlations of time-domain vibration signals. The Wasserstein distance is introduced to quantify the divergence between healthy and degraded signal embeddings, resulting in a robust HI metric. Subsequently, the derived HI is fed into a CNN-bidirectional long short-term memory-regressor with Monte Carlo dropout to provide RUL predictions and Bayesian uncertainty estimates. Experimental results from the Xi’an Jiao-Tong University bearing dataset demonstrate that the proposed method surpasses conventional techniques in HI construction and RUL prediction accuracy, demonstrating its efficacy for complex industrial systems with minimal data preprocessing.
AbstractList Prognostics for rotating machinery, particularly bearings, encounter significant challenges in constructing reliable health indicators (HIs) that accurately reflect degradation trajectories, thereby enabling precise remaining useful life (RUL) predictions. This article proposes a novel integrated approach for predicting the RUL of bearings without manual feature engineering. Specifically, a sequential autoencoder integrating a convolutional neural network (CNN) and vision Transformer (Vi-T) is employed to capture the local spatial patterns and global temporal correlations of time-domain vibration signals. The Wasserstein distance is introduced to quantify the divergence between healthy and degraded signal embeddings, resulting in a robust HI metric. Subsequently, the derived HI is fed into a CNN-bidirectional long short-term memory-regressor with Monte Carlo dropout to provide RUL predictions and Bayesian uncertainty estimates. Experimental results from the Xi’an Jiao-Tong University bearing dataset demonstrate that the proposed method surpasses conventional techniques in HI construction and RUL prediction accuracy, demonstrating its efficacy for complex industrial systems with minimal data preprocessing.
Audience Academic
Author Dahal, Amrit
Huang, Hong-Zhong
Huang, Tudi
Huang, Cheng-Geng
Khanal, Smaran
Niazi, Sajawal Gul
Author_xml – sequence: 1
  givenname: Amrit
  orcidid: 0009-0004-2016-7390
  surname: Dahal
  fullname: Dahal, Amrit
– sequence: 2
  givenname: Hong-Zhong
  orcidid: 0000-0003-4478-8349
  surname: Huang
  fullname: Huang, Hong-Zhong
– sequence: 3
  givenname: Cheng-Geng
  surname: Huang
  fullname: Huang, Cheng-Geng
– sequence: 4
  givenname: Tudi
  surname: Huang
  fullname: Huang, Tudi
– sequence: 5
  givenname: Smaran
  surname: Khanal
  fullname: Khanal, Smaran
– sequence: 6
  givenname: Sajawal Gul
  orcidid: 0000-0003-2144-9563
  surname: Niazi
  fullname: Niazi, Sajawal Gul
BookMark eNptkktrGzEUhYeSQtM0u_4AQbd1otc8tDSmbQwuLSFeizt3JEdmLE0lTSD7_PDKcWhTqLTQ5eicD65031dnPnhTVR8ZvRJC0WuYJlZzyqhq-ZvqnNO2WQjJ2rNX9bvqMqU9LUsx0TF6Xj1tfZonEx9cMgNZBf8Qxjm74GEkdxF8siEeTCTLOQfjMQylLhK5Df2cMrkxMOZ7svaDQ8hFL4SU44xHBAE_kNvthvyMptw_S86XaIbs_I58B7x33sTHD9VbC2Myly_nRbX9-uVudbPY_Pi2Xi03CxRK5IUceom0RkRlG2aaDgcpjZJ8wLZpB-wVByFlbduacaCdZZxx2XMA0UDfc3FRrU_cIcBeT9EdID7qAE4_CyHuNMTscDRaNrxuOYfa8k5ahl0rGTZ9iwyMQtYX1qcTa4rh12xS1vswx_JsSQve1B1XlPK_rh0UqPM25Ah4cAn1smu4bOtaHV1X_3GVPZiDw_LN1hX9n8DnUwBjSCka-6cZRvVxGvTraRC_AZXOqac
Cites_doi 10.1016/j.ress.2024.110014
10.3390/e25050798
10.1016/j.jmapro.2024.07.002
10.1016/j.ymssp.2023.110888
10.1016/j.ress.2025.111722
10.1016/j.neucom.2017.02.045
10.1109/JIOT.2024.3433460
10.1016/j.ress.2024.110225
10.1109/ACCESS.2023.3234286
10.1016/j.engappai.2023.106817
10.1109/ICPHM.2019.8819405
10.1016/j.measurement.2022.112108
10.1016/j.ress.2022.108758
10.1109/DDCLS58216.2023.10166306
10.1016/j.ymssp.2017.11.016
10.1016/j.ress.2018.11.011
10.1109/JSEN.2025.3548675
10.20944/preprints202011.0591.v1
10.1016/j.asoc.2020.106119
10.1016/j.ress.2023.109776
10.1016/j.ymssp.2022.109628
10.1109/JIOT.2024.3361533
10.1109/TIM.2025.3556193
10.21595/jve.2016.16910
10.1109/TII.2022.3169465
10.1016/j.ress.2024.110116
10.1088/3050-2454/adbaf7
10.1016/j.ymssp.2024.111122
10.1016/j.jmsy.2021.03.012
10.1016/j.ymssp.2021.108573
10.1109/TR.2011.2182221
10.1016/j.cie.2023.108999
10.1016/j.aei.2022.101708
10.1016/j.engappai.2022.105582
10.1109/TIE.2015.2455055
10.1109/TR.2016.2570568
10.1088/1361-6501/ace072
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app152010972
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_4625722a5f284f1c8741c6b7c1ae9c1b
A862475592
10_3390_app152010972
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c393t-4db4c05ccc9f61e68cd44e942dc767dcb92a3445f7512a08f12124b2aa36abb23
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001602488900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 03 22:08:55 EST 2025
Sat Nov 01 11:28:42 EDT 2025
Wed Nov 12 17:02:26 EST 2025
Tue Nov 11 03:52:05 EST 2025
Sat Nov 29 07:11:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-4db4c05ccc9f61e68cd44e942dc767dcb92a3445f7512a08f12124b2aa36abb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2144-9563
0000-0003-4478-8349
0009-0004-2016-7390
OpenAccessLink https://www.proquest.com/docview/3265829002?pq-origsite=%requestingapplication%
PQID 3265829002
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_4625722a5f284f1c8741c6b7c1ae9c1b
proquest_journals_3265829002
gale_infotracmisc_A862475592
gale_infotracacademiconefile_A862475592
crossref_primary_10_3390_app152010972
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kim (ref_34) 2023; 126
Lei (ref_14) 2018; 104
Mitici (ref_28) 2023; 117
Zhu (ref_12) 2022; 228
Qu (ref_30) 2025; 25
Guo (ref_20) 2017; 240
ref_36
Cao (ref_42) 2025; 74
Si (ref_9) 2012; 61
Guo (ref_25) 2022; 167
Zhao (ref_18) 2021; 70
Xu (ref_27) 2022; 53
Wei (ref_40) 2024; 242
Zhuang (ref_11) 2024; 11
Ma (ref_24) 2024; 73
Ni (ref_32) 2023; 19
Guo (ref_16) 2021; 70
Zhang (ref_17) 2023; 11
Guo (ref_23) 2024; 245
Khanal (ref_4) 2025; 74
ref_19
Ma (ref_26) 2022; 204
Lei (ref_35) 2019; 55
ref_37
Xu (ref_29) 2023; 176
Niazi (ref_41) 2024; 206
Huang (ref_8) 2025; 266
Dong (ref_15) 2016; 18
Zhu (ref_5) 2023; 183
Wang (ref_31) 2024; 124
Huang (ref_3) 2021; 61
Huang (ref_13) 2024; 11
Wang (ref_21) 2023; 34
ref_22
Li (ref_39) 2019; 182
Li (ref_33) 2015; 62
Xu (ref_38) 2020; 89
Lei (ref_10) 2016; 65
Pei (ref_2) 2024; 209
Huang (ref_6) 2025; 1
Huang (ref_7) 2024; 249
Qi (ref_1) 2024; 247
References_xml – volume: 245
  start-page: 110014
  year: 2024
  ident: ref_23
  article-title: A Hybrid Prognosis Scheme for Rolling Bearings Based on a Novel Health Indicator and Nonlinear Wiener Process
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.110014
– ident: ref_19
  doi: 10.3390/e25050798
– volume: 124
  start-page: 1054
  year: 2024
  ident: ref_31
  article-title: Multi-Sensor Signal Fusion for Tool Wear Condition Monitoring Using Denoising Transformer Auto-Encoder Resnet
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2024.07.002
– volume: 206
  start-page: 110888
  year: 2024
  ident: ref_41
  article-title: Multi-Scale Time Series Analysis Using TT-ConvLSTM Technique for Bearing Remaining Useful Life Prediction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110888
– volume: 266
  start-page: 111722
  year: 2025
  ident: ref_8
  article-title: A Dynamic Reliability Assessment Method for Multi-State Manufacturing System by Merging Imprecise Observational Information
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2025.111722
– volume: 240
  start-page: 98
  year: 2017
  ident: ref_20
  article-title: A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
– volume: 11
  start-page: 36895
  year: 2024
  ident: ref_13
  article-title: Personalized Federated Transfer Learning for Cycle-Life Prediction of Lithium-Ion Batteries in Heterogeneous Clients With Data Privacy Protection
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2024.3433460
– volume: 249
  start-page: 110225
  year: 2024
  ident: ref_7
  article-title: Merging Multi-Level Evidential Observations for Dynamic Reliability Assessment of Hierarchical Multi-State Systems: A Dynamic Bayesian Network Approach
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.110225
– volume: 11
  start-page: 3062
  year: 2023
  ident: ref_17
  article-title: Remaining Useful Life Prediction for Rolling Bearings with a Novel Entropy-Based Health Indicator and Improved Particle Filter Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3234286
– volume: 126
  start-page: 106817
  year: 2023
  ident: ref_34
  article-title: Tutorial on Time Series Prediction Using 1D-CNN and BiLSTM: A Case Example of Peak Electricity Demand and System Marginal Price Prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106817
– ident: ref_37
  doi: 10.1109/ICPHM.2019.8819405
– volume: 204
  start-page: 112108
  year: 2022
  ident: ref_26
  article-title: A Health Indicator Construction Method Based on Self-Attention Convolutional Autoencoder for Rotating Machine Performance Assessment
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112108
– volume: 228
  start-page: 108758
  year: 2022
  ident: ref_12
  article-title: Bayesian Deep-Learning for RUL Prediction: An Active Learning Perspective
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108758
– ident: ref_22
  doi: 10.1109/DDCLS58216.2023.10166306
– volume: 104
  start-page: 799
  year: 2018
  ident: ref_14
  article-title: Machinery Health Prognostics: A Systematic Review from Data Acquisition to RUL Prediction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 182
  start-page: 208
  year: 2019
  ident: ref_39
  article-title: Deep Learning-Based Remaining Useful Life Estimation of Bearings Using Multi-Scale Feature Extraction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.11.011
– volume: 25
  start-page: 15525
  year: 2025
  ident: ref_30
  article-title: Health Indicator Construction and Remaining Useful Life Prediction Based on MSC-LSTM-AE Model for Working Bearings
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2025.3548675
– volume: 74
  start-page: 3501309
  year: 2025
  ident: ref_42
  article-title: A Remaining Useful Life Prediction Method for Rolling Bearing Based on TCN-Transformer
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_36
  doi: 10.20944/preprints202011.0591.v1
– volume: 89
  start-page: 106119
  year: 2020
  ident: ref_38
  article-title: Constructing a Health Indicator for Roller Bearings by Using a Stacked Auto-Encoder with an Exponential Function to Eliminate Concussion
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106119
– volume: 73
  start-page: 2508413
  year: 2024
  ident: ref_24
  article-title: Prediction of Remaining Useful Life of Rolling Bearings Based on Multiscale Efficient Channel Attention CNN and Bidirectional GRU
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 242
  start-page: 109776
  year: 2024
  ident: ref_40
  article-title: Remaining Useful Life Prediction Using Graph Convolutional Attention Networks with Temporal Convolution-Aware Nested Residual Connections
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109776
– volume: 183
  start-page: 109628
  year: 2023
  ident: ref_5
  article-title: Bayesian Transfer Learning with Active Querying for Intelligent Cross-Machine Fault Prognosis under Limited Data
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109628
– volume: 11
  start-page: 22903
  year: 2024
  ident: ref_11
  article-title: A Graph-Embedded Subdomain Adaptation Approach for Remaining Useful Life Prediction of Industrial IoT Systems
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2024.3361533
– volume: 74
  start-page: 3527813
  year: 2025
  ident: ref_4
  article-title: Domain-Specific Dual Network with Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Machines Using Multiple Source Domains
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2025.3556193
– volume: 18
  start-page: 3636
  year: 2016
  ident: ref_15
  article-title: Bearing Remain Life Prediction Based on Weighted Complex SVM Models
  publication-title: J. Vibroeng.
  doi: 10.21595/jve.2016.16910
– volume: 19
  start-page: 1301
  year: 2023
  ident: ref_32
  article-title: Data-Driven Prognostic Scheme for Bearings Based on a Novel Health Indicator and Gated Recurrent Unit Network
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3169465
– volume: 247
  start-page: 110116
  year: 2024
  ident: ref_1
  article-title: Joint Optimization of Maintenance and Spares Inventory Policy for a Series-Parallel System Considering Dependent Failure Processes
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.110116
– volume: 1
  start-page: 015007
  year: 2025
  ident: ref_6
  article-title: Theory and Application of Possibility and Evidence in Reliability Analysis and Design Optimization
  publication-title: J. Reliab. Sci. Eng.
  doi: 10.1088/3050-2454/adbaf7
– volume: 70
  start-page: 3511910
  year: 2021
  ident: ref_18
  article-title: Feature Extraction for Data-Driven Remaining Useful Life Prediction of Rolling Bearings
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 209
  start-page: 111122
  year: 2024
  ident: ref_2
  article-title: A Novel Machinery RUL Prediction Method Based on Exponential Model and Cross-Domain Health Indicator Considering First-to-End Prediction Time
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111122
– volume: 61
  start-page: 757
  year: 2021
  ident: ref_3
  article-title: A Novel Deep Convolutional Neural Network-Bootstrap Integrated Method for RUL Prediction of Rolling Bearing
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.03.012
– volume: 167
  start-page: 108573
  year: 2022
  ident: ref_25
  article-title: An Unsupervised Feature Learning Based Health Indicator Construction Method for Performance Assessment of Machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108573
– volume: 61
  start-page: 50
  year: 2012
  ident: ref_9
  article-title: Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2011.2182221
– volume: 176
  start-page: 108999
  year: 2023
  ident: ref_29
  article-title: A Novel Health Indicator for Intelligent Prediction of Rolling Bearing Remaining Useful Life Based on Unsupervised Learning Model
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.108999
– volume: 53
  start-page: 101708
  year: 2022
  ident: ref_27
  article-title: Constructing a Health Indicator for Bearing Degradation Assessment via an Unsupervised and Enhanced Stacked Autoencoder
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101708
– volume: 70
  start-page: 3509812
  year: 2021
  ident: ref_16
  article-title: Remaining Useful Life Prediction for Rolling Bearings Using EMD-RISI-LSTM
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 117
  start-page: 105582
  year: 2023
  ident: ref_28
  article-title: Developing Health Indicators and RUL Prognostics for Systems with Few Failure Instances and Varying Operating Conditions Using a LSTM Autoencoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105582
– volume: 55
  start-page: 1
  year: 2019
  ident: ref_35
  article-title: XJTU-SY Rolling Element Bearing Accelerated Life Test Datasets: A Tutorial
  publication-title: J. Mech. Eng.
– volume: 62
  start-page: 7762
  year: 2015
  ident: ref_33
  article-title: An Improved Exponential Model for Predicting Remaining Useful Life of Rolling Element Bearings
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2455055
– volume: 65
  start-page: 1314
  year: 2016
  ident: ref_10
  article-title: A Model-Based Method for Remaining Useful Life Prediction of Machinery
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2016.2570568
– volume: 34
  start-page: 105105
  year: 2023
  ident: ref_21
  article-title: A Deep Learning Based Health Indicator Construction and Fault Prognosis with Uncertainty Quantification for Rolling Bearings
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ace072
SSID ssj0000913810
Score 2.331955
Snippet Prognostics for rotating machinery, particularly bearings, encounter significant challenges in constructing reliable health indicators (HIs) that accurately...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 10972
SubjectTerms Algorithms
Artificial intelligence
Bearings
Datasets
Electric transformers
Entropy
Forecasts and trends
Health
health indicator
hybrid convolutional vision transformer
Machinery
Neural networks
Predictive maintenance
Principal components analysis
remaining useful life
Signal processing
Time series
unsupervised learning
Vibration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9JAeSpO0dNO06NCQ9GBqPWxZx21oaCEJIWQhN6GXSy7aYHsDvfeHd0b2ht1D6aU3I0u20LyZ0TeEfGI15ptUXSgRmkKGJhSOiVhA4BNE05a1r11uNqGur5v7e32z0eoLa8JGeODx4L5IcNAV57ZqQZG2zDdgAmG98sxG7ZlD7VsqvRFMZR2sGUJXjZXuAuJ6zAeDqcJEkOJbNihD9f9NIWcrc_GavJrcQzoft7VPdmI6IC83QAMPyP4kjj09mzCjPx-S34vUrx5R7vsY6PkyPU0sBR-7W_umsaPz1bBE6MoAzzBEb5du1Q90vIxEfyTM2kAUjl94RpalNgV6u7ikNx1mdfLQQ4KlmMVPP-lVrseM3a83ZHHx7e78ezE1WCi80GIA0jjpy8p7r9uaxRobGcmoJQ9e1Sp4p7kVUlatArfAlk3LwNBJx60VtXWOi7dkNy1TfEeoCJUoHW-YEko62-q2URYIBf4axN_Oz8jJ-sjN44ijYSD-QNKYTdLMyFekx_McRL_OA8ATZuIJ8y-emJFTpKZBGR066-101QC2imhXZo63YhTEUvC7462ZIFt--_WaH8wk270Bh7fC9HPJj_7HZt-TPY49hXOB4DHZBeLGD-SFfxoe-u5jZus_YH_8tg
  priority: 102
  providerName: Directory of Open Access Journals
Title Unsupervised Convolutional Transformer Autoencoder for Robust Health Indicator Construction and RUL Prediction in Rotating Machinery
URI https://www.proquest.com/docview/3265829002
https://doaj.org/article/4625722a5f284f1c8741c6b7c1ae9c1b
Volume 15
WOSCitedRecordID wos001602488900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPhRYqtrSVDyDgEBHbSZyc0LZqRSW6ilZdqZwiv1L14ixJtlLv_HBmst6le6AXbontOJZmPA_P-BtCPrAM400yi6SweZTY3EaaCReB42NFXseZyfRQbEJOJvnNTVGGA7cupFWuZOIgqG1j8Iz8K5gZKQb9Yv5t_ivCqlEYXQ0lNJ6TbUQqAz7fPj2flNP1KQuiXuYsXma8C_DvMS4MKgsDQpJv6KIBsv9fgnnQNhev_nedr8lusDPpeMkYe-SZ8_tk5xH64D7ZC_u6o58D-PSXN-T3zHeLOQqQzll61vj7wJsw2fXKyHUtHS_6BjEwLTxDE502etH1dHmriV56DP-AO48zrCFqqfKWTmc_aNlieGhouvPwKaYD-Ft6NSR2uvbhLZldnF-ffY9CpYbIiEL0QGOdmDg1xhR1xlyGFZESVyTcGplJa3TBlUiStJZgX6g4rxlozERzpUSmtObigGz5xrt3hAqbiljznEkhE63qos6lYgZR5cGR12ZEPq5oVs2XgBwVODJI2-oxbUfkFAm6HoMw2kND095WYVdWCXh_knOV1qCla2ZysK-AOaVhyhWG6RH5hOxQ4WbvW2VUuLMAS0XYrGqM12skOGXwu6ONkbBJzWb3iluqICS66i-rHD7d_Z685Fh2eMghPCJbQDZ3TF6Y-_6ua08Cz58MxwnwVl5elT__AMHuDwo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKRJwAFpABArsgQo4WHh3ba99QCgUqkZNoqhKpHJy9-WqFzvYTlHv_B5-IzN-lOYAtx64Weun7G-_mfHMfkPIGxZhvklGnhQ29gIbW08z4TwIfKyIMz8ykW6aTcjZLD49TeZb5Fe_FgbLKntObIjaFgb_kX8ANyPEpJ_PP62-e9g1CrOrfQuNFhbH7uoHhGzVx_EX-L77nB9-XRwceV1XAc-IRNTwPDowfmiMSbKIuQi79wQuCbg1MpLW6IQrEQRhJsEWKj_OGLB7oLlSIlJao9ABUP52AGDnA7I9H0_n367_6qDKZsz8tsJeiMTHPDSYSExASb5h-5oWAX8zBI11O3z4v72XR-RB50fTUQv8HbLl8l1y_4a64i7Z6Xirou86ce33j8nPZV6tV0iQlbP0oMgvu7kHF1v0Trwr6WhdF6jxaWEbhuhJoddVTdtVW3ScY3qrhnFseNpL8FKVW3qynNB5iemvZugih1Ox3CE_p9OmcNWVV0_I8lbezVMyyIvcPSNU2FD4msdMChlolSVZLBUzqJofJb42Q7LfYyRdtYIjKQRqiKX0JpaG5DMC6PoYlAlvBoryPO1YJw0gupWcqzADLyRjJgb_ESafNEy5xDA9JG8RfimSWV0qo7o1GfCoKAuWjnD5kISgE263t3EkkJDZ3N2jM-1IsEr_QPP5v3e_JnePFtNJOhnPjl-QexxbLDf1kntkAJ_QvSR3zGV9UZWvuvlGydltQ_k3UplqFA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF1VLUJwAFpABArsgQo4WPXu2l77gFD6ERG1RFHUSL2Z_XLVix1sp6h3fhW_jhlnXZoD3HrgFq2dxLLfvJnxzL4h5B1LsN4kk0AKmwaRTW2gmXABJD5WpEWYmER3wybkZJKen2fTDfKr3wuDbZU9J3ZEbSuD78j3IcyIsegX8v3Ct0VMj0afF98DnCCFldZ-nMYKIifu-gekb82n8RE86z3OR8dnh18CP2EgMCITLVybjkwYG2OyImEuwUk-kcsibo1MpDU640pEUVxI8IsqTAsGTB9prpRIlNYoegD0vyVFxsCitg6OJ9PZzRseVNxMWbjqthciC7EmDe4Si1GSr_nBblzA35xC5-lGj__ne_SEPPLxNR2uDGKbbLhyhzy8pbq4Q7Y9nzX0gxfd_viU_JyXzXKBxNk4Sw-r8srbJPzYWR_cu5oOl22F2p8WPsMSnVV62bR0tZuLjksse7WwjoNQe2leqkpLZ_NTOq2xLNYtXZbwVWyDKC_o166h1dXXz8j8Tu7Nc7JZVqV7QaiwsQg1T5kUMtKqyIpUKmZQTT_JQm0GZK_HS75YCZHkkMAhrvLbuBqQAwTTzTkoH94tVPVF7tkojyDrlZyruIDopGAmhbgSjFIaplxmmB6Q9wjFHEmurZVRfq8GXCrKheVD3FYkIRmFv9tdOxPIyawf7pGae3Js8j8wffnvw2_JfcBvfjqenLwiDzhOXu7aKHfJJjxB95rcM1ftZVO_8aZHybe7RvJvR3Fyrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Convolutional+Transformer+Autoencoder+for+Robust+Health+Indicator+Construction+and+RUL+Prediction+in+Rotating+Machinery&rft.jtitle=Applied+sciences&rft.au=Dahal+Amrit&rft.au=Hong-Zhong%2C+Huang&rft.au=Cheng-Geng%2C+Huang&rft.au=Huang+Tudi&rft.date=2025-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=20&rft.spage=10972&rft_id=info:doi/10.3390%2Fapp152010972&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon