Structure I methane hydrate confined in C8-grafted SBA-15: A highly efficient storage system enabling ultrafast methane loading and unloading
Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized SBA-15, hydrophobization by C8 grafting accelerates the kinetics of methane storage in and delivery from the hydrate. C8 grafting density was de...
Uložené v:
| Vydané v: | Applied energy Ročník 353; s. 122120 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2024
|
| Predmet: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized SBA-15, hydrophobization by C8 grafting accelerates the kinetics of methane storage in and delivery from the hydrate. C8 grafting density was determined at 0.5 groups nm−2 based on TGA and quantitative NMR spectroscopy. Multinuclear 1H-1H DQSQ and 1H-1H RFDR NMR provided spectroscopic evidence for the occurrence of C8 chains inside the mesopores of SBA-15, by showcasing close spatial proximity between the grafted C8 chains and pore-intruded water species. X-ray diffraction demonstrates formation of Structure I hydrate on SBA-15 C8. At 7.0 MPa and 248 K, the water-to-hydrate conversion on hydrophobized SBA-15 C8 reaches 96% as compared to only 71% on a pristine SBA-15 sample with comparable pore size, pore volume and surface area. The clathrate loading amounted to 14.8 g/g. 2D correlation NMR spectroscopy (1H-13C CP-HETCOR, 1H-1H RFDR) reveals hydrate formation occurs within pores of SBA-15 C8 as well as in interparticle volumes. Following the initial crystallization of SBA-15 C8-supported methane hydrate taking several hours, a pressure swing process at 248 K allows to desorb and re-adsorb methane from the structure within minutes and without thawing the frozen water structure. Fast loading and unloading of methane was achieved in 19 subsequent cycles without losses in kinetics. The ability to harvest the gas and regenerate the structure without the need to re-freeze the water represents a 50% energy gain with respect to melting and subsequently recrystallizing the hydrate at 298 K and 248 K, respectively. After methane desorption, a small amount of residual methane hydrate in combination with an amorphous yet locally ordered ice phase is observed using 13C and 2H NMR spectroscopy. This effect offers an explanation for the enhanced hydrate formation kinetics in adsorption-desorption cycles. These findings open new perspectives for clathrate hydrate-based methane storage.
[Display omitted]
•Hydrophobization of SBA-15 accelerates methane enclathration.•2D NMR reveals hydrate present within pores of SBA-15 C8.•Methane loading times were reduced from 207 min to 8 min by pressure cycling.•Amorphous yet ordered ice is observed between storage cycles by 13C and 2H NMR.•Pressure-induced crystallization-dissociation of hydrate saves up to 50% energy. |
|---|---|
| AbstractList | Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized SBA-15, hydrophobization by C8 grafting accelerates the kinetics of methane storage in and delivery from the hydrate. C8 grafting density was determined at 0.5 groups nm−2 based on TGA and quantitative NMR spectroscopy. Multinuclear 1H-1H DQSQ and 1H-1H RFDR NMR provided spectroscopic evidence for the occurrence of C8 chains inside the mesopores of SBA-15, by showcasing close spatial proximity between the grafted C8 chains and pore-intruded water species. X-ray diffraction demonstrates formation of Structure I hydrate on SBA-15 C8. At 7.0 MPa and 248 K, the water-to-hydrate conversion on hydrophobized SBA-15 C8 reaches 96% as compared to only 71% on a pristine SBA-15 sample with comparable pore size, pore volume and surface area. The clathrate loading amounted to 14.8 g/g. 2D correlation NMR spectroscopy (1H-13C CP-HETCOR, 1H-1H RFDR) reveals hydrate formation occurs within pores of SBA-15 C8 as well as in interparticle volumes. Following the initial crystallization of SBA-15 C8-supported methane hydrate taking several hours, a pressure swing process at 248 K allows to desorb and re-adsorb methane from the structure within minutes and without thawing the frozen water structure. Fast loading and unloading of methane was achieved in 19 subsequent cycles without losses in kinetics. The ability to harvest the gas and regenerate the structure without the need to re-freeze the water represents a 50% energy gain with respect to melting and subsequently recrystallizing the hydrate at 298 K and 248 K, respectively. After methane desorption, a small amount of residual methane hydrate in combination with an amorphous yet locally ordered ice phase is observed using 13C and 2H NMR spectroscopy. This effect offers an explanation for the enhanced hydrate formation kinetics in adsorption-desorption cycles. These findings open new perspectives for clathrate hydrate-based methane storage.
[Display omitted]
•Hydrophobization of SBA-15 accelerates methane enclathration.•2D NMR reveals hydrate present within pores of SBA-15 C8.•Methane loading times were reduced from 207 min to 8 min by pressure cycling.•Amorphous yet ordered ice is observed between storage cycles by 13C and 2H NMR.•Pressure-induced crystallization-dissociation of hydrate saves up to 50% energy. Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized SBA-15, hydrophobization by C₈ grafting accelerates the kinetics of methane storage in and delivery from the hydrate. C₈ grafting density was determined at 0.5 groups nm⁻² based on TGA and quantitative NMR spectroscopy. Multinuclear ¹H-¹H DQSQ and ¹H-¹H RFDR NMR provided spectroscopic evidence for the occurrence of C₈ chains inside the mesopores of SBA-15, by showcasing close spatial proximity between the grafted C₈ chains and pore-intruded water species. X-ray diffraction demonstrates formation of Structure I hydrate on SBA-15 C₈. At 7.0 MPa and 248 K, the water-to-hydrate conversion on hydrophobized SBA-15 C₈ reaches 96% as compared to only 71% on a pristine SBA-15 sample with comparable pore size, pore volume and surface area. The clathrate loading amounted to 14.8 g/g. 2D correlation NMR spectroscopy (¹H-¹³C CP-HETCOR, ¹H-¹H RFDR) reveals hydrate formation occurs within pores of SBA-15 C₈ as well as in interparticle volumes. Following the initial crystallization of SBA-15 C₈-supported methane hydrate taking several hours, a pressure swing process at 248 K allows to desorb and re-adsorb methane from the structure within minutes and without thawing the frozen water structure. Fast loading and unloading of methane was achieved in 19 subsequent cycles without losses in kinetics. The ability to harvest the gas and regenerate the structure without the need to re-freeze the water represents a 50% energy gain with respect to melting and subsequently recrystallizing the hydrate at 298 K and 248 K, respectively. After methane desorption, a small amount of residual methane hydrate in combination with an amorphous yet locally ordered ice phase is observed using ¹³C and ²H NMR spectroscopy. This effect offers an explanation for the enhanced hydrate formation kinetics in adsorption-desorption cycles. These findings open new perspectives for clathrate hydrate-based methane storage. |
| ArticleNumber | 122120 |
| Author | Cool, Pegie Beckwée, Emile Jules Hanssens, Lucas Ciocarlan, Radu-George Breynaert, Eric Radhakrishnan, Sambhu Baron, Gino V. Chandran, C. Vinod Martens, Johan Denayer, Joeri F.M. Houlleberghs, Maarten |
| Author_xml | – sequence: 1 givenname: Emile Jules surname: Beckwée fullname: Beckwée, Emile Jules organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium – sequence: 2 givenname: Maarten surname: Houlleberghs fullname: Houlleberghs, Maarten organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium – sequence: 3 givenname: Radu-George surname: Ciocarlan fullname: Ciocarlan, Radu-George organization: Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium – sequence: 4 givenname: C. Vinod surname: Chandran fullname: Chandran, C. Vinod organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium – sequence: 5 givenname: Sambhu surname: Radhakrishnan fullname: Radhakrishnan, Sambhu organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium – sequence: 6 givenname: Lucas surname: Hanssens fullname: Hanssens, Lucas organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium – sequence: 7 givenname: Pegie surname: Cool fullname: Cool, Pegie organization: Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium – sequence: 8 givenname: Johan surname: Martens fullname: Martens, Johan organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium – sequence: 9 givenname: Eric surname: Breynaert fullname: Breynaert, Eric organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium – sequence: 10 givenname: Gino V. surname: Baron fullname: Baron, Gino V. organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium – sequence: 11 givenname: Joeri F.M. surname: Denayer fullname: Denayer, Joeri F.M. email: joeri.denayer@vub.be organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium |
| BookMark | eNqFkctu2zAQRYkgAeIk_YWCy27k8iXJKrqoa_QRIEAXadfEiBrKNGTSJakC-oj8cyU47SKbbEgM5p553Rty6YNHQt5ytuaMV-8Pazihx9hPa8GEXHMhuGAXZMU3tSgazjeXZMUkqwpR8eaa3KR0YIwtohV5esxxNHmMSO_pEfMePNL91EXISE3w1nnsqPN0tyn6CDbP0ePnbcHLD3RL967fDxNFa51x6DNNOUTokaYpZTxS9NAOzvd0HPIMQ8r_ewwBuiUDvqOjf47uyJWFIeGb5_-W_Pr65efue_Hw49v9bvtQGNnIXKiytJW0tmUlGFM2bYetYhtVdfNjVakATVmD4MxCa2pRNV1b1rwBsFZKtPKWvDvXPcXwe8SU9dElg8MwTxbGpCVTTClV19Us_XiWmhhSimi1cRmyC37eyA2aM724oA_6nwt6cUGfXZjx6gV-iu4IcXod_HQGcb7DH4dRp-XEBjsX0WTdBfdaib9rYKpu |
| CitedBy_id | crossref_primary_10_1016_j_eti_2024_103605 crossref_primary_10_1016_j_fuel_2025_135329 crossref_primary_10_1016_j_molliq_2025_128209 crossref_primary_10_1021_acs_energyfuels_5c02358 crossref_primary_10_1039_D5GC00027K crossref_primary_10_1016_j_cej_2025_164908 crossref_primary_10_1039_D4SE00114A crossref_primary_10_1016_j_ijhydene_2025_150863 crossref_primary_10_1016_j_jechem_2024_05_038 crossref_primary_10_3390_foods13203337 crossref_primary_10_3390_molecules29143369 crossref_primary_10_1038_s41467_024_52893_3 crossref_primary_10_1039_D5TA04503G |
| Cites_doi | 10.1039/c2cp22111j 10.1039/b008672j 10.1016/j.cej.2020.126955 10.1021/jacs.1c11342 10.1070/RCR4720 10.1021/jp510603q 10.1016/j.micromeso.2009.03.046 10.1016/j.cej.2016.01.026 10.1016/j.cej.2020.126276 10.1021/acs.jpcc.2c02936 10.1016/j.fuel.2014.10.005 10.1021/acs.energyfuels.0c01291 10.1016/j.micromeso.2014.10.032 10.1016/S1872-5813(12)60017-6 10.1016/j.carbon.2011.05.005 10.1039/C6SC00272B 10.1016/j.petrol.2016.09.017 10.1016/0009-2541(88)90104-0 10.1021/acs.jpcc.9b06366 10.1021/acs.iecr.9b04498 10.1007/s10934-016-0311-z 10.1021/acs.jpcc.6b07136 10.1016/j.cej.2018.11.216 10.1021/acsami.0c15675 10.1021/ac303253b 10.1002/mrc.984 10.1021/acs.jced.8b00060 10.1016/j.apenergy.2021.117398 10.1021/jacs.2c07661 10.1021/jp509343x 10.1016/j.apenergy.2020.115142 10.1103/PhysRevLett.81.4164 10.1107/S1600577518011165 10.1016/j.apenergy.2014.12.061 10.1002/chem.201600958 10.1021/acs.jced.5b00322 10.1515/zpch-2017-1030 10.1039/c2jm31541f 10.3390/physchem1030021 10.1016/j.cjche.2020.09.027 10.1021/jacs.0c01459 10.1002/cphc.201701250 10.1021/ja8048173 10.1016/j.carbon.2005.11.018 10.1039/C8CP01586D 10.1021/la0257844 10.1039/C6CP03993F 10.1021/ef020023u 10.1016/j.ces.2007.07.038 10.1039/D1TA03105H 10.1002/aic.690480222 10.1016/j.apenergy.2021.117852 10.1021/acs.energyfuels.8b00074 10.1021/la903120p 10.1016/j.fuel.2018.01.067 10.1016/j.jmr.2009.07.006 10.1021/je500770m 10.1002/ghg.2105 10.1016/j.apenergy.2023.120820 10.1021/ef030067i 10.1039/D0EE02315A 10.1515/pac-2014-1117 10.1039/D2EE01968J 10.1021/acs.iecr.5b03989 10.1007/BF02706941 10.1016/j.apenergy.2018.05.059 10.1073/pnas.1714796114 10.1063/1.4968590 10.1021/ja0754857 10.1021/je5006455 10.1021/ef900542m 10.1016/j.egypro.2014.12.174 10.1016/j.fuel.2020.119676 10.1002/cjce.22583 10.1063/1.4824125 10.1016/j.fuel.2016.05.068 10.1016/j.jechem.2022.07.019 10.1021/jp984559l 10.1016/j.apenergy.2020.115008 10.1002/aic.690481030 10.1016/j.fuel.2005.10.019 10.1016/S1004-9541(08)60287-6 10.1039/C1CP21407A 10.1021/acsomega.2c03048 10.1021/acs.iecr.5b03908 10.1021/acs.iecr.9b01952 10.1016/j.carbon.2017.07.061 10.1021/jp0546002 10.1016/j.heliyon.2023.e17662 10.1016/j.apenergy.2018.02.059 10.1038/ncomms7432 10.1016/j.ces.2013.11.032 10.1016/j.apenergy.2022.118678 10.1016/j.chroma.2011.07.035 10.1021/j100200a071 10.1039/C9CS00545E 10.1002/anie.201705707 10.1021/acs.jpcb.8b11172 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2023.122120 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2023_122120 S0306261923014848 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c393t-455f63ffb05acc59bdeb40846d084f454aec57a210fabc7269db5719aaff33ef3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001092824700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Mon Sep 29 06:13:28 EDT 2025 Tue Nov 18 21:56:16 EST 2025 Sat Nov 29 07:17:20 EST 2025 Fri Feb 23 02:35:58 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Methane hydrate NMR Ice Clathrate hydrate Kinetics SBA-15 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c393t-455f63ffb05acc59bdeb40846d084f454aec57a210fabc7269db5719aaff33ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0306261923014848-ga1_lrg.jpg |
| PQID | 3040444776 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3040444776 crossref_citationtrail_10_1016_j_apenergy_2023_122120 crossref_primary_10_1016_j_apenergy_2023_122120 elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_122120 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 2024-01-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chaudhary, Sharma (bb0420) 2016; 24 Parui, Jana (bb0390) 2019; 123 Qin, Shang, Lv, He, Yang, Zhang (bb0105) 2022; 74 Moon, Collanton, Monroe, Casey, Shell, Han (bb0410) 2022; 144 Xie, Zheng, Zhong, Zhu, Wang, Zhang (bb0500) 2020; 268 Borchardt, Nickel, Casco, Senkovska, Bon, Wallacher (bb0165) 2016; 18 Filarsky, Schmuck, Schultz (bb0315) 2019; 58 Sloan, Koh (bb0005) 2008 Zhong, Li, Lu, Wang, Yan, Qing (bb0235) 2016; 55 Chen, Li, Cao (bb0220) 2022; 12 Chandran, Bräuniger (bb0450) 2009; 200 Klauda, Sandler (bb0010) 2005 Andres-Garcia, Dikhtiarenko, Fauth, Silvestre-Albero, Ramos-Fernández, Gascon (bb0225) 2019; 360 Kvenvolden (bb0020) 1988; 71 Webb, Seki, Goldston, Pruski, Crudden (bb0455) 2015; 203 Veluswamy, Kumar, Seo, Lee, Linga (bb0030) 2018; 216 Li, Feng, Li, Wang, Hu (bb0130) 2022; 305 Chaturvedi, Laik, Mandal (bb0055) 2021; 32 Denning, Majid, Lucero, Crawford, Carreon, Koh (bb0205) 2020; 12 Park, Lee, Kwon (bb0475) 2018; 32 Casco, Cuadrado-Collados, Martínez-Escandell, Rodríguez-Reinoso, Silvestre-Albero (bb0160) 2017; 123 Mahboub, Ahmadpour, Rashidi (bb0190) 2012; 40 Yasmin, Müller (bb0440) 2011; 1218 Chong, Yang, Babu, Linga, Li (bb0035) 2016; 162 Sun, Song, Zhang, Li, Wang (bb0250) 2021; 288 Nguyen, Nguyen, Steel, Dang, Galib (bb0380) 2017; 121 Wang, Bray, Adams, Cooper (bb0290) 2008; 130 Zhou, Liu, Sun, Li, Zhou (bb0350) 2005; 109 Carter, Wang, Adams, Cooper (bb0285) 2010; 26 Liang, Duan, Pei, Wei (bb0520) 2021 Koh (bb0025) 2002; 31 Liu, Zhou, Li, Sun, Su, Zhou (bb0150) 2006; 44 Casco, Grätz, Wallacher, Grimm, Többens, Bilo (bb0270) 2021; 405 Cuadrado-Collados, Farrando-Pérez, Martínez-Escandell, Ramírez-Montoya, Menéndez, Arenillas (bb0510) 2020; 402 Zhang, Zhao, Bhattacharjee, Xu, Yang, Kumar (bb0060) 2022; 15 Cuadrado-Collados, Mouchaham, Daemen, Cheng, Ramirez-Cuesta, Aggarwal (bb0210) 2020; 142 Kim, Ahn, Lee (bb0215) 2015; 60 Massiot, Fayon, Capron, King, St, Le Calvé (bb0445) 2002; 40 Seo, Lee, Uchida (bb0335) 2002; 18 Veluswamy, Kumar, Kumar, Rangsunvigit, Linga (bb0065) 2016; 182 Celzard, Marêché (bb0180) 2006; 85 Seo, Lee (bb0505) 2003; 20 Breynaert, Houlleberghs, Radhakrishnan, Grübel, Taulelle, Martens (bb0395) 2020; 49 Shultz, Vu (bb0090) 2015; 119 Karaaslan, Parlaktuna (bb0245) 2002; 16 Nair, Ramesh, Ramadass, Sangwai (bb0325) 2016; 147 Kroenlein, Muzny, Kazakov, Diky, Chirico, Sloan (bb0490) 2009 Zhang, Li, Chen, Xia, Wang, Li (bb0355) 2018; 225 Kumar, Kushwaha, Rangsunvigit, Linga, Kumar (bb0040) 2016; 94 Casco, Rey, Jordá, Rudić, Fauth, Martínez-Escandell (bb0195) 2016; 7 Borchardt, Casco, Silvestre-Albero (bb0100) 2018; 19 Casco, Zhang, Grätz, Krause, Bon, Wallacher (bb0170) 2019; 123 Zhou, Sun, Zhou (bb0175) 2002; 48 Chong, Yang, Khoo, Linga (bb0320) 2016; 55 Manakov, Penkov, Rodionova, Nesterov, Fesenko (bb0050) 2017; 86 Li, Zhang, Wan, Feng, Chen, Wei (bb0495) 2021; 300 Nguyen, Galib, Nguyen (bb0375) 2020; 34 Linga, Haligva, Nam, Ripmeester, Englezos (bb0260) 2009; 23 Denning, Majid, Koh (bb0365) 2022; 126 Wang, Dou, Wang, Xu, Li, Chen (bb0145) 2022; 7 Chen, Xiao, Zhang, Chen, Sun, Ma (bb0370) 2020 Tinti, Giacomello, Grosu, Casciola (bb0400) 2017; 114 Eslami, Farhangdoost, Shahverdi, Mohammadi (bb0425) 2021; 11 Bhattacharjee, Goh, Arumuganainar, Zhang, Linga (bb0075) 2020; 13 Li, Wang (bb0310) 2015; 140 Ruppel (bb0015) 2015; 60 Mu, Liu, Liu, Yang, Sun, Chen (bb0200) 2012; 22 Park, Shin, Kim, Lee, Seo, Maeda (bb0295) 2015; 119 Taylor, Miller, Koh, Sloan (bb0045) 2007; 62 Zhong, He, Sun, Yang (bb0280) 2014; 61 Veluswamy, Wong, Babu, Kumar, Kulprathipanja, Rangsunvigit (bb0095) 2016; 290 Beckwée, Watson, Houlleberghs, Arenas Esteban, Bals, Van Der Voort (bb0360) 2023; 9 Casco, Silvestre-Albero, Ramírez-Cuesta, Rey, Jordá, Bansode (bb0135) 2015; 6 Inkong, Veluswamy, Rangsunvigit, Kulprathipanja, Linga (bb0340) 2019; 58 Meynen, Cool, Vansant (bb0435) 2009; 125 Liu, Liu, Xie, Cui, Chen (bb0275) 2018; 63 Handa, Stupin (bb0330) 1992; 96 Bhattacharjee, Prakash Veluswamy, Kumar, Linga (bb0080) 2020; 269 Smith, Wilder, Seshadri (bb0345) 2002; 48 Zhou, Kang, Lu, Fan, Zang, Liang (bb0255) 2023; 336 Long, Palmer, Coasne, Śliwinska-Bartkowiak, Gubbins (bb0115) 2011; 13 Altamash, Esperança, Tariq (bb0070) 2021; 1 Bowron, Filipponi, Roberts, Finney (bb0385) 1998; 81 Lee, Murakhtina, Sebastiani, Spiess (bb0515) 2007; 129 Perrin, Celzard, Marěché, Furdin (bb0185) 2003; 17 Park, Radhakrishnan, Choi, Chandran, Kemp, Breynaert (bb0465) 2022; 144 Houlleberghs, Martens, Breynaert (bb0430) 2018; 25 Zhao, Zhao, Liang, Gao, Yang (bb0240) 2018; 220 Śliwińska-Bartkowiak, Drozdowski, Kempiński, Jażdżewska, Long, Palmer (bb0125) 2012; 14 Casco, Jordá, Rey, Fauth, Martinez-Escandell, Rodríguez-Reinoso (bb0140) 2016; 22 Zang, Du, Liang, Fan, Tang (bb0230) 2009; 17 Uchida, Ebinuma, Ishizaki (bb0265) 1999; 103 Long, Palmer, Coasne, Śliwinska-Bartkowiak, Jackson, Müller (bb0120) 2013; 139 Fan, Yang, Wang, Lang, Wen, Lou (bb0300) 2014; 106 Vallaey, Radhakrishnan, Heylen, Chandran, Taulelle, Breynaert (bb0470) 2018; 20 Liu, Zhou, Sun, Su, Zhou (bb0155) 2011; 49 Cavazzini, Marchetti, Pasti, Greco, Dondi, Laganà (bb0405) 2013; 85 Brodrecht, Klotz, Lederle, Breitzke, Stühn, Vogel (bb0460) 2018; 232 Warrier, Khan, Srivastava, Maupin, Koh (bb0110) 2016; 145 Zhang, Bhattacharjee, Dharshini Vijayakumar, Linga (bb0085) 2022; 311 Mileo, Rogge, Houlleberghs, Breynaert, Martens, Van Speybroeck (bb0480) 2021 Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol (bb0485) 2015; 87 Mietner, Brieler, Lee, Fröba (bb0415) 2017; 56 Wang, Wang, Yoon, Seol (bb0305) 2015; 60 Chandran (10.1016/j.apenergy.2023.122120_bb0450) 2009; 200 Bowron (10.1016/j.apenergy.2023.122120_bb0385) 1998; 81 Parui (10.1016/j.apenergy.2023.122120_bb0390) 2019; 123 Seo (10.1016/j.apenergy.2023.122120_bb0335) 2002; 18 Mileo (10.1016/j.apenergy.2023.122120_bb0480) 2021 Kroenlein (10.1016/j.apenergy.2023.122120_bb0490) 2009 Li (10.1016/j.apenergy.2023.122120_bb0310) 2015; 140 Zhong (10.1016/j.apenergy.2023.122120_bb0235) 2016; 55 Linga (10.1016/j.apenergy.2023.122120_bb0260) 2009; 23 Beckwée (10.1016/j.apenergy.2023.122120_bb0360) 2023; 9 Tinti (10.1016/j.apenergy.2023.122120_bb0400) 2017; 114 Long (10.1016/j.apenergy.2023.122120_bb0115) 2011; 13 Ruppel (10.1016/j.apenergy.2023.122120_bb0015) 2015; 60 Kumar (10.1016/j.apenergy.2023.122120_bb0040) 2016; 94 Webb (10.1016/j.apenergy.2023.122120_bb0455) 2015; 203 Kvenvolden (10.1016/j.apenergy.2023.122120_bb0020) 1988; 71 Zhang (10.1016/j.apenergy.2023.122120_bb0060) 2022; 15 Mahboub (10.1016/j.apenergy.2023.122120_bb0190) 2012; 40 Fan (10.1016/j.apenergy.2023.122120_bb0300) 2014; 106 Yasmin (10.1016/j.apenergy.2023.122120_bb0440) 2011; 1218 Li (10.1016/j.apenergy.2023.122120_bb0130) 2022; 305 Chong (10.1016/j.apenergy.2023.122120_bb0320) 2016; 55 Chaudhary (10.1016/j.apenergy.2023.122120_bb0420) 2016; 24 Klauda (10.1016/j.apenergy.2023.122120_bb0010) 2005 Liu (10.1016/j.apenergy.2023.122120_bb0155) 2011; 49 Nair (10.1016/j.apenergy.2023.122120_bb0325) 2016; 147 Moon (10.1016/j.apenergy.2023.122120_bb0410) 2022; 144 Xie (10.1016/j.apenergy.2023.122120_bb0500) 2020; 268 Qin (10.1016/j.apenergy.2023.122120_bb0105) 2022; 74 Warrier (10.1016/j.apenergy.2023.122120_bb0110) 2016; 145 Breynaert (10.1016/j.apenergy.2023.122120_bb0395) 2020; 49 Chen (10.1016/j.apenergy.2023.122120_bb0220) 2022; 12 Cuadrado-Collados (10.1016/j.apenergy.2023.122120_bb0210) 2020; 142 Sloan (10.1016/j.apenergy.2023.122120_bb0005) 2008 Brodrecht (10.1016/j.apenergy.2023.122120_bb0460) 2018; 232 Cavazzini (10.1016/j.apenergy.2023.122120_bb0405) 2013; 85 Wang (10.1016/j.apenergy.2023.122120_bb0145) 2022; 7 Massiot (10.1016/j.apenergy.2023.122120_bb0445) 2002; 40 Casco (10.1016/j.apenergy.2023.122120_bb0160) 2017; 123 Chen (10.1016/j.apenergy.2023.122120_bb0370) 2020 Wang (10.1016/j.apenergy.2023.122120_bb0290) 2008; 130 Koh (10.1016/j.apenergy.2023.122120_bb0025) 2002; 31 Celzard (10.1016/j.apenergy.2023.122120_bb0180) 2006; 85 Perrin (10.1016/j.apenergy.2023.122120_bb0185) 2003; 17 Zang (10.1016/j.apenergy.2023.122120_bb0230) 2009; 17 Liu (10.1016/j.apenergy.2023.122120_bb0150) 2006; 44 Park (10.1016/j.apenergy.2023.122120_bb0465) 2022; 144 Zhou (10.1016/j.apenergy.2023.122120_bb0175) 2002; 48 Lee (10.1016/j.apenergy.2023.122120_bb0515) 2007; 129 Zhou (10.1016/j.apenergy.2023.122120_bb0350) 2005; 109 Cuadrado-Collados (10.1016/j.apenergy.2023.122120_bb0510) 2020; 402 Denning (10.1016/j.apenergy.2023.122120_bb0205) 2020; 12 Liu (10.1016/j.apenergy.2023.122120_bb0275) 2018; 63 Mietner (10.1016/j.apenergy.2023.122120_bb0415) 2017; 56 Chong (10.1016/j.apenergy.2023.122120_bb0035) 2016; 162 Filarsky (10.1016/j.apenergy.2023.122120_bb0315) 2019; 58 Borchardt (10.1016/j.apenergy.2023.122120_bb0165) 2016; 18 Liang (10.1016/j.apenergy.2023.122120_bb0520) 2021 Zhang (10.1016/j.apenergy.2023.122120_bb0085) 2022; 311 Bhattacharjee (10.1016/j.apenergy.2023.122120_bb0080) 2020; 269 Denning (10.1016/j.apenergy.2023.122120_bb0365) 2022; 126 Borchardt (10.1016/j.apenergy.2023.122120_bb0100) 2018; 19 Eslami (10.1016/j.apenergy.2023.122120_bb0425) 2021; 11 Altamash (10.1016/j.apenergy.2023.122120_bb0070) 2021; 1 Seo (10.1016/j.apenergy.2023.122120_bb0505) 2003; 20 Uchida (10.1016/j.apenergy.2023.122120_bb0265) 1999; 103 Chaturvedi (10.1016/j.apenergy.2023.122120_bb0055) 2021; 32 Casco (10.1016/j.apenergy.2023.122120_bb0170) 2019; 123 Shultz (10.1016/j.apenergy.2023.122120_bb0090) 2015; 119 Long (10.1016/j.apenergy.2023.122120_bb0120) 2013; 139 Nguyen (10.1016/j.apenergy.2023.122120_bb0375) 2020; 34 Vallaey (10.1016/j.apenergy.2023.122120_bb0470) 2018; 20 Houlleberghs (10.1016/j.apenergy.2023.122120_bb0430) 2018; 25 Karaaslan (10.1016/j.apenergy.2023.122120_bb0245) 2002; 16 Casco (10.1016/j.apenergy.2023.122120_bb0270) 2021; 405 Veluswamy (10.1016/j.apenergy.2023.122120_bb0095) 2016; 290 Casco (10.1016/j.apenergy.2023.122120_bb0140) 2016; 22 Manakov (10.1016/j.apenergy.2023.122120_bb0050) 2017; 86 Casco (10.1016/j.apenergy.2023.122120_bb0195) 2016; 7 Zhao (10.1016/j.apenergy.2023.122120_bb0240) 2018; 220 Kim (10.1016/j.apenergy.2023.122120_bb0215) 2015; 60 Zhou (10.1016/j.apenergy.2023.122120_bb0255) 2023; 336 Zhong (10.1016/j.apenergy.2023.122120_bb0280) 2014; 61 Inkong (10.1016/j.apenergy.2023.122120_bb0340) 2019; 58 Park (10.1016/j.apenergy.2023.122120_bb0475) 2018; 32 Veluswamy (10.1016/j.apenergy.2023.122120_bb0065) 2016; 182 Wang (10.1016/j.apenergy.2023.122120_bb0305) 2015; 60 Li (10.1016/j.apenergy.2023.122120_bb0495) 2021; 300 Veluswamy (10.1016/j.apenergy.2023.122120_bb0030) 2018; 216 Mu (10.1016/j.apenergy.2023.122120_bb0200) 2012; 22 Śliwińska-Bartkowiak (10.1016/j.apenergy.2023.122120_bb0125) 2012; 14 Bhattacharjee (10.1016/j.apenergy.2023.122120_bb0075) 2020; 13 Zhang (10.1016/j.apenergy.2023.122120_bb0355) 2018; 225 Smith (10.1016/j.apenergy.2023.122120_bb0345) 2002; 48 Taylor (10.1016/j.apenergy.2023.122120_bb0045) 2007; 62 Meynen (10.1016/j.apenergy.2023.122120_bb0435) 2009; 125 Andres-Garcia (10.1016/j.apenergy.2023.122120_bb0225) 2019; 360 Carter (10.1016/j.apenergy.2023.122120_bb0285) 2010; 26 Park (10.1016/j.apenergy.2023.122120_bb0295) 2015; 119 Sun (10.1016/j.apenergy.2023.122120_bb0250) 2021; 288 Thommes (10.1016/j.apenergy.2023.122120_bb0485) 2015; 87 Nguyen (10.1016/j.apenergy.2023.122120_bb0380) 2017; 121 Handa (10.1016/j.apenergy.2023.122120_bb0330) 1992; 96 Casco (10.1016/j.apenergy.2023.122120_bb0135) 2015; 6 |
| References_xml | – year: 2008 ident: bb0005 article-title: Clathrate hydrates of natural gases – volume: 74 start-page: 454 year: 2022 end-page: 480 ident: bb0105 article-title: Methane hydrate formation in porous media: overview and perspectives publication-title: J Energy Chem – volume: 55 start-page: 7981 year: 2016 end-page: 7991 ident: bb0320 article-title: Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment publication-title: Industr Eng Chem Res – volume: 20 start-page: 13528 year: 2018 end-page: 13536 ident: bb0470 article-title: Reversible room temperature ammonia gas absorption in pore water of microporous silica–alumina for sensing applications publication-title: Phys Chem Chem Phys – volume: 106 start-page: 53 year: 2014 end-page: 59 ident: bb0300 article-title: Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution publication-title: Chem Eng Sci – volume: 12 start-page: 53510 year: 2020 end-page: 53518 ident: bb0205 article-title: Metal-organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity publication-title: ACS Appl Mater Interfaces – volume: 360 start-page: 569 year: 2019 end-page: 576 ident: bb0225 article-title: Methane hydrates: nucleation in microporous materials publication-title: Chem Eng J – volume: 48 start-page: 393 year: 2002 end-page: 400 ident: bb0345 article-title: Methane hydrate equilibria in silica gels with broad pore-size distributions publication-title: AIChE J – volume: 402 year: 2020 ident: bb0510 article-title: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels publication-title: Chem Eng J – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: bb0135 article-title: Methane hydrate formation in confined nanospace can surpass nature publication-title: Nat Commun – volume: 14 start-page: 7145 year: 2012 end-page: 7153 ident: bb0125 article-title: Structural analysis of water and carbon tetrachloride adsorbed in activated carbon fibres publication-title: Phys Chem Chem Phys – volume: 12 start-page: 1 year: 2022 end-page: 13 ident: bb0220 article-title: Methane hydrate formation in hollow ZIF-8 nanoparticles for improved methane storage capacity publication-title: Catalysts – volume: 9 year: 2023 ident: bb0360 article-title: Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes publication-title: Heliyon – volume: 119 start-page: 1690 year: 2015 end-page: 1699 ident: bb0295 article-title: Effect of hydrate shell formation on the stability of dry water publication-title: J Phys Chem C – volume: 40 start-page: 70 year: 2002 end-page: 76 ident: bb0445 article-title: Modelling one-and two-dimensional solid-state NMR spectra † publication-title: Magn Reson Chem – volume: 56 start-page: 12348 year: 2017 end-page: 12351 ident: bb0415 article-title: Properties of water confined in periodic mesoporous Organosilicas: nanoimprinting the local structure publication-title: Angew Chem Int Ed – volume: 19 start-page: 1298 year: 2018 end-page: 1314 ident: bb0100 article-title: Methane hydrate in confined spaces: an alternative storage system publication-title: ChemPhysChem – volume: 123 start-page: 24071 year: 2019 end-page: 24079 ident: bb0170 article-title: Experimental evidence of confined methane hydrate in hydrophilic and hydrophobic model carbons publication-title: J Phys Chem C – volume: 85 start-page: 19 year: 2013 end-page: 22 ident: bb0405 article-title: A new method to investigate the intrusion of water into porous hydrophobic structures under dynamic conditions publication-title: Anal Chem – volume: 44 start-page: 1386 year: 2006 end-page: 1392 ident: bb0150 article-title: Methane sorption on ordered mesoporous carbon in the presence of water publication-title: Carbon – volume: 123 start-page: 811 year: 2019 end-page: 824 ident: bb0390 article-title: Factors promoting the formation of clathrate-like ordering of water in biomolecular structure at ambient temperature and pressure publication-title: J Phys Chem B – volume: 20 start-page: 1085 year: 2003 end-page: 1091 ident: bb0505 article-title: 13C NMR analysis and gas uptake measurements of pure and mixed gas hydrates: development of natural gas transport and storage method using gas hydrate publication-title: Korean J Chem Eng – start-page: 9 year: 2021 ident: bb0520 article-title: Study on hydrate phase equilibrium diagram of methane containing system based on thermodynamic model publication-title: Front Energy Res – volume: 1218 start-page: 6464 year: 2011 end-page: 6475 ident: bb0440 article-title: Synthesis and characterization of surface modified SBA-15 silica materials and their application in chromatography publication-title: J Chromatogr A – volume: 17 start-page: 854 year: 2009 end-page: 859 ident: bb0230 article-title: Influence of A-type zeolite on methane hydrate formation publication-title: Chin J Chem Eng – volume: 63 start-page: 1767 year: 2018 end-page: 1772 ident: bb0275 article-title: Methane hydrate uptake of MCM-41 mesoporous molecular sieves with Preadsorbed water publication-title: J Chem Eng Data – volume: 114 start-page: E10266 year: 2017 end-page: E10273 ident: bb0400 article-title: Intrusion and extrusion of water in hydrophobic nanopores publication-title: Proc Natl Acad Sci – volume: 144 start-page: 1766 year: 2022 end-page: 1777 ident: bb0410 article-title: Evidence for entropically controlled interfacial hydration in mesoporous Organosilicas publication-title: J Am Chem Soc – volume: 18 start-page: 20607 year: 2016 end-page: 20614 ident: bb0165 article-title: Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons publication-title: Phys Chem Chem Phys – volume: 81 start-page: 4164 year: 1998 end-page: 4167 ident: bb0385 article-title: Hydrophobic hydration and the formation of a clathrate hydrate publication-title: Phys Rev Lett – volume: 126 start-page: 11800 year: 2022 end-page: 11809 ident: bb0365 article-title: Stability and growth of methane hydrates in confined Media for Carbon Sequestration publication-title: J Phys Chem C – volume: 288 year: 2021 ident: bb0250 article-title: Polymeric superabsorbent hydrogel-based kinetic promotion for gas hydrate formation publication-title: Fuel – volume: 24 start-page: 741 year: 2016 end-page: 749 ident: bb0420 article-title: An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions publication-title: J Porous Mater – volume: 49 start-page: 3731 year: 2011 end-page: 3736 ident: bb0155 article-title: Methane storage in wet carbon of tailored pore sizes publication-title: Carbon – volume: 58 start-page: 16687 year: 2019 end-page: 16695 ident: bb0315 article-title: Impact of modified silica beads on methane hydrate formation in a fixed-bed reactor publication-title: Industr Eng Chem Res – volume: 15 start-page: 5362 year: 2022 end-page: 5378 ident: bb0060 article-title: Synthesis of methane hydrate at ambient temperature with ultra-rapid formation and high gas storage capacity publication-title: Energ Environ Sci – volume: 147 start-page: 547 year: 2016 end-page: 559 ident: bb0325 article-title: Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir publication-title: J Petrol Sci Eng – year: 2021 ident: bb0480 article-title: Interfacial study of clathrates confined in reversed silica pores publication-title: J Mater Chem A – volume: 62 start-page: 6524 year: 2007 end-page: 6533 ident: bb0045 article-title: Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface publication-title: Chem Eng Sci – volume: 16 start-page: 1413 year: 2002 end-page: 1416 ident: bb0245 article-title: Promotion effect of polymers and surfactants on hydrate formation rate publication-title: Energy Fuel – volume: 119 start-page: 9167 year: 2015 end-page: 9172 ident: bb0090 article-title: Hydrogen bonding between water and tetrahydrofuran relevant to clathrate formation publication-title: J Phys Chem B – volume: 13 start-page: 17163 year: 2011 end-page: 17170 ident: bb0115 article-title: Pressure enhancement in carbon nanopores: a major confinement effect publication-title: Phys Chem Chem Phys – volume: 140 start-page: 440 year: 2015 end-page: 445 ident: bb0310 article-title: Hydrophobized particles can accelerate nucleation of clathrate hydrates publication-title: Fuel – volume: 103 start-page: 3659 year: 1999 end-page: 3662 ident: bb0265 article-title: Dissociation condition measurements of methane hydrate in confined small pores of porous glass publication-title: J Phys Chem B – volume: 225 start-page: 827 year: 2018 end-page: 834 ident: bb0355 article-title: Experimental and modeling study on controlling factor of methane hydrate formation in silica gels publication-title: Appl Energy – volume: 60 start-page: 429 year: 2015 end-page: 436 ident: bb0015 article-title: Permafrost-associated gas hydrate: is it really approximately 1% of the global system? publication-title: J Chem Eng Data – volume: 1 start-page: 272 year: 2021 end-page: 287 ident: bb0070 article-title: Surface coatings and treatments for controlled hydrate formation: a Mini review publication-title: Physchem – volume: 85 start-page: 957 year: 2006 end-page: 966 ident: bb0180 article-title: Optimal wetting of active carbons for methane hydrate formation publication-title: Fuel – volume: 58 start-page: 22178 year: 2019 end-page: 22192 ident: bb0340 article-title: Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications publication-title: Industr Eng Chem Res – volume: 86 start-page: 845 year: 2017 end-page: 869 ident: bb0050 article-title: Kinetics of formation and dissociation of gas hydrates publication-title: Russian Chem Rev – volume: 25 start-page: 1893 year: 2018 end-page: 1894 ident: bb0430 article-title: Low-cost disposable high-pressure setup for in situ X-ray experiments publication-title: J Synchrotron Radiat – volume: 48 start-page: 2412 year: 2002 end-page: 2416 ident: bb0175 article-title: Enhancement of the methane storage on activated carbon by preadsorbed water publication-title: AIChE J – volume: 22 start-page: 10028 year: 2016 end-page: 10035 ident: bb0140 article-title: High-performance of gas hydrates in confined nanospace for reversible CH4/CO2 storage publication-title: Chem A Eur J – volume: 162 start-page: 1633 year: 2016 end-page: 1652 ident: bb0035 article-title: Review of natural gas hydrates as an energy resource: prospects and challenges publication-title: Appl Energy – volume: 123 start-page: 299 year: 2017 end-page: 301 ident: bb0160 article-title: Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon publication-title: Carbon – volume: 96 start-page: 8599 year: 1992 end-page: 8603 ident: bb0330 article-title: Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Å-radius silica gel pores publication-title: J Phys Chem – volume: 109 start-page: 22710 year: 2005 end-page: 22714 ident: bb0350 article-title: Methane sorption in ordered mesoporous silica SBA-15 in the presence of water publication-title: J Phys Chem B – volume: 121 start-page: 3830 year: 2017 end-page: 3840 ident: bb0380 article-title: Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles publication-title: J Phys Chem C – volume: 17 start-page: 1283 year: 2003 end-page: 1291 ident: bb0185 article-title: Methane storage within dry and wet active carbons: a comparative study publication-title: Energy Fuel – volume: 216 start-page: 262 year: 2018 end-page: 285 ident: bb0030 article-title: A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates publication-title: Appl Energy – volume: 18 start-page: 9164 year: 2002 end-page: 9170 ident: bb0335 article-title: Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling publication-title: Langmuir – volume: 130 start-page: 11608 year: 2008 end-page: 11609 ident: bb0290 article-title: Methane storage in dry water gas hydrates publication-title: J Am Chem Soc – volume: 300 year: 2021 ident: bb0495 article-title: Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments publication-title: Appl Energy – volume: 55 start-page: 7973 year: 2016 end-page: 7980 ident: bb0235 article-title: Investigation of CO2 capture from a CO2 + CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve publication-title: Industr Eng Chem Res – volume: 94 start-page: 2160 year: 2016 end-page: 2167 ident: bb0040 article-title: Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: application in energy storage and transportation publication-title: Can J Chem Eng – volume: 129 start-page: 12406 year: 2007 end-page: 12407 ident: bb0515 article-title: 2 H solid-state NMR of mobile protons: it is not always the simple way publication-title: J Am Chem Soc – volume: 60 start-page: 2178 year: 2015 end-page: 2185 ident: bb0215 article-title: Phase equilibria of CO2 and CH4 hydrates in intergranular Meso/macro pores of MIL-53 metal organic framework publication-title: J Chem Eng Data – volume: 145 year: 2016 ident: bb0110 article-title: Overview: nucleation of clathrate hydrates publication-title: J Chem Phys – volume: 7 start-page: 3658 year: 2016 end-page: 3666 ident: bb0195 article-title: Paving the way for methane hydrate formation on metal-organic frameworks (MOFs) publication-title: Chem Sci – volume: 232 start-page: 1003 year: 2018 end-page: 1015 ident: bb0460 article-title: A combined solid-state NMR, dielectric spectroscopy and calorimetric study of water in lowly hydrated MCM-41 samples publication-title: Zeitschrift Für Physikalische Chemie – volume: 200 start-page: 226 year: 2009 end-page: 232 ident: bb0450 article-title: Efficient heteronuclear dipolar decoupling in solid-state NMR using frequency-swept SPINAL sequences publication-title: J Magn Reson – volume: 32 start-page: 5321 year: 2018 end-page: 5330 ident: bb0475 article-title: Effect of pore size distribution on dissociation temperature depression and phase boundary shift of gas hydrate in various fine-grained sediments publication-title: Energy Fuel – volume: 11 start-page: 939 year: 2021 end-page: 953 ident: bb0425 article-title: Surface grafting of silica nanoparticles using 3-aminopropyl (triethoxysilane) to improve the CO2 absorption and enhance the gas consumption during the CO2 hydrate formation publication-title: Greenhouse Gases Sci Technol – volume: 269 year: 2020 ident: bb0080 article-title: Rapid methane storage via sII hydrates at ambient temperature publication-title: Appl Energy – volume: 290 start-page: 161 year: 2016 end-page: 173 ident: bb0095 article-title: Rapid methane hydrate formation to develop a cost effective large scale energy storage system publication-title: Chem Eng J – volume: 26 start-page: 3186 year: 2010 end-page: 3193 ident: bb0285 article-title: Gas storage in “dry water” and “dry gel” clathrates publication-title: Langmuir – start-page: 19 year: 2005 ident: bb0010 article-title: Global distribution of methane hydrate in ocean sediment publication-title: Energy Fuel – volume: 32 start-page: 1 year: 2021 end-page: 16 ident: bb0055 article-title: A comprehensive review of the effect of different kinetic promoters on methane hydrate formation publication-title: Chin J Chem Eng – volume: 60 start-page: 383 year: 2015 end-page: 388 ident: bb0305 article-title: Use of hydrophobic particles as kinetic promoters for gas hydrate formation publication-title: J Chem Eng Data – volume: 7 start-page: 33666 year: 2022 end-page: 33679 ident: bb0145 article-title: A review of the effect of porous media on gas hydrate formation publication-title: ACS Omega – volume: 139 year: 2013 ident: bb0120 article-title: On the molecular origin of high-pressure effects in nanoconfinement: the role of surface chemistry and roughness publication-title: J Chem Phys – volume: 31 start-page: 157 year: 2002 end-page: 167 ident: bb0025 article-title: Towards a fundamental understanding of natural gas hydrates publication-title: Chem Soc Rev – volume: 87 start-page: 1051 year: 2015 end-page: 1069 ident: bb0485 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report) publication-title: Pure Appl Chem – volume: 182 start-page: 907 year: 2016 end-page: 919 ident: bb0065 article-title: Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: application to natural gas storage publication-title: Fuel – volume: 49 start-page: 2557 year: 2020 end-page: 2569 ident: bb0395 article-title: Water as a tuneable solvent: a perspective publication-title: Chem Soc Rev – start-page: 200 year: 2009 ident: bb0490 article-title: Clathrate hydrate physical property database publication-title: Nation Energy Technol Lab US Departm Energy – volume: 125 start-page: 170 year: 2009 end-page: 223 ident: bb0435 article-title: Verified syntheses of mesoporous materials publication-title: Microp Mesop Mater – volume: 142 start-page: 13391 year: 2020 end-page: 13397 ident: bb0210 article-title: Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks publication-title: J Am Chem Soc – volume: 405 year: 2021 ident: bb0270 article-title: Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas publication-title: Chem Eng J – volume: 268 year: 2020 ident: bb0500 article-title: Experimental research on self-preservation effect of methane hydrate in porous sediments publication-title: Appl Energy – volume: 203 start-page: 123 year: 2015 end-page: 131 ident: bb0455 article-title: Selective functionalization of the mesopores of SBA-15 publication-title: Microp Mesop Mater – volume: 311 year: 2022 ident: bb0085 article-title: Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter publication-title: Appl Energy – start-page: 8 year: 2020 ident: bb0370 article-title: Adsorption-hydration sequence method for methane storage in porous material slurry publication-title: Front Chem – volume: 34 start-page: 6751 year: 2020 end-page: 6760 ident: bb0375 article-title: Critical review on gas hydrate formation at solid surfaces and in confined spaces - why and how does interfacial regime matter? publication-title: Energy Fuel – volume: 144 start-page: 18054 year: 2022 end-page: 18061 ident: bb0465 article-title: Hydrogen-bonded water-aminium assemblies for synthesis of zeotypes with ordered heteroatoms publication-title: J Am Chem Soc – volume: 23 start-page: 5496 year: 2009 end-page: 5507 ident: bb0260 article-title: Gas hydrate formation in a variable volume bed of silica sand particles publication-title: Energy Fuel – volume: 22 start-page: 12246 year: 2012 end-page: 12252 ident: bb0200 article-title: A novel method to improve the gas storage capacity of ZIF-8 publication-title: J Mater Chem – volume: 220 start-page: 185 year: 2018 end-page: 191 ident: bb0240 article-title: Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites publication-title: Fuel – volume: 61 start-page: 1573 year: 2014 end-page: 1576 ident: bb0280 article-title: Comparison of methane hydrate formation in stirred reactor and porous media in the presence of SDS publication-title: Energy Procedia – volume: 336 year: 2023 ident: bb0255 article-title: Recyclable and efficient hydrate-based CH4 storage strengthened by fabrics publication-title: Appl Energy – volume: 71 start-page: 41 year: 1988 end-page: 51 ident: bb0020 article-title: Methane hydrate - a major reservoir of carbon in the shallow geosphere? publication-title: Chem Geol – volume: 13 start-page: 4946 year: 2020 end-page: 4961 ident: bb0075 article-title: Ultra-rapid uptake and the highly stable storage of methane as combustible ice publication-title: Energ Environ Sci – volume: 40 start-page: 385 year: 2012 end-page: 389 ident: bb0190 article-title: Improving methane storage on wet activated carbons at various amounts of water publication-title: Ranliao Huaxue Xuebao/J Fuel Chem Technol – volume: 305 year: 2022 ident: bb0130 article-title: Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes publication-title: Appl Energy – volume: 14 start-page: 7145 year: 2012 ident: 10.1016/j.apenergy.2023.122120_bb0125 article-title: Structural analysis of water and carbon tetrachloride adsorbed in activated carbon fibres publication-title: Phys Chem Chem Phys doi: 10.1039/c2cp22111j – volume: 31 start-page: 157 year: 2002 ident: 10.1016/j.apenergy.2023.122120_bb0025 article-title: Towards a fundamental understanding of natural gas hydrates publication-title: Chem Soc Rev doi: 10.1039/b008672j – volume: 405 year: 2021 ident: 10.1016/j.apenergy.2023.122120_bb0270 article-title: Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126955 – volume: 144 start-page: 1766 year: 2022 ident: 10.1016/j.apenergy.2023.122120_bb0410 article-title: Evidence for entropically controlled interfacial hydration in mesoporous Organosilicas publication-title: J Am Chem Soc doi: 10.1021/jacs.1c11342 – volume: 86 start-page: 845 year: 2017 ident: 10.1016/j.apenergy.2023.122120_bb0050 article-title: Kinetics of formation and dissociation of gas hydrates publication-title: Russian Chem Rev doi: 10.1070/RCR4720 – volume: 119 start-page: 1690 year: 2015 ident: 10.1016/j.apenergy.2023.122120_bb0295 article-title: Effect of hydrate shell formation on the stability of dry water publication-title: J Phys Chem C doi: 10.1021/jp510603q – volume: 125 start-page: 170 year: 2009 ident: 10.1016/j.apenergy.2023.122120_bb0435 article-title: Verified syntheses of mesoporous materials publication-title: Microp Mesop Mater doi: 10.1016/j.micromeso.2009.03.046 – year: 2008 ident: 10.1016/j.apenergy.2023.122120_bb0005 – volume: 290 start-page: 161 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0095 article-title: Rapid methane hydrate formation to develop a cost effective large scale energy storage system publication-title: Chem Eng J doi: 10.1016/j.cej.2016.01.026 – volume: 402 year: 2020 ident: 10.1016/j.apenergy.2023.122120_bb0510 article-title: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126276 – volume: 126 start-page: 11800 year: 2022 ident: 10.1016/j.apenergy.2023.122120_bb0365 article-title: Stability and growth of methane hydrates in confined Media for Carbon Sequestration publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.2c02936 – volume: 140 start-page: 440 year: 2015 ident: 10.1016/j.apenergy.2023.122120_bb0310 article-title: Hydrophobized particles can accelerate nucleation of clathrate hydrates publication-title: Fuel doi: 10.1016/j.fuel.2014.10.005 – volume: 34 start-page: 6751 year: 2020 ident: 10.1016/j.apenergy.2023.122120_bb0375 article-title: Critical review on gas hydrate formation at solid surfaces and in confined spaces - why and how does interfacial regime matter? publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.0c01291 – volume: 203 start-page: 123 year: 2015 ident: 10.1016/j.apenergy.2023.122120_bb0455 article-title: Selective functionalization of the mesopores of SBA-15 publication-title: Microp Mesop Mater doi: 10.1016/j.micromeso.2014.10.032 – volume: 40 start-page: 385 year: 2012 ident: 10.1016/j.apenergy.2023.122120_bb0190 article-title: Improving methane storage on wet activated carbons at various amounts of water publication-title: Ranliao Huaxue Xuebao/J Fuel Chem Technol doi: 10.1016/S1872-5813(12)60017-6 – volume: 49 start-page: 3731 year: 2011 ident: 10.1016/j.apenergy.2023.122120_bb0155 article-title: Methane storage in wet carbon of tailored pore sizes publication-title: Carbon doi: 10.1016/j.carbon.2011.05.005 – volume: 7 start-page: 3658 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0195 article-title: Paving the way for methane hydrate formation on metal-organic frameworks (MOFs) publication-title: Chem Sci doi: 10.1039/C6SC00272B – volume: 147 start-page: 547 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0325 article-title: Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2016.09.017 – volume: 71 start-page: 41 year: 1988 ident: 10.1016/j.apenergy.2023.122120_bb0020 article-title: Methane hydrate - a major reservoir of carbon in the shallow geosphere? publication-title: Chem Geol doi: 10.1016/0009-2541(88)90104-0 – volume: 123 start-page: 24071 year: 2019 ident: 10.1016/j.apenergy.2023.122120_bb0170 article-title: Experimental evidence of confined methane hydrate in hydrophilic and hydrophobic model carbons publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.9b06366 – volume: 58 start-page: 22178 year: 2019 ident: 10.1016/j.apenergy.2023.122120_bb0340 article-title: Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications publication-title: Industr Eng Chem Res doi: 10.1021/acs.iecr.9b04498 – volume: 24 start-page: 741 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0420 article-title: An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions publication-title: J Porous Mater doi: 10.1007/s10934-016-0311-z – volume: 121 start-page: 3830 year: 2017 ident: 10.1016/j.apenergy.2023.122120_bb0380 article-title: Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b07136 – volume: 360 start-page: 569 year: 2019 ident: 10.1016/j.apenergy.2023.122120_bb0225 article-title: Methane hydrates: nucleation in microporous materials publication-title: Chem Eng J doi: 10.1016/j.cej.2018.11.216 – volume: 12 start-page: 53510 year: 2020 ident: 10.1016/j.apenergy.2023.122120_bb0205 article-title: Metal-organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c15675 – volume: 85 start-page: 19 year: 2013 ident: 10.1016/j.apenergy.2023.122120_bb0405 article-title: A new method to investigate the intrusion of water into porous hydrophobic structures under dynamic conditions publication-title: Anal Chem doi: 10.1021/ac303253b – volume: 40 start-page: 70 year: 2002 ident: 10.1016/j.apenergy.2023.122120_bb0445 article-title: Modelling one-and two-dimensional solid-state NMR spectra † publication-title: Magn Reson Chem doi: 10.1002/mrc.984 – volume: 63 start-page: 1767 year: 2018 ident: 10.1016/j.apenergy.2023.122120_bb0275 article-title: Methane hydrate uptake of MCM-41 mesoporous molecular sieves with Preadsorbed water publication-title: J Chem Eng Data doi: 10.1021/acs.jced.8b00060 – volume: 300 year: 2021 ident: 10.1016/j.apenergy.2023.122120_bb0495 article-title: Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117398 – volume: 144 start-page: 18054 year: 2022 ident: 10.1016/j.apenergy.2023.122120_bb0465 article-title: Hydrogen-bonded water-aminium assemblies for synthesis of zeotypes with ordered heteroatoms publication-title: J Am Chem Soc doi: 10.1021/jacs.2c07661 – volume: 119 start-page: 9167 year: 2015 ident: 10.1016/j.apenergy.2023.122120_bb0090 article-title: Hydrogen bonding between water and tetrahydrofuran relevant to clathrate formation publication-title: J Phys Chem B doi: 10.1021/jp509343x – volume: 269 year: 2020 ident: 10.1016/j.apenergy.2023.122120_bb0080 article-title: Rapid methane storage via sII hydrates at ambient temperature publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115142 – volume: 81 start-page: 4164 year: 1998 ident: 10.1016/j.apenergy.2023.122120_bb0385 article-title: Hydrophobic hydration and the formation of a clathrate hydrate publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.81.4164 – volume: 25 start-page: 1893 year: 2018 ident: 10.1016/j.apenergy.2023.122120_bb0430 article-title: Low-cost disposable high-pressure setup for in situ X-ray experiments publication-title: J Synchrotron Radiat doi: 10.1107/S1600577518011165 – start-page: 200 year: 2009 ident: 10.1016/j.apenergy.2023.122120_bb0490 article-title: Clathrate hydrate physical property database publication-title: Nation Energy Technol Lab US Departm Energy – volume: 162 start-page: 1633 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0035 article-title: Review of natural gas hydrates as an energy resource: prospects and challenges publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.12.061 – volume: 22 start-page: 10028 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0140 article-title: High-performance of gas hydrates in confined nanospace for reversible CH4/CO2 storage publication-title: Chem A Eur J doi: 10.1002/chem.201600958 – volume: 60 start-page: 2178 year: 2015 ident: 10.1016/j.apenergy.2023.122120_bb0215 article-title: Phase equilibria of CO2 and CH4 hydrates in intergranular Meso/macro pores of MIL-53 metal organic framework publication-title: J Chem Eng Data doi: 10.1021/acs.jced.5b00322 – volume: 232 start-page: 1003 year: 2018 ident: 10.1016/j.apenergy.2023.122120_bb0460 article-title: A combined solid-state NMR, dielectric spectroscopy and calorimetric study of water in lowly hydrated MCM-41 samples publication-title: Zeitschrift Für Physikalische Chemie doi: 10.1515/zpch-2017-1030 – volume: 22 start-page: 12246 year: 2012 ident: 10.1016/j.apenergy.2023.122120_bb0200 article-title: A novel method to improve the gas storage capacity of ZIF-8 publication-title: J Mater Chem doi: 10.1039/c2jm31541f – volume: 1 start-page: 272 year: 2021 ident: 10.1016/j.apenergy.2023.122120_bb0070 article-title: Surface coatings and treatments for controlled hydrate formation: a Mini review publication-title: Physchem doi: 10.3390/physchem1030021 – volume: 32 start-page: 1 year: 2021 ident: 10.1016/j.apenergy.2023.122120_bb0055 article-title: A comprehensive review of the effect of different kinetic promoters on methane hydrate formation publication-title: Chin J Chem Eng doi: 10.1016/j.cjche.2020.09.027 – volume: 142 start-page: 13391 year: 2020 ident: 10.1016/j.apenergy.2023.122120_bb0210 article-title: Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks publication-title: J Am Chem Soc doi: 10.1021/jacs.0c01459 – volume: 19 start-page: 1298 year: 2018 ident: 10.1016/j.apenergy.2023.122120_bb0100 article-title: Methane hydrate in confined spaces: an alternative storage system publication-title: ChemPhysChem doi: 10.1002/cphc.201701250 – volume: 130 start-page: 11608 year: 2008 ident: 10.1016/j.apenergy.2023.122120_bb0290 article-title: Methane storage in dry water gas hydrates publication-title: J Am Chem Soc doi: 10.1021/ja8048173 – volume: 44 start-page: 1386 year: 2006 ident: 10.1016/j.apenergy.2023.122120_bb0150 article-title: Methane sorption on ordered mesoporous carbon in the presence of water publication-title: Carbon doi: 10.1016/j.carbon.2005.11.018 – volume: 20 start-page: 13528 year: 2018 ident: 10.1016/j.apenergy.2023.122120_bb0470 article-title: Reversible room temperature ammonia gas absorption in pore water of microporous silica–alumina for sensing applications publication-title: Phys Chem Chem Phys doi: 10.1039/C8CP01586D – volume: 18 start-page: 9164 year: 2002 ident: 10.1016/j.apenergy.2023.122120_bb0335 article-title: Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling publication-title: Langmuir doi: 10.1021/la0257844 – volume: 18 start-page: 20607 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0165 article-title: Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP03993F – volume: 16 start-page: 1413 year: 2002 ident: 10.1016/j.apenergy.2023.122120_bb0245 article-title: Promotion effect of polymers and surfactants on hydrate formation rate publication-title: Energy Fuel doi: 10.1021/ef020023u – volume: 62 start-page: 6524 year: 2007 ident: 10.1016/j.apenergy.2023.122120_bb0045 article-title: Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface publication-title: Chem Eng Sci doi: 10.1016/j.ces.2007.07.038 – start-page: 8 year: 2020 ident: 10.1016/j.apenergy.2023.122120_bb0370 article-title: Adsorption-hydration sequence method for methane storage in porous material slurry publication-title: Front Chem – year: 2021 ident: 10.1016/j.apenergy.2023.122120_bb0480 article-title: Interfacial study of clathrates confined in reversed silica pores publication-title: J Mater Chem A doi: 10.1039/D1TA03105H – volume: 48 start-page: 393 year: 2002 ident: 10.1016/j.apenergy.2023.122120_bb0345 article-title: Methane hydrate equilibria in silica gels with broad pore-size distributions publication-title: AIChE J doi: 10.1002/aic.690480222 – volume: 305 year: 2022 ident: 10.1016/j.apenergy.2023.122120_bb0130 article-title: Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117852 – volume: 32 start-page: 5321 year: 2018 ident: 10.1016/j.apenergy.2023.122120_bb0475 article-title: Effect of pore size distribution on dissociation temperature depression and phase boundary shift of gas hydrate in various fine-grained sediments publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.8b00074 – volume: 26 start-page: 3186 year: 2010 ident: 10.1016/j.apenergy.2023.122120_bb0285 article-title: Gas storage in “dry water” and “dry gel” clathrates publication-title: Langmuir doi: 10.1021/la903120p – volume: 220 start-page: 185 year: 2018 ident: 10.1016/j.apenergy.2023.122120_bb0240 article-title: Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites publication-title: Fuel doi: 10.1016/j.fuel.2018.01.067 – volume: 200 start-page: 226 year: 2009 ident: 10.1016/j.apenergy.2023.122120_bb0450 article-title: Efficient heteronuclear dipolar decoupling in solid-state NMR using frequency-swept SPINAL sequences publication-title: J Magn Reson doi: 10.1016/j.jmr.2009.07.006 – volume: 60 start-page: 429 year: 2015 ident: 10.1016/j.apenergy.2023.122120_bb0015 article-title: Permafrost-associated gas hydrate: is it really approximately 1% of the global system? publication-title: J Chem Eng Data doi: 10.1021/je500770m – volume: 11 start-page: 939 year: 2021 ident: 10.1016/j.apenergy.2023.122120_bb0425 article-title: Surface grafting of silica nanoparticles using 3-aminopropyl (triethoxysilane) to improve the CO2 absorption and enhance the gas consumption during the CO2 hydrate formation publication-title: Greenhouse Gases Sci Technol doi: 10.1002/ghg.2105 – volume: 336 year: 2023 ident: 10.1016/j.apenergy.2023.122120_bb0255 article-title: Recyclable and efficient hydrate-based CH4 storage strengthened by fabrics publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.120820 – volume: 17 start-page: 1283 year: 2003 ident: 10.1016/j.apenergy.2023.122120_bb0185 article-title: Methane storage within dry and wet active carbons: a comparative study publication-title: Energy Fuel doi: 10.1021/ef030067i – volume: 13 start-page: 4946 year: 2020 ident: 10.1016/j.apenergy.2023.122120_bb0075 article-title: Ultra-rapid uptake and the highly stable storage of methane as combustible ice publication-title: Energ Environ Sci doi: 10.1039/D0EE02315A – start-page: 9 year: 2021 ident: 10.1016/j.apenergy.2023.122120_bb0520 article-title: Study on hydrate phase equilibrium diagram of methane containing system based on thermodynamic model publication-title: Front Energy Res – volume: 87 start-page: 1051 year: 2015 ident: 10.1016/j.apenergy.2023.122120_bb0485 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report) publication-title: Pure Appl Chem doi: 10.1515/pac-2014-1117 – volume: 15 start-page: 5362 year: 2022 ident: 10.1016/j.apenergy.2023.122120_bb0060 article-title: Synthesis of methane hydrate at ambient temperature with ultra-rapid formation and high gas storage capacity publication-title: Energ Environ Sci doi: 10.1039/D2EE01968J – volume: 55 start-page: 7973 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0235 article-title: Investigation of CO2 capture from a CO2 + CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve publication-title: Industr Eng Chem Res doi: 10.1021/acs.iecr.5b03989 – volume: 20 start-page: 1085 year: 2003 ident: 10.1016/j.apenergy.2023.122120_bb0505 article-title: 13C NMR analysis and gas uptake measurements of pure and mixed gas hydrates: development of natural gas transport and storage method using gas hydrate publication-title: Korean J Chem Eng doi: 10.1007/BF02706941 – volume: 225 start-page: 827 year: 2018 ident: 10.1016/j.apenergy.2023.122120_bb0355 article-title: Experimental and modeling study on controlling factor of methane hydrate formation in silica gels publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.05.059 – volume: 114 start-page: E10266 year: 2017 ident: 10.1016/j.apenergy.2023.122120_bb0400 article-title: Intrusion and extrusion of water in hydrophobic nanopores publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1714796114 – volume: 145 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0110 article-title: Overview: nucleation of clathrate hydrates publication-title: J Chem Phys doi: 10.1063/1.4968590 – volume: 129 start-page: 12406 year: 2007 ident: 10.1016/j.apenergy.2023.122120_bb0515 article-title: 2 H solid-state NMR of mobile protons: it is not always the simple way publication-title: J Am Chem Soc doi: 10.1021/ja0754857 – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.apenergy.2023.122120_bb0220 article-title: Methane hydrate formation in hollow ZIF-8 nanoparticles for improved methane storage capacity publication-title: Catalysts – start-page: 19 year: 2005 ident: 10.1016/j.apenergy.2023.122120_bb0010 article-title: Global distribution of methane hydrate in ocean sediment publication-title: Energy Fuel – volume: 60 start-page: 383 year: 2015 ident: 10.1016/j.apenergy.2023.122120_bb0305 article-title: Use of hydrophobic particles as kinetic promoters for gas hydrate formation publication-title: J Chem Eng Data doi: 10.1021/je5006455 – volume: 23 start-page: 5496 year: 2009 ident: 10.1016/j.apenergy.2023.122120_bb0260 article-title: Gas hydrate formation in a variable volume bed of silica sand particles publication-title: Energy Fuel doi: 10.1021/ef900542m – volume: 61 start-page: 1573 year: 2014 ident: 10.1016/j.apenergy.2023.122120_bb0280 article-title: Comparison of methane hydrate formation in stirred reactor and porous media in the presence of SDS publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.12.174 – volume: 288 year: 2021 ident: 10.1016/j.apenergy.2023.122120_bb0250 article-title: Polymeric superabsorbent hydrogel-based kinetic promotion for gas hydrate formation publication-title: Fuel doi: 10.1016/j.fuel.2020.119676 – volume: 94 start-page: 2160 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0040 article-title: Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: application in energy storage and transportation publication-title: Can J Chem Eng doi: 10.1002/cjce.22583 – volume: 139 year: 2013 ident: 10.1016/j.apenergy.2023.122120_bb0120 article-title: On the molecular origin of high-pressure effects in nanoconfinement: the role of surface chemistry and roughness publication-title: J Chem Phys doi: 10.1063/1.4824125 – volume: 182 start-page: 907 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0065 article-title: Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: application to natural gas storage publication-title: Fuel doi: 10.1016/j.fuel.2016.05.068 – volume: 74 start-page: 454 year: 2022 ident: 10.1016/j.apenergy.2023.122120_bb0105 article-title: Methane hydrate formation in porous media: overview and perspectives publication-title: J Energy Chem doi: 10.1016/j.jechem.2022.07.019 – volume: 103 start-page: 3659 year: 1999 ident: 10.1016/j.apenergy.2023.122120_bb0265 article-title: Dissociation condition measurements of methane hydrate in confined small pores of porous glass publication-title: J Phys Chem B doi: 10.1021/jp984559l – volume: 268 year: 2020 ident: 10.1016/j.apenergy.2023.122120_bb0500 article-title: Experimental research on self-preservation effect of methane hydrate in porous sediments publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115008 – volume: 48 start-page: 2412 year: 2002 ident: 10.1016/j.apenergy.2023.122120_bb0175 article-title: Enhancement of the methane storage on activated carbon by preadsorbed water publication-title: AIChE J doi: 10.1002/aic.690481030 – volume: 85 start-page: 957 year: 2006 ident: 10.1016/j.apenergy.2023.122120_bb0180 article-title: Optimal wetting of active carbons for methane hydrate formation publication-title: Fuel doi: 10.1016/j.fuel.2005.10.019 – volume: 17 start-page: 854 year: 2009 ident: 10.1016/j.apenergy.2023.122120_bb0230 article-title: Influence of A-type zeolite on methane hydrate formation publication-title: Chin J Chem Eng doi: 10.1016/S1004-9541(08)60287-6 – volume: 13 start-page: 17163 year: 2011 ident: 10.1016/j.apenergy.2023.122120_bb0115 article-title: Pressure enhancement in carbon nanopores: a major confinement effect publication-title: Phys Chem Chem Phys doi: 10.1039/C1CP21407A – volume: 7 start-page: 33666 year: 2022 ident: 10.1016/j.apenergy.2023.122120_bb0145 article-title: A review of the effect of porous media on gas hydrate formation publication-title: ACS Omega doi: 10.1021/acsomega.2c03048 – volume: 55 start-page: 7981 year: 2016 ident: 10.1016/j.apenergy.2023.122120_bb0320 article-title: Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment publication-title: Industr Eng Chem Res doi: 10.1021/acs.iecr.5b03908 – volume: 58 start-page: 16687 year: 2019 ident: 10.1016/j.apenergy.2023.122120_bb0315 article-title: Impact of modified silica beads on methane hydrate formation in a fixed-bed reactor publication-title: Industr Eng Chem Res doi: 10.1021/acs.iecr.9b01952 – volume: 123 start-page: 299 year: 2017 ident: 10.1016/j.apenergy.2023.122120_bb0160 article-title: Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon publication-title: Carbon doi: 10.1016/j.carbon.2017.07.061 – volume: 109 start-page: 22710 year: 2005 ident: 10.1016/j.apenergy.2023.122120_bb0350 article-title: Methane sorption in ordered mesoporous silica SBA-15 in the presence of water publication-title: J Phys Chem B doi: 10.1021/jp0546002 – volume: 9 year: 2023 ident: 10.1016/j.apenergy.2023.122120_bb0360 article-title: Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e17662 – volume: 216 start-page: 262 year: 2018 ident: 10.1016/j.apenergy.2023.122120_bb0030 article-title: A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.059 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.apenergy.2023.122120_bb0135 article-title: Methane hydrate formation in confined nanospace can surpass nature publication-title: Nat Commun doi: 10.1038/ncomms7432 – volume: 106 start-page: 53 year: 2014 ident: 10.1016/j.apenergy.2023.122120_bb0300 article-title: Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution publication-title: Chem Eng Sci doi: 10.1016/j.ces.2013.11.032 – volume: 311 year: 2022 ident: 10.1016/j.apenergy.2023.122120_bb0085 article-title: Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.118678 – volume: 1218 start-page: 6464 year: 2011 ident: 10.1016/j.apenergy.2023.122120_bb0440 article-title: Synthesis and characterization of surface modified SBA-15 silica materials and their application in chromatography publication-title: J Chromatogr A doi: 10.1016/j.chroma.2011.07.035 – volume: 96 start-page: 8599 year: 1992 ident: 10.1016/j.apenergy.2023.122120_bb0330 article-title: Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Å-radius silica gel pores publication-title: J Phys Chem doi: 10.1021/j100200a071 – volume: 49 start-page: 2557 year: 2020 ident: 10.1016/j.apenergy.2023.122120_bb0395 article-title: Water as a tuneable solvent: a perspective publication-title: Chem Soc Rev doi: 10.1039/C9CS00545E – volume: 56 start-page: 12348 year: 2017 ident: 10.1016/j.apenergy.2023.122120_bb0415 article-title: Properties of water confined in periodic mesoporous Organosilicas: nanoimprinting the local structure publication-title: Angew Chem Int Ed doi: 10.1002/anie.201705707 – volume: 123 start-page: 811 year: 2019 ident: 10.1016/j.apenergy.2023.122120_bb0390 article-title: Factors promoting the formation of clathrate-like ordering of water in biomolecular structure at ambient temperature and pressure publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.8b11172 |
| SSID | ssj0002120 |
| Score | 2.5031497 |
| Snippet | Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122120 |
| SubjectTerms | Clathrate hydrate crystallization desorption energy Ice Kinetics methane Methane hydrate NMR nuclear magnetic resonance spectroscopy porosity SBA-15 species spectral analysis surface area X-ray diffraction |
| Title | Structure I methane hydrate confined in C8-grafted SBA-15: A highly efficient storage system enabling ultrafast methane loading and unloading |
| URI | https://dx.doi.org/10.1016/j.apenergy.2023.122120 https://www.proquest.com/docview/3040444776 |
| Volume | 353 |
| WOSCitedRecordID | wos001092824700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgM8IBhMjC8ZibcqJU3sxOatTEUrQhPSxrS3yHGSraOk1dqO7Ufwm_hr3Gs7TjRAAyFerDaq48j31Pfk-txrQl7JCnhyONRBLmQZsFypIC94grI_oXUocmbyK44-pPv74vhYfuz1vje5MBeztK7F5aVc_FdTwzUwNqbO_oW5_U3hAnwGo0MLZof2jwx_YCrC4r7AxJwPrYBGnl4VWBICNeYV0MrC5PqJ4OQcjwgHxvl2FAy5TVLH-sWzK9R5TE2uZB_lkyjssTWf-yUmW2F8YT1bQXe1XPlRZnMjyDf7Eevafeuy34bylibh0EcCSv35q92wN9HV8RdYqTBxu5U37s2xSjhK0U5tdFyhFNXjencKHhlluwYwqlgHNtTf0S7UMAFWXzDoH03redENd0TsWrjD5-G0oieT-xUmAb4LWq9ml3KRRriUi-5aH9vKxD_5DRvCOBuohZ2BAZ4qPxhG4NjD1lN6_eIBDmjfPTEiy8QtshmlXMKyujmajI_fezIQucqgzQN2ktR_Pdrv-NE1pmDoz-F9cs-9t9CRxdsD0ivrLXK3U81yi2yP26RJ-KnzGsuH5JuHJJ1QBxbqIEkbSNJpTVtIUgvJN3RELSCpByR1gKQWkLQBJPWA9GM4CFKwPvWAfEQ-vRsf7u4F7hiQQMcyXgWM8yqJqyoPudKay7wocxYCby6gqRhnqtQ8VdEwrFSu0yiRRc7ToVSqquK4rOJtslHP6_IxoZyLUlYxK1jBoRFSxLnKw0hzrROZ8B3Cm8nPtKuRj0e1zLJGDHmWNUbL0GiZNdoOee37LWyVmBt7yMa2meO6lsNmAMkb-75swJCBM8AdPpjT-XqZxeCSGWNpmjz5h_s_JXfaf94zsgEYKZ-T2_piNV2ev3AI_wHn2OIj |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+I+methane+hydrate+confined+in+C8-grafted+SBA-15%3A+A+highly+efficient+storage+system+enabling+ultrafast+methane+loading+and+unloading&rft.jtitle=Applied+energy&rft.au=Beckw%C3%A9e%2C+Emile+Jules&rft.au=Houlleberghs%2C+Maarten&rft.au=Ciocarlan%2C+Radu-George&rft.au=Chandran%2C+C.+Vinod&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=353&rft_id=info:doi/10.1016%2Fj.apenergy.2023.122120&rft.externalDocID=S0306261923014848 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |