Structure I methane hydrate confined in C8-grafted SBA-15: A highly efficient storage system enabling ultrafast methane loading and unloading

Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized SBA-15, hydrophobization by C8 grafting accelerates the kinetics of methane storage in and delivery from the hydrate. C8 grafting density was de...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 353; s. 122120
Hlavní autori: Beckwée, Emile Jules, Houlleberghs, Maarten, Ciocarlan, Radu-George, Chandran, C. Vinod, Radhakrishnan, Sambhu, Hanssens, Lucas, Cool, Pegie, Martens, Johan, Breynaert, Eric, Baron, Gino V., Denayer, Joeri F.M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2024
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized SBA-15, hydrophobization by C8 grafting accelerates the kinetics of methane storage in and delivery from the hydrate. C8 grafting density was determined at 0.5 groups nm−2 based on TGA and quantitative NMR spectroscopy. Multinuclear 1H-1H DQSQ and 1H-1H RFDR NMR provided spectroscopic evidence for the occurrence of C8 chains inside the mesopores of SBA-15, by showcasing close spatial proximity between the grafted C8 chains and pore-intruded water species. X-ray diffraction demonstrates formation of Structure I hydrate on SBA-15 C8. At 7.0 MPa and 248 K, the water-to-hydrate conversion on hydrophobized SBA-15 C8 reaches 96% as compared to only 71% on a pristine SBA-15 sample with comparable pore size, pore volume and surface area. The clathrate loading amounted to 14.8 g/g. 2D correlation NMR spectroscopy (1H-13C CP-HETCOR, 1H-1H RFDR) reveals hydrate formation occurs within pores of SBA-15 C8 as well as in interparticle volumes. Following the initial crystallization of SBA-15 C8-supported methane hydrate taking several hours, a pressure swing process at 248 K allows to desorb and re-adsorb methane from the structure within minutes and without thawing the frozen water structure. Fast loading and unloading of methane was achieved in 19 subsequent cycles without losses in kinetics. The ability to harvest the gas and regenerate the structure without the need to re-freeze the water represents a 50% energy gain with respect to melting and subsequently recrystallizing the hydrate at 298 K and 248 K, respectively. After methane desorption, a small amount of residual methane hydrate in combination with an amorphous yet locally ordered ice phase is observed using 13C and 2H NMR spectroscopy. This effect offers an explanation for the enhanced hydrate formation kinetics in adsorption-desorption cycles. These findings open new perspectives for clathrate hydrate-based methane storage. [Display omitted] •Hydrophobization of SBA-15 accelerates methane enclathration.•2D NMR reveals hydrate present within pores of SBA-15 C8.•Methane loading times were reduced from 207 min to 8 min by pressure cycling.•Amorphous yet ordered ice is observed between storage cycles by 13C and 2H NMR.•Pressure-induced crystallization-dissociation of hydrate saves up to 50% energy.
AbstractList Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized SBA-15, hydrophobization by C8 grafting accelerates the kinetics of methane storage in and delivery from the hydrate. C8 grafting density was determined at 0.5 groups nm−2 based on TGA and quantitative NMR spectroscopy. Multinuclear 1H-1H DQSQ and 1H-1H RFDR NMR provided spectroscopic evidence for the occurrence of C8 chains inside the mesopores of SBA-15, by showcasing close spatial proximity between the grafted C8 chains and pore-intruded water species. X-ray diffraction demonstrates formation of Structure I hydrate on SBA-15 C8. At 7.0 MPa and 248 K, the water-to-hydrate conversion on hydrophobized SBA-15 C8 reaches 96% as compared to only 71% on a pristine SBA-15 sample with comparable pore size, pore volume and surface area. The clathrate loading amounted to 14.8 g/g. 2D correlation NMR spectroscopy (1H-13C CP-HETCOR, 1H-1H RFDR) reveals hydrate formation occurs within pores of SBA-15 C8 as well as in interparticle volumes. Following the initial crystallization of SBA-15 C8-supported methane hydrate taking several hours, a pressure swing process at 248 K allows to desorb and re-adsorb methane from the structure within minutes and without thawing the frozen water structure. Fast loading and unloading of methane was achieved in 19 subsequent cycles without losses in kinetics. The ability to harvest the gas and regenerate the structure without the need to re-freeze the water represents a 50% energy gain with respect to melting and subsequently recrystallizing the hydrate at 298 K and 248 K, respectively. After methane desorption, a small amount of residual methane hydrate in combination with an amorphous yet locally ordered ice phase is observed using 13C and 2H NMR spectroscopy. This effect offers an explanation for the enhanced hydrate formation kinetics in adsorption-desorption cycles. These findings open new perspectives for clathrate hydrate-based methane storage. [Display omitted] •Hydrophobization of SBA-15 accelerates methane enclathration.•2D NMR reveals hydrate present within pores of SBA-15 C8.•Methane loading times were reduced from 207 min to 8 min by pressure cycling.•Amorphous yet ordered ice is observed between storage cycles by 13C and 2H NMR.•Pressure-induced crystallization-dissociation of hydrate saves up to 50% energy.
Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized SBA-15, hydrophobization by C₈ grafting accelerates the kinetics of methane storage in and delivery from the hydrate. C₈ grafting density was determined at 0.5 groups nm⁻² based on TGA and quantitative NMR spectroscopy. Multinuclear ¹H-¹H DQSQ and ¹H-¹H RFDR NMR provided spectroscopic evidence for the occurrence of C₈ chains inside the mesopores of SBA-15, by showcasing close spatial proximity between the grafted C₈ chains and pore-intruded water species. X-ray diffraction demonstrates formation of Structure I hydrate on SBA-15 C₈. At 7.0 MPa and 248 K, the water-to-hydrate conversion on hydrophobized SBA-15 C₈ reaches 96% as compared to only 71% on a pristine SBA-15 sample with comparable pore size, pore volume and surface area. The clathrate loading amounted to 14.8 g/g. 2D correlation NMR spectroscopy (¹H-¹³C CP-HETCOR, ¹H-¹H RFDR) reveals hydrate formation occurs within pores of SBA-15 C₈ as well as in interparticle volumes. Following the initial crystallization of SBA-15 C₈-supported methane hydrate taking several hours, a pressure swing process at 248 K allows to desorb and re-adsorb methane from the structure within minutes and without thawing the frozen water structure. Fast loading and unloading of methane was achieved in 19 subsequent cycles without losses in kinetics. The ability to harvest the gas and regenerate the structure without the need to re-freeze the water represents a 50% energy gain with respect to melting and subsequently recrystallizing the hydrate at 298 K and 248 K, respectively. After methane desorption, a small amount of residual methane hydrate in combination with an amorphous yet locally ordered ice phase is observed using ¹³C and ²H NMR spectroscopy. This effect offers an explanation for the enhanced hydrate formation kinetics in adsorption-desorption cycles. These findings open new perspectives for clathrate hydrate-based methane storage.
ArticleNumber 122120
Author Cool, Pegie
Beckwée, Emile Jules
Hanssens, Lucas
Ciocarlan, Radu-George
Breynaert, Eric
Radhakrishnan, Sambhu
Baron, Gino V.
Chandran, C. Vinod
Martens, Johan
Denayer, Joeri F.M.
Houlleberghs, Maarten
Author_xml – sequence: 1
  givenname: Emile Jules
  surname: Beckwée
  fullname: Beckwée, Emile Jules
  organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
– sequence: 2
  givenname: Maarten
  surname: Houlleberghs
  fullname: Houlleberghs, Maarten
  organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
– sequence: 3
  givenname: Radu-George
  surname: Ciocarlan
  fullname: Ciocarlan, Radu-George
  organization: Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
– sequence: 4
  givenname: C. Vinod
  surname: Chandran
  fullname: Chandran, C. Vinod
  organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
– sequence: 5
  givenname: Sambhu
  surname: Radhakrishnan
  fullname: Radhakrishnan, Sambhu
  organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
– sequence: 6
  givenname: Lucas
  surname: Hanssens
  fullname: Hanssens, Lucas
  organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
– sequence: 7
  givenname: Pegie
  surname: Cool
  fullname: Cool, Pegie
  organization: Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
– sequence: 8
  givenname: Johan
  surname: Martens
  fullname: Martens, Johan
  organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
– sequence: 9
  givenname: Eric
  surname: Breynaert
  fullname: Breynaert, Eric
  organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
– sequence: 10
  givenname: Gino V.
  surname: Baron
  fullname: Baron, Gino V.
  organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
– sequence: 11
  givenname: Joeri F.M.
  surname: Denayer
  fullname: Denayer, Joeri F.M.
  email: joeri.denayer@vub.be
  organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
BookMark eNqFkctu2zAQRYkgAeIk_YWCy27k8iXJKrqoa_QRIEAXadfEiBrKNGTSJakC-oj8cyU47SKbbEgM5p553Rty6YNHQt5ytuaMV-8Pazihx9hPa8GEXHMhuGAXZMU3tSgazjeXZMUkqwpR8eaa3KR0YIwtohV5esxxNHmMSO_pEfMePNL91EXISE3w1nnsqPN0tyn6CDbP0ePnbcHLD3RL967fDxNFa51x6DNNOUTokaYpZTxS9NAOzvd0HPIMQ8r_ewwBuiUDvqOjf47uyJWFIeGb5_-W_Pr65efue_Hw49v9bvtQGNnIXKiytJW0tmUlGFM2bYetYhtVdfNjVakATVmD4MxCa2pRNV1b1rwBsFZKtPKWvDvXPcXwe8SU9dElg8MwTxbGpCVTTClV19Us_XiWmhhSimi1cRmyC37eyA2aM724oA_6nwt6cUGfXZjx6gV-iu4IcXod_HQGcb7DH4dRp-XEBjsX0WTdBfdaib9rYKpu
CitedBy_id crossref_primary_10_1016_j_eti_2024_103605
crossref_primary_10_1016_j_fuel_2025_135329
crossref_primary_10_1016_j_molliq_2025_128209
crossref_primary_10_1021_acs_energyfuels_5c02358
crossref_primary_10_1039_D5GC00027K
crossref_primary_10_1016_j_cej_2025_164908
crossref_primary_10_1039_D4SE00114A
crossref_primary_10_1016_j_ijhydene_2025_150863
crossref_primary_10_1016_j_jechem_2024_05_038
crossref_primary_10_3390_foods13203337
crossref_primary_10_3390_molecules29143369
crossref_primary_10_1038_s41467_024_52893_3
crossref_primary_10_1039_D5TA04503G
Cites_doi 10.1039/c2cp22111j
10.1039/b008672j
10.1016/j.cej.2020.126955
10.1021/jacs.1c11342
10.1070/RCR4720
10.1021/jp510603q
10.1016/j.micromeso.2009.03.046
10.1016/j.cej.2016.01.026
10.1016/j.cej.2020.126276
10.1021/acs.jpcc.2c02936
10.1016/j.fuel.2014.10.005
10.1021/acs.energyfuels.0c01291
10.1016/j.micromeso.2014.10.032
10.1016/S1872-5813(12)60017-6
10.1016/j.carbon.2011.05.005
10.1039/C6SC00272B
10.1016/j.petrol.2016.09.017
10.1016/0009-2541(88)90104-0
10.1021/acs.jpcc.9b06366
10.1021/acs.iecr.9b04498
10.1007/s10934-016-0311-z
10.1021/acs.jpcc.6b07136
10.1016/j.cej.2018.11.216
10.1021/acsami.0c15675
10.1021/ac303253b
10.1002/mrc.984
10.1021/acs.jced.8b00060
10.1016/j.apenergy.2021.117398
10.1021/jacs.2c07661
10.1021/jp509343x
10.1016/j.apenergy.2020.115142
10.1103/PhysRevLett.81.4164
10.1107/S1600577518011165
10.1016/j.apenergy.2014.12.061
10.1002/chem.201600958
10.1021/acs.jced.5b00322
10.1515/zpch-2017-1030
10.1039/c2jm31541f
10.3390/physchem1030021
10.1016/j.cjche.2020.09.027
10.1021/jacs.0c01459
10.1002/cphc.201701250
10.1021/ja8048173
10.1016/j.carbon.2005.11.018
10.1039/C8CP01586D
10.1021/la0257844
10.1039/C6CP03993F
10.1021/ef020023u
10.1016/j.ces.2007.07.038
10.1039/D1TA03105H
10.1002/aic.690480222
10.1016/j.apenergy.2021.117852
10.1021/acs.energyfuels.8b00074
10.1021/la903120p
10.1016/j.fuel.2018.01.067
10.1016/j.jmr.2009.07.006
10.1021/je500770m
10.1002/ghg.2105
10.1016/j.apenergy.2023.120820
10.1021/ef030067i
10.1039/D0EE02315A
10.1515/pac-2014-1117
10.1039/D2EE01968J
10.1021/acs.iecr.5b03989
10.1007/BF02706941
10.1016/j.apenergy.2018.05.059
10.1073/pnas.1714796114
10.1063/1.4968590
10.1021/ja0754857
10.1021/je5006455
10.1021/ef900542m
10.1016/j.egypro.2014.12.174
10.1016/j.fuel.2020.119676
10.1002/cjce.22583
10.1063/1.4824125
10.1016/j.fuel.2016.05.068
10.1016/j.jechem.2022.07.019
10.1021/jp984559l
10.1016/j.apenergy.2020.115008
10.1002/aic.690481030
10.1016/j.fuel.2005.10.019
10.1016/S1004-9541(08)60287-6
10.1039/C1CP21407A
10.1021/acsomega.2c03048
10.1021/acs.iecr.5b03908
10.1021/acs.iecr.9b01952
10.1016/j.carbon.2017.07.061
10.1021/jp0546002
10.1016/j.heliyon.2023.e17662
10.1016/j.apenergy.2018.02.059
10.1038/ncomms7432
10.1016/j.ces.2013.11.032
10.1016/j.apenergy.2022.118678
10.1016/j.chroma.2011.07.035
10.1021/j100200a071
10.1039/C9CS00545E
10.1002/anie.201705707
10.1021/acs.jpcb.8b11172
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2023.122120
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2023_122120
S0306261923014848
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c393t-455f63ffb05acc59bdeb40846d084f454aec57a210fabc7269db5719aaff33ef3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001092824700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Mon Sep 29 06:13:28 EDT 2025
Tue Nov 18 21:56:16 EST 2025
Sat Nov 29 07:17:20 EST 2025
Fri Feb 23 02:35:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Methane hydrate
NMR
Ice
Clathrate hydrate
Kinetics
SBA-15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-455f63ffb05acc59bdeb40846d084f454aec57a210fabc7269db5719aaff33ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S0306261923014848-ga1_lrg.jpg
PQID 3040444776
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040444776
crossref_citationtrail_10_1016_j_apenergy_2023_122120
crossref_primary_10_1016_j_apenergy_2023_122120
elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_122120
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chaudhary, Sharma (bb0420) 2016; 24
Parui, Jana (bb0390) 2019; 123
Qin, Shang, Lv, He, Yang, Zhang (bb0105) 2022; 74
Moon, Collanton, Monroe, Casey, Shell, Han (bb0410) 2022; 144
Xie, Zheng, Zhong, Zhu, Wang, Zhang (bb0500) 2020; 268
Borchardt, Nickel, Casco, Senkovska, Bon, Wallacher (bb0165) 2016; 18
Filarsky, Schmuck, Schultz (bb0315) 2019; 58
Sloan, Koh (bb0005) 2008
Zhong, Li, Lu, Wang, Yan, Qing (bb0235) 2016; 55
Chen, Li, Cao (bb0220) 2022; 12
Chandran, Bräuniger (bb0450) 2009; 200
Klauda, Sandler (bb0010) 2005
Andres-Garcia, Dikhtiarenko, Fauth, Silvestre-Albero, Ramos-Fernández, Gascon (bb0225) 2019; 360
Kvenvolden (bb0020) 1988; 71
Webb, Seki, Goldston, Pruski, Crudden (bb0455) 2015; 203
Veluswamy, Kumar, Seo, Lee, Linga (bb0030) 2018; 216
Li, Feng, Li, Wang, Hu (bb0130) 2022; 305
Chaturvedi, Laik, Mandal (bb0055) 2021; 32
Denning, Majid, Lucero, Crawford, Carreon, Koh (bb0205) 2020; 12
Park, Lee, Kwon (bb0475) 2018; 32
Casco, Cuadrado-Collados, Martínez-Escandell, Rodríguez-Reinoso, Silvestre-Albero (bb0160) 2017; 123
Mahboub, Ahmadpour, Rashidi (bb0190) 2012; 40
Yasmin, Müller (bb0440) 2011; 1218
Chong, Yang, Babu, Linga, Li (bb0035) 2016; 162
Sun, Song, Zhang, Li, Wang (bb0250) 2021; 288
Nguyen, Nguyen, Steel, Dang, Galib (bb0380) 2017; 121
Wang, Bray, Adams, Cooper (bb0290) 2008; 130
Zhou, Liu, Sun, Li, Zhou (bb0350) 2005; 109
Carter, Wang, Adams, Cooper (bb0285) 2010; 26
Liang, Duan, Pei, Wei (bb0520) 2021
Koh (bb0025) 2002; 31
Liu, Zhou, Li, Sun, Su, Zhou (bb0150) 2006; 44
Casco, Grätz, Wallacher, Grimm, Többens, Bilo (bb0270) 2021; 405
Cuadrado-Collados, Farrando-Pérez, Martínez-Escandell, Ramírez-Montoya, Menéndez, Arenillas (bb0510) 2020; 402
Zhang, Zhao, Bhattacharjee, Xu, Yang, Kumar (bb0060) 2022; 15
Cuadrado-Collados, Mouchaham, Daemen, Cheng, Ramirez-Cuesta, Aggarwal (bb0210) 2020; 142
Kim, Ahn, Lee (bb0215) 2015; 60
Massiot, Fayon, Capron, King, St, Le Calvé (bb0445) 2002; 40
Seo, Lee, Uchida (bb0335) 2002; 18
Veluswamy, Kumar, Kumar, Rangsunvigit, Linga (bb0065) 2016; 182
Celzard, Marêché (bb0180) 2006; 85
Seo, Lee (bb0505) 2003; 20
Breynaert, Houlleberghs, Radhakrishnan, Grübel, Taulelle, Martens (bb0395) 2020; 49
Shultz, Vu (bb0090) 2015; 119
Karaaslan, Parlaktuna (bb0245) 2002; 16
Nair, Ramesh, Ramadass, Sangwai (bb0325) 2016; 147
Kroenlein, Muzny, Kazakov, Diky, Chirico, Sloan (bb0490) 2009
Zhang, Li, Chen, Xia, Wang, Li (bb0355) 2018; 225
Kumar, Kushwaha, Rangsunvigit, Linga, Kumar (bb0040) 2016; 94
Casco, Rey, Jordá, Rudić, Fauth, Martínez-Escandell (bb0195) 2016; 7
Borchardt, Casco, Silvestre-Albero (bb0100) 2018; 19
Casco, Zhang, Grätz, Krause, Bon, Wallacher (bb0170) 2019; 123
Zhou, Sun, Zhou (bb0175) 2002; 48
Chong, Yang, Khoo, Linga (bb0320) 2016; 55
Manakov, Penkov, Rodionova, Nesterov, Fesenko (bb0050) 2017; 86
Li, Zhang, Wan, Feng, Chen, Wei (bb0495) 2021; 300
Nguyen, Galib, Nguyen (bb0375) 2020; 34
Linga, Haligva, Nam, Ripmeester, Englezos (bb0260) 2009; 23
Denning, Majid, Koh (bb0365) 2022; 126
Wang, Dou, Wang, Xu, Li, Chen (bb0145) 2022; 7
Chen, Xiao, Zhang, Chen, Sun, Ma (bb0370) 2020
Tinti, Giacomello, Grosu, Casciola (bb0400) 2017; 114
Eslami, Farhangdoost, Shahverdi, Mohammadi (bb0425) 2021; 11
Bhattacharjee, Goh, Arumuganainar, Zhang, Linga (bb0075) 2020; 13
Li, Wang (bb0310) 2015; 140
Ruppel (bb0015) 2015; 60
Mu, Liu, Liu, Yang, Sun, Chen (bb0200) 2012; 22
Park, Shin, Kim, Lee, Seo, Maeda (bb0295) 2015; 119
Taylor, Miller, Koh, Sloan (bb0045) 2007; 62
Zhong, He, Sun, Yang (bb0280) 2014; 61
Veluswamy, Wong, Babu, Kumar, Kulprathipanja, Rangsunvigit (bb0095) 2016; 290
Beckwée, Watson, Houlleberghs, Arenas Esteban, Bals, Van Der Voort (bb0360) 2023; 9
Casco, Silvestre-Albero, Ramírez-Cuesta, Rey, Jordá, Bansode (bb0135) 2015; 6
Inkong, Veluswamy, Rangsunvigit, Kulprathipanja, Linga (bb0340) 2019; 58
Meynen, Cool, Vansant (bb0435) 2009; 125
Liu, Liu, Xie, Cui, Chen (bb0275) 2018; 63
Handa, Stupin (bb0330) 1992; 96
Bhattacharjee, Prakash Veluswamy, Kumar, Linga (bb0080) 2020; 269
Smith, Wilder, Seshadri (bb0345) 2002; 48
Zhou, Kang, Lu, Fan, Zang, Liang (bb0255) 2023; 336
Long, Palmer, Coasne, Śliwinska-Bartkowiak, Gubbins (bb0115) 2011; 13
Altamash, Esperança, Tariq (bb0070) 2021; 1
Bowron, Filipponi, Roberts, Finney (bb0385) 1998; 81
Lee, Murakhtina, Sebastiani, Spiess (bb0515) 2007; 129
Perrin, Celzard, Marěché, Furdin (bb0185) 2003; 17
Park, Radhakrishnan, Choi, Chandran, Kemp, Breynaert (bb0465) 2022; 144
Houlleberghs, Martens, Breynaert (bb0430) 2018; 25
Zhao, Zhao, Liang, Gao, Yang (bb0240) 2018; 220
Śliwińska-Bartkowiak, Drozdowski, Kempiński, Jażdżewska, Long, Palmer (bb0125) 2012; 14
Casco, Jordá, Rey, Fauth, Martinez-Escandell, Rodríguez-Reinoso (bb0140) 2016; 22
Zang, Du, Liang, Fan, Tang (bb0230) 2009; 17
Uchida, Ebinuma, Ishizaki (bb0265) 1999; 103
Long, Palmer, Coasne, Śliwinska-Bartkowiak, Jackson, Müller (bb0120) 2013; 139
Fan, Yang, Wang, Lang, Wen, Lou (bb0300) 2014; 106
Vallaey, Radhakrishnan, Heylen, Chandran, Taulelle, Breynaert (bb0470) 2018; 20
Liu, Zhou, Sun, Su, Zhou (bb0155) 2011; 49
Cavazzini, Marchetti, Pasti, Greco, Dondi, Laganà (bb0405) 2013; 85
Brodrecht, Klotz, Lederle, Breitzke, Stühn, Vogel (bb0460) 2018; 232
Warrier, Khan, Srivastava, Maupin, Koh (bb0110) 2016; 145
Zhang, Bhattacharjee, Dharshini Vijayakumar, Linga (bb0085) 2022; 311
Mileo, Rogge, Houlleberghs, Breynaert, Martens, Van Speybroeck (bb0480) 2021
Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol (bb0485) 2015; 87
Mietner, Brieler, Lee, Fröba (bb0415) 2017; 56
Wang, Wang, Yoon, Seol (bb0305) 2015; 60
Chandran (10.1016/j.apenergy.2023.122120_bb0450) 2009; 200
Bowron (10.1016/j.apenergy.2023.122120_bb0385) 1998; 81
Parui (10.1016/j.apenergy.2023.122120_bb0390) 2019; 123
Seo (10.1016/j.apenergy.2023.122120_bb0335) 2002; 18
Mileo (10.1016/j.apenergy.2023.122120_bb0480) 2021
Kroenlein (10.1016/j.apenergy.2023.122120_bb0490) 2009
Li (10.1016/j.apenergy.2023.122120_bb0310) 2015; 140
Zhong (10.1016/j.apenergy.2023.122120_bb0235) 2016; 55
Linga (10.1016/j.apenergy.2023.122120_bb0260) 2009; 23
Beckwée (10.1016/j.apenergy.2023.122120_bb0360) 2023; 9
Tinti (10.1016/j.apenergy.2023.122120_bb0400) 2017; 114
Long (10.1016/j.apenergy.2023.122120_bb0115) 2011; 13
Ruppel (10.1016/j.apenergy.2023.122120_bb0015) 2015; 60
Kumar (10.1016/j.apenergy.2023.122120_bb0040) 2016; 94
Webb (10.1016/j.apenergy.2023.122120_bb0455) 2015; 203
Kvenvolden (10.1016/j.apenergy.2023.122120_bb0020) 1988; 71
Zhang (10.1016/j.apenergy.2023.122120_bb0060) 2022; 15
Mahboub (10.1016/j.apenergy.2023.122120_bb0190) 2012; 40
Fan (10.1016/j.apenergy.2023.122120_bb0300) 2014; 106
Yasmin (10.1016/j.apenergy.2023.122120_bb0440) 2011; 1218
Li (10.1016/j.apenergy.2023.122120_bb0130) 2022; 305
Chong (10.1016/j.apenergy.2023.122120_bb0320) 2016; 55
Chaudhary (10.1016/j.apenergy.2023.122120_bb0420) 2016; 24
Klauda (10.1016/j.apenergy.2023.122120_bb0010) 2005
Liu (10.1016/j.apenergy.2023.122120_bb0155) 2011; 49
Nair (10.1016/j.apenergy.2023.122120_bb0325) 2016; 147
Moon (10.1016/j.apenergy.2023.122120_bb0410) 2022; 144
Xie (10.1016/j.apenergy.2023.122120_bb0500) 2020; 268
Qin (10.1016/j.apenergy.2023.122120_bb0105) 2022; 74
Warrier (10.1016/j.apenergy.2023.122120_bb0110) 2016; 145
Breynaert (10.1016/j.apenergy.2023.122120_bb0395) 2020; 49
Chen (10.1016/j.apenergy.2023.122120_bb0220) 2022; 12
Cuadrado-Collados (10.1016/j.apenergy.2023.122120_bb0210) 2020; 142
Sloan (10.1016/j.apenergy.2023.122120_bb0005) 2008
Brodrecht (10.1016/j.apenergy.2023.122120_bb0460) 2018; 232
Cavazzini (10.1016/j.apenergy.2023.122120_bb0405) 2013; 85
Wang (10.1016/j.apenergy.2023.122120_bb0145) 2022; 7
Massiot (10.1016/j.apenergy.2023.122120_bb0445) 2002; 40
Casco (10.1016/j.apenergy.2023.122120_bb0160) 2017; 123
Chen (10.1016/j.apenergy.2023.122120_bb0370) 2020
Wang (10.1016/j.apenergy.2023.122120_bb0290) 2008; 130
Koh (10.1016/j.apenergy.2023.122120_bb0025) 2002; 31
Celzard (10.1016/j.apenergy.2023.122120_bb0180) 2006; 85
Perrin (10.1016/j.apenergy.2023.122120_bb0185) 2003; 17
Zang (10.1016/j.apenergy.2023.122120_bb0230) 2009; 17
Liu (10.1016/j.apenergy.2023.122120_bb0150) 2006; 44
Park (10.1016/j.apenergy.2023.122120_bb0465) 2022; 144
Zhou (10.1016/j.apenergy.2023.122120_bb0175) 2002; 48
Lee (10.1016/j.apenergy.2023.122120_bb0515) 2007; 129
Zhou (10.1016/j.apenergy.2023.122120_bb0350) 2005; 109
Cuadrado-Collados (10.1016/j.apenergy.2023.122120_bb0510) 2020; 402
Denning (10.1016/j.apenergy.2023.122120_bb0205) 2020; 12
Liu (10.1016/j.apenergy.2023.122120_bb0275) 2018; 63
Mietner (10.1016/j.apenergy.2023.122120_bb0415) 2017; 56
Chong (10.1016/j.apenergy.2023.122120_bb0035) 2016; 162
Filarsky (10.1016/j.apenergy.2023.122120_bb0315) 2019; 58
Borchardt (10.1016/j.apenergy.2023.122120_bb0165) 2016; 18
Liang (10.1016/j.apenergy.2023.122120_bb0520) 2021
Zhang (10.1016/j.apenergy.2023.122120_bb0085) 2022; 311
Bhattacharjee (10.1016/j.apenergy.2023.122120_bb0080) 2020; 269
Denning (10.1016/j.apenergy.2023.122120_bb0365) 2022; 126
Borchardt (10.1016/j.apenergy.2023.122120_bb0100) 2018; 19
Eslami (10.1016/j.apenergy.2023.122120_bb0425) 2021; 11
Altamash (10.1016/j.apenergy.2023.122120_bb0070) 2021; 1
Seo (10.1016/j.apenergy.2023.122120_bb0505) 2003; 20
Uchida (10.1016/j.apenergy.2023.122120_bb0265) 1999; 103
Chaturvedi (10.1016/j.apenergy.2023.122120_bb0055) 2021; 32
Casco (10.1016/j.apenergy.2023.122120_bb0170) 2019; 123
Shultz (10.1016/j.apenergy.2023.122120_bb0090) 2015; 119
Long (10.1016/j.apenergy.2023.122120_bb0120) 2013; 139
Nguyen (10.1016/j.apenergy.2023.122120_bb0375) 2020; 34
Vallaey (10.1016/j.apenergy.2023.122120_bb0470) 2018; 20
Houlleberghs (10.1016/j.apenergy.2023.122120_bb0430) 2018; 25
Karaaslan (10.1016/j.apenergy.2023.122120_bb0245) 2002; 16
Casco (10.1016/j.apenergy.2023.122120_bb0270) 2021; 405
Veluswamy (10.1016/j.apenergy.2023.122120_bb0095) 2016; 290
Casco (10.1016/j.apenergy.2023.122120_bb0140) 2016; 22
Manakov (10.1016/j.apenergy.2023.122120_bb0050) 2017; 86
Casco (10.1016/j.apenergy.2023.122120_bb0195) 2016; 7
Zhao (10.1016/j.apenergy.2023.122120_bb0240) 2018; 220
Kim (10.1016/j.apenergy.2023.122120_bb0215) 2015; 60
Zhou (10.1016/j.apenergy.2023.122120_bb0255) 2023; 336
Zhong (10.1016/j.apenergy.2023.122120_bb0280) 2014; 61
Inkong (10.1016/j.apenergy.2023.122120_bb0340) 2019; 58
Park (10.1016/j.apenergy.2023.122120_bb0475) 2018; 32
Veluswamy (10.1016/j.apenergy.2023.122120_bb0065) 2016; 182
Wang (10.1016/j.apenergy.2023.122120_bb0305) 2015; 60
Li (10.1016/j.apenergy.2023.122120_bb0495) 2021; 300
Veluswamy (10.1016/j.apenergy.2023.122120_bb0030) 2018; 216
Mu (10.1016/j.apenergy.2023.122120_bb0200) 2012; 22
Śliwińska-Bartkowiak (10.1016/j.apenergy.2023.122120_bb0125) 2012; 14
Bhattacharjee (10.1016/j.apenergy.2023.122120_bb0075) 2020; 13
Zhang (10.1016/j.apenergy.2023.122120_bb0355) 2018; 225
Smith (10.1016/j.apenergy.2023.122120_bb0345) 2002; 48
Taylor (10.1016/j.apenergy.2023.122120_bb0045) 2007; 62
Meynen (10.1016/j.apenergy.2023.122120_bb0435) 2009; 125
Andres-Garcia (10.1016/j.apenergy.2023.122120_bb0225) 2019; 360
Carter (10.1016/j.apenergy.2023.122120_bb0285) 2010; 26
Park (10.1016/j.apenergy.2023.122120_bb0295) 2015; 119
Sun (10.1016/j.apenergy.2023.122120_bb0250) 2021; 288
Thommes (10.1016/j.apenergy.2023.122120_bb0485) 2015; 87
Nguyen (10.1016/j.apenergy.2023.122120_bb0380) 2017; 121
Handa (10.1016/j.apenergy.2023.122120_bb0330) 1992; 96
Casco (10.1016/j.apenergy.2023.122120_bb0135) 2015; 6
References_xml – year: 2008
  ident: bb0005
  article-title: Clathrate hydrates of natural gases
– volume: 74
  start-page: 454
  year: 2022
  end-page: 480
  ident: bb0105
  article-title: Methane hydrate formation in porous media: overview and perspectives
  publication-title: J Energy Chem
– volume: 55
  start-page: 7981
  year: 2016
  end-page: 7991
  ident: bb0320
  article-title: Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment
  publication-title: Industr Eng Chem Res
– volume: 20
  start-page: 13528
  year: 2018
  end-page: 13536
  ident: bb0470
  article-title: Reversible room temperature ammonia gas absorption in pore water of microporous silica–alumina for sensing applications
  publication-title: Phys Chem Chem Phys
– volume: 106
  start-page: 53
  year: 2014
  end-page: 59
  ident: bb0300
  article-title: Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution
  publication-title: Chem Eng Sci
– volume: 12
  start-page: 53510
  year: 2020
  end-page: 53518
  ident: bb0205
  article-title: Metal-organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity
  publication-title: ACS Appl Mater Interfaces
– volume: 360
  start-page: 569
  year: 2019
  end-page: 576
  ident: bb0225
  article-title: Methane hydrates: nucleation in microporous materials
  publication-title: Chem Eng J
– volume: 48
  start-page: 393
  year: 2002
  end-page: 400
  ident: bb0345
  article-title: Methane hydrate equilibria in silica gels with broad pore-size distributions
  publication-title: AIChE J
– volume: 402
  year: 2020
  ident: bb0510
  article-title: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels
  publication-title: Chem Eng J
– volume: 6
  start-page: 1
  year: 2015
  end-page: 8
  ident: bb0135
  article-title: Methane hydrate formation in confined nanospace can surpass nature
  publication-title: Nat Commun
– volume: 14
  start-page: 7145
  year: 2012
  end-page: 7153
  ident: bb0125
  article-title: Structural analysis of water and carbon tetrachloride adsorbed in activated carbon fibres
  publication-title: Phys Chem Chem Phys
– volume: 12
  start-page: 1
  year: 2022
  end-page: 13
  ident: bb0220
  article-title: Methane hydrate formation in hollow ZIF-8 nanoparticles for improved methane storage capacity
  publication-title: Catalysts
– volume: 9
  year: 2023
  ident: bb0360
  article-title: Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
  publication-title: Heliyon
– volume: 119
  start-page: 1690
  year: 2015
  end-page: 1699
  ident: bb0295
  article-title: Effect of hydrate shell formation on the stability of dry water
  publication-title: J Phys Chem C
– volume: 40
  start-page: 70
  year: 2002
  end-page: 76
  ident: bb0445
  article-title: Modelling one-and two-dimensional solid-state NMR spectra †
  publication-title: Magn Reson Chem
– volume: 56
  start-page: 12348
  year: 2017
  end-page: 12351
  ident: bb0415
  article-title: Properties of water confined in periodic mesoporous Organosilicas: nanoimprinting the local structure
  publication-title: Angew Chem Int Ed
– volume: 19
  start-page: 1298
  year: 2018
  end-page: 1314
  ident: bb0100
  article-title: Methane hydrate in confined spaces: an alternative storage system
  publication-title: ChemPhysChem
– volume: 123
  start-page: 24071
  year: 2019
  end-page: 24079
  ident: bb0170
  article-title: Experimental evidence of confined methane hydrate in hydrophilic and hydrophobic model carbons
  publication-title: J Phys Chem C
– volume: 85
  start-page: 19
  year: 2013
  end-page: 22
  ident: bb0405
  article-title: A new method to investigate the intrusion of water into porous hydrophobic structures under dynamic conditions
  publication-title: Anal Chem
– volume: 44
  start-page: 1386
  year: 2006
  end-page: 1392
  ident: bb0150
  article-title: Methane sorption on ordered mesoporous carbon in the presence of water
  publication-title: Carbon
– volume: 123
  start-page: 811
  year: 2019
  end-page: 824
  ident: bb0390
  article-title: Factors promoting the formation of clathrate-like ordering of water in biomolecular structure at ambient temperature and pressure
  publication-title: J Phys Chem B
– volume: 20
  start-page: 1085
  year: 2003
  end-page: 1091
  ident: bb0505
  article-title: 13C NMR analysis and gas uptake measurements of pure and mixed gas hydrates: development of natural gas transport and storage method using gas hydrate
  publication-title: Korean J Chem Eng
– start-page: 9
  year: 2021
  ident: bb0520
  article-title: Study on hydrate phase equilibrium diagram of methane containing system based on thermodynamic model
  publication-title: Front Energy Res
– volume: 1218
  start-page: 6464
  year: 2011
  end-page: 6475
  ident: bb0440
  article-title: Synthesis and characterization of surface modified SBA-15 silica materials and their application in chromatography
  publication-title: J Chromatogr A
– volume: 17
  start-page: 854
  year: 2009
  end-page: 859
  ident: bb0230
  article-title: Influence of A-type zeolite on methane hydrate formation
  publication-title: Chin J Chem Eng
– volume: 63
  start-page: 1767
  year: 2018
  end-page: 1772
  ident: bb0275
  article-title: Methane hydrate uptake of MCM-41 mesoporous molecular sieves with Preadsorbed water
  publication-title: J Chem Eng Data
– volume: 114
  start-page: E10266
  year: 2017
  end-page: E10273
  ident: bb0400
  article-title: Intrusion and extrusion of water in hydrophobic nanopores
  publication-title: Proc Natl Acad Sci
– volume: 144
  start-page: 1766
  year: 2022
  end-page: 1777
  ident: bb0410
  article-title: Evidence for entropically controlled interfacial hydration in mesoporous Organosilicas
  publication-title: J Am Chem Soc
– volume: 18
  start-page: 20607
  year: 2016
  end-page: 20614
  ident: bb0165
  article-title: Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons
  publication-title: Phys Chem Chem Phys
– volume: 81
  start-page: 4164
  year: 1998
  end-page: 4167
  ident: bb0385
  article-title: Hydrophobic hydration and the formation of a clathrate hydrate
  publication-title: Phys Rev Lett
– volume: 126
  start-page: 11800
  year: 2022
  end-page: 11809
  ident: bb0365
  article-title: Stability and growth of methane hydrates in confined Media for Carbon Sequestration
  publication-title: J Phys Chem C
– volume: 288
  year: 2021
  ident: bb0250
  article-title: Polymeric superabsorbent hydrogel-based kinetic promotion for gas hydrate formation
  publication-title: Fuel
– volume: 24
  start-page: 741
  year: 2016
  end-page: 749
  ident: bb0420
  article-title: An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions
  publication-title: J Porous Mater
– volume: 49
  start-page: 3731
  year: 2011
  end-page: 3736
  ident: bb0155
  article-title: Methane storage in wet carbon of tailored pore sizes
  publication-title: Carbon
– volume: 58
  start-page: 16687
  year: 2019
  end-page: 16695
  ident: bb0315
  article-title: Impact of modified silica beads on methane hydrate formation in a fixed-bed reactor
  publication-title: Industr Eng Chem Res
– volume: 15
  start-page: 5362
  year: 2022
  end-page: 5378
  ident: bb0060
  article-title: Synthesis of methane hydrate at ambient temperature with ultra-rapid formation and high gas storage capacity
  publication-title: Energ Environ Sci
– volume: 147
  start-page: 547
  year: 2016
  end-page: 559
  ident: bb0325
  article-title: Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir
  publication-title: J Petrol Sci Eng
– year: 2021
  ident: bb0480
  article-title: Interfacial study of clathrates confined in reversed silica pores
  publication-title: J Mater Chem A
– volume: 62
  start-page: 6524
  year: 2007
  end-page: 6533
  ident: bb0045
  article-title: Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface
  publication-title: Chem Eng Sci
– volume: 16
  start-page: 1413
  year: 2002
  end-page: 1416
  ident: bb0245
  article-title: Promotion effect of polymers and surfactants on hydrate formation rate
  publication-title: Energy Fuel
– volume: 119
  start-page: 9167
  year: 2015
  end-page: 9172
  ident: bb0090
  article-title: Hydrogen bonding between water and tetrahydrofuran relevant to clathrate formation
  publication-title: J Phys Chem B
– volume: 13
  start-page: 17163
  year: 2011
  end-page: 17170
  ident: bb0115
  article-title: Pressure enhancement in carbon nanopores: a major confinement effect
  publication-title: Phys Chem Chem Phys
– volume: 140
  start-page: 440
  year: 2015
  end-page: 445
  ident: bb0310
  article-title: Hydrophobized particles can accelerate nucleation of clathrate hydrates
  publication-title: Fuel
– volume: 103
  start-page: 3659
  year: 1999
  end-page: 3662
  ident: bb0265
  article-title: Dissociation condition measurements of methane hydrate in confined small pores of porous glass
  publication-title: J Phys Chem B
– volume: 225
  start-page: 827
  year: 2018
  end-page: 834
  ident: bb0355
  article-title: Experimental and modeling study on controlling factor of methane hydrate formation in silica gels
  publication-title: Appl Energy
– volume: 60
  start-page: 429
  year: 2015
  end-page: 436
  ident: bb0015
  article-title: Permafrost-associated gas hydrate: is it really approximately 1% of the global system?
  publication-title: J Chem Eng Data
– volume: 1
  start-page: 272
  year: 2021
  end-page: 287
  ident: bb0070
  article-title: Surface coatings and treatments for controlled hydrate formation: a Mini review
  publication-title: Physchem
– volume: 85
  start-page: 957
  year: 2006
  end-page: 966
  ident: bb0180
  article-title: Optimal wetting of active carbons for methane hydrate formation
  publication-title: Fuel
– volume: 58
  start-page: 22178
  year: 2019
  end-page: 22192
  ident: bb0340
  article-title: Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications
  publication-title: Industr Eng Chem Res
– volume: 86
  start-page: 845
  year: 2017
  end-page: 869
  ident: bb0050
  article-title: Kinetics of formation and dissociation of gas hydrates
  publication-title: Russian Chem Rev
– volume: 25
  start-page: 1893
  year: 2018
  end-page: 1894
  ident: bb0430
  article-title: Low-cost disposable high-pressure setup for in situ X-ray experiments
  publication-title: J Synchrotron Radiat
– volume: 48
  start-page: 2412
  year: 2002
  end-page: 2416
  ident: bb0175
  article-title: Enhancement of the methane storage on activated carbon by preadsorbed water
  publication-title: AIChE J
– volume: 22
  start-page: 10028
  year: 2016
  end-page: 10035
  ident: bb0140
  article-title: High-performance of gas hydrates in confined nanospace for reversible CH4/CO2 storage
  publication-title: Chem A Eur J
– volume: 162
  start-page: 1633
  year: 2016
  end-page: 1652
  ident: bb0035
  article-title: Review of natural gas hydrates as an energy resource: prospects and challenges
  publication-title: Appl Energy
– volume: 123
  start-page: 299
  year: 2017
  end-page: 301
  ident: bb0160
  article-title: Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon
  publication-title: Carbon
– volume: 96
  start-page: 8599
  year: 1992
  end-page: 8603
  ident: bb0330
  article-title: Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Å-radius silica gel pores
  publication-title: J Phys Chem
– volume: 109
  start-page: 22710
  year: 2005
  end-page: 22714
  ident: bb0350
  article-title: Methane sorption in ordered mesoporous silica SBA-15 in the presence of water
  publication-title: J Phys Chem B
– volume: 121
  start-page: 3830
  year: 2017
  end-page: 3840
  ident: bb0380
  article-title: Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles
  publication-title: J Phys Chem C
– volume: 17
  start-page: 1283
  year: 2003
  end-page: 1291
  ident: bb0185
  article-title: Methane storage within dry and wet active carbons: a comparative study
  publication-title: Energy Fuel
– volume: 216
  start-page: 262
  year: 2018
  end-page: 285
  ident: bb0030
  article-title: A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates
  publication-title: Appl Energy
– volume: 18
  start-page: 9164
  year: 2002
  end-page: 9170
  ident: bb0335
  article-title: Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling
  publication-title: Langmuir
– volume: 130
  start-page: 11608
  year: 2008
  end-page: 11609
  ident: bb0290
  article-title: Methane storage in dry water gas hydrates
  publication-title: J Am Chem Soc
– volume: 300
  year: 2021
  ident: bb0495
  article-title: Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments
  publication-title: Appl Energy
– volume: 55
  start-page: 7973
  year: 2016
  end-page: 7980
  ident: bb0235
  article-title: Investigation of CO2 capture from a CO2 + CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve
  publication-title: Industr Eng Chem Res
– volume: 94
  start-page: 2160
  year: 2016
  end-page: 2167
  ident: bb0040
  article-title: Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: application in energy storage and transportation
  publication-title: Can J Chem Eng
– volume: 129
  start-page: 12406
  year: 2007
  end-page: 12407
  ident: bb0515
  article-title: 2 H solid-state NMR of mobile protons: it is not always the simple way
  publication-title: J Am Chem Soc
– volume: 60
  start-page: 2178
  year: 2015
  end-page: 2185
  ident: bb0215
  article-title: Phase equilibria of CO2 and CH4 hydrates in intergranular Meso/macro pores of MIL-53 metal organic framework
  publication-title: J Chem Eng Data
– volume: 145
  year: 2016
  ident: bb0110
  article-title: Overview: nucleation of clathrate hydrates
  publication-title: J Chem Phys
– volume: 7
  start-page: 3658
  year: 2016
  end-page: 3666
  ident: bb0195
  article-title: Paving the way for methane hydrate formation on metal-organic frameworks (MOFs)
  publication-title: Chem Sci
– volume: 232
  start-page: 1003
  year: 2018
  end-page: 1015
  ident: bb0460
  article-title: A combined solid-state NMR, dielectric spectroscopy and calorimetric study of water in lowly hydrated MCM-41 samples
  publication-title: Zeitschrift Für Physikalische Chemie
– volume: 200
  start-page: 226
  year: 2009
  end-page: 232
  ident: bb0450
  article-title: Efficient heteronuclear dipolar decoupling in solid-state NMR using frequency-swept SPINAL sequences
  publication-title: J Magn Reson
– volume: 32
  start-page: 5321
  year: 2018
  end-page: 5330
  ident: bb0475
  article-title: Effect of pore size distribution on dissociation temperature depression and phase boundary shift of gas hydrate in various fine-grained sediments
  publication-title: Energy Fuel
– volume: 11
  start-page: 939
  year: 2021
  end-page: 953
  ident: bb0425
  article-title: Surface grafting of silica nanoparticles using 3-aminopropyl (triethoxysilane) to improve the CO2 absorption and enhance the gas consumption during the CO2 hydrate formation
  publication-title: Greenhouse Gases Sci Technol
– volume: 269
  year: 2020
  ident: bb0080
  article-title: Rapid methane storage via sII hydrates at ambient temperature
  publication-title: Appl Energy
– volume: 290
  start-page: 161
  year: 2016
  end-page: 173
  ident: bb0095
  article-title: Rapid methane hydrate formation to develop a cost effective large scale energy storage system
  publication-title: Chem Eng J
– volume: 26
  start-page: 3186
  year: 2010
  end-page: 3193
  ident: bb0285
  article-title: Gas storage in “dry water” and “dry gel” clathrates
  publication-title: Langmuir
– start-page: 19
  year: 2005
  ident: bb0010
  article-title: Global distribution of methane hydrate in ocean sediment
  publication-title: Energy Fuel
– volume: 32
  start-page: 1
  year: 2021
  end-page: 16
  ident: bb0055
  article-title: A comprehensive review of the effect of different kinetic promoters on methane hydrate formation
  publication-title: Chin J Chem Eng
– volume: 60
  start-page: 383
  year: 2015
  end-page: 388
  ident: bb0305
  article-title: Use of hydrophobic particles as kinetic promoters for gas hydrate formation
  publication-title: J Chem Eng Data
– volume: 7
  start-page: 33666
  year: 2022
  end-page: 33679
  ident: bb0145
  article-title: A review of the effect of porous media on gas hydrate formation
  publication-title: ACS Omega
– volume: 139
  year: 2013
  ident: bb0120
  article-title: On the molecular origin of high-pressure effects in nanoconfinement: the role of surface chemistry and roughness
  publication-title: J Chem Phys
– volume: 31
  start-page: 157
  year: 2002
  end-page: 167
  ident: bb0025
  article-title: Towards a fundamental understanding of natural gas hydrates
  publication-title: Chem Soc Rev
– volume: 87
  start-page: 1051
  year: 2015
  end-page: 1069
  ident: bb0485
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)
  publication-title: Pure Appl Chem
– volume: 182
  start-page: 907
  year: 2016
  end-page: 919
  ident: bb0065
  article-title: Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: application to natural gas storage
  publication-title: Fuel
– volume: 49
  start-page: 2557
  year: 2020
  end-page: 2569
  ident: bb0395
  article-title: Water as a tuneable solvent: a perspective
  publication-title: Chem Soc Rev
– start-page: 200
  year: 2009
  ident: bb0490
  article-title: Clathrate hydrate physical property database
  publication-title: Nation Energy Technol Lab US Departm Energy
– volume: 125
  start-page: 170
  year: 2009
  end-page: 223
  ident: bb0435
  article-title: Verified syntheses of mesoporous materials
  publication-title: Microp Mesop Mater
– volume: 142
  start-page: 13391
  year: 2020
  end-page: 13397
  ident: bb0210
  article-title: Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks
  publication-title: J Am Chem Soc
– volume: 405
  year: 2021
  ident: bb0270
  article-title: Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas
  publication-title: Chem Eng J
– volume: 268
  year: 2020
  ident: bb0500
  article-title: Experimental research on self-preservation effect of methane hydrate in porous sediments
  publication-title: Appl Energy
– volume: 203
  start-page: 123
  year: 2015
  end-page: 131
  ident: bb0455
  article-title: Selective functionalization of the mesopores of SBA-15
  publication-title: Microp Mesop Mater
– volume: 311
  year: 2022
  ident: bb0085
  article-title: Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter
  publication-title: Appl Energy
– start-page: 8
  year: 2020
  ident: bb0370
  article-title: Adsorption-hydration sequence method for methane storage in porous material slurry
  publication-title: Front Chem
– volume: 34
  start-page: 6751
  year: 2020
  end-page: 6760
  ident: bb0375
  article-title: Critical review on gas hydrate formation at solid surfaces and in confined spaces - why and how does interfacial regime matter?
  publication-title: Energy Fuel
– volume: 144
  start-page: 18054
  year: 2022
  end-page: 18061
  ident: bb0465
  article-title: Hydrogen-bonded water-aminium assemblies for synthesis of zeotypes with ordered heteroatoms
  publication-title: J Am Chem Soc
– volume: 23
  start-page: 5496
  year: 2009
  end-page: 5507
  ident: bb0260
  article-title: Gas hydrate formation in a variable volume bed of silica sand particles
  publication-title: Energy Fuel
– volume: 22
  start-page: 12246
  year: 2012
  end-page: 12252
  ident: bb0200
  article-title: A novel method to improve the gas storage capacity of ZIF-8
  publication-title: J Mater Chem
– volume: 220
  start-page: 185
  year: 2018
  end-page: 191
  ident: bb0240
  article-title: Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites
  publication-title: Fuel
– volume: 61
  start-page: 1573
  year: 2014
  end-page: 1576
  ident: bb0280
  article-title: Comparison of methane hydrate formation in stirred reactor and porous media in the presence of SDS
  publication-title: Energy Procedia
– volume: 336
  year: 2023
  ident: bb0255
  article-title: Recyclable and efficient hydrate-based CH4 storage strengthened by fabrics
  publication-title: Appl Energy
– volume: 71
  start-page: 41
  year: 1988
  end-page: 51
  ident: bb0020
  article-title: Methane hydrate - a major reservoir of carbon in the shallow geosphere?
  publication-title: Chem Geol
– volume: 13
  start-page: 4946
  year: 2020
  end-page: 4961
  ident: bb0075
  article-title: Ultra-rapid uptake and the highly stable storage of methane as combustible ice
  publication-title: Energ Environ Sci
– volume: 40
  start-page: 385
  year: 2012
  end-page: 389
  ident: bb0190
  article-title: Improving methane storage on wet activated carbons at various amounts of water
  publication-title: Ranliao Huaxue Xuebao/J Fuel Chem Technol
– volume: 305
  year: 2022
  ident: bb0130
  article-title: Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes
  publication-title: Appl Energy
– volume: 14
  start-page: 7145
  year: 2012
  ident: 10.1016/j.apenergy.2023.122120_bb0125
  article-title: Structural analysis of water and carbon tetrachloride adsorbed in activated carbon fibres
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c2cp22111j
– volume: 31
  start-page: 157
  year: 2002
  ident: 10.1016/j.apenergy.2023.122120_bb0025
  article-title: Towards a fundamental understanding of natural gas hydrates
  publication-title: Chem Soc Rev
  doi: 10.1039/b008672j
– volume: 405
  year: 2021
  ident: 10.1016/j.apenergy.2023.122120_bb0270
  article-title: Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.126955
– volume: 144
  start-page: 1766
  year: 2022
  ident: 10.1016/j.apenergy.2023.122120_bb0410
  article-title: Evidence for entropically controlled interfacial hydration in mesoporous Organosilicas
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c11342
– volume: 86
  start-page: 845
  year: 2017
  ident: 10.1016/j.apenergy.2023.122120_bb0050
  article-title: Kinetics of formation and dissociation of gas hydrates
  publication-title: Russian Chem Rev
  doi: 10.1070/RCR4720
– volume: 119
  start-page: 1690
  year: 2015
  ident: 10.1016/j.apenergy.2023.122120_bb0295
  article-title: Effect of hydrate shell formation on the stability of dry water
  publication-title: J Phys Chem C
  doi: 10.1021/jp510603q
– volume: 125
  start-page: 170
  year: 2009
  ident: 10.1016/j.apenergy.2023.122120_bb0435
  article-title: Verified syntheses of mesoporous materials
  publication-title: Microp Mesop Mater
  doi: 10.1016/j.micromeso.2009.03.046
– year: 2008
  ident: 10.1016/j.apenergy.2023.122120_bb0005
– volume: 290
  start-page: 161
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0095
  article-title: Rapid methane hydrate formation to develop a cost effective large scale energy storage system
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.01.026
– volume: 402
  year: 2020
  ident: 10.1016/j.apenergy.2023.122120_bb0510
  article-title: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.126276
– volume: 126
  start-page: 11800
  year: 2022
  ident: 10.1016/j.apenergy.2023.122120_bb0365
  article-title: Stability and growth of methane hydrates in confined Media for Carbon Sequestration
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.2c02936
– volume: 140
  start-page: 440
  year: 2015
  ident: 10.1016/j.apenergy.2023.122120_bb0310
  article-title: Hydrophobized particles can accelerate nucleation of clathrate hydrates
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.10.005
– volume: 34
  start-page: 6751
  year: 2020
  ident: 10.1016/j.apenergy.2023.122120_bb0375
  article-title: Critical review on gas hydrate formation at solid surfaces and in confined spaces - why and how does interfacial regime matter?
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.0c01291
– volume: 203
  start-page: 123
  year: 2015
  ident: 10.1016/j.apenergy.2023.122120_bb0455
  article-title: Selective functionalization of the mesopores of SBA-15
  publication-title: Microp Mesop Mater
  doi: 10.1016/j.micromeso.2014.10.032
– volume: 40
  start-page: 385
  year: 2012
  ident: 10.1016/j.apenergy.2023.122120_bb0190
  article-title: Improving methane storage on wet activated carbons at various amounts of water
  publication-title: Ranliao Huaxue Xuebao/J Fuel Chem Technol
  doi: 10.1016/S1872-5813(12)60017-6
– volume: 49
  start-page: 3731
  year: 2011
  ident: 10.1016/j.apenergy.2023.122120_bb0155
  article-title: Methane storage in wet carbon of tailored pore sizes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.05.005
– volume: 7
  start-page: 3658
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0195
  article-title: Paving the way for methane hydrate formation on metal-organic frameworks (MOFs)
  publication-title: Chem Sci
  doi: 10.1039/C6SC00272B
– volume: 147
  start-page: 547
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0325
  article-title: Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2016.09.017
– volume: 71
  start-page: 41
  year: 1988
  ident: 10.1016/j.apenergy.2023.122120_bb0020
  article-title: Methane hydrate - a major reservoir of carbon in the shallow geosphere?
  publication-title: Chem Geol
  doi: 10.1016/0009-2541(88)90104-0
– volume: 123
  start-page: 24071
  year: 2019
  ident: 10.1016/j.apenergy.2023.122120_bb0170
  article-title: Experimental evidence of confined methane hydrate in hydrophilic and hydrophobic model carbons
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.9b06366
– volume: 58
  start-page: 22178
  year: 2019
  ident: 10.1016/j.apenergy.2023.122120_bb0340
  article-title: Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications
  publication-title: Industr Eng Chem Res
  doi: 10.1021/acs.iecr.9b04498
– volume: 24
  start-page: 741
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0420
  article-title: An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions
  publication-title: J Porous Mater
  doi: 10.1007/s10934-016-0311-z
– volume: 121
  start-page: 3830
  year: 2017
  ident: 10.1016/j.apenergy.2023.122120_bb0380
  article-title: Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b07136
– volume: 360
  start-page: 569
  year: 2019
  ident: 10.1016/j.apenergy.2023.122120_bb0225
  article-title: Methane hydrates: nucleation in microporous materials
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.11.216
– volume: 12
  start-page: 53510
  year: 2020
  ident: 10.1016/j.apenergy.2023.122120_bb0205
  article-title: Metal-organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c15675
– volume: 85
  start-page: 19
  year: 2013
  ident: 10.1016/j.apenergy.2023.122120_bb0405
  article-title: A new method to investigate the intrusion of water into porous hydrophobic structures under dynamic conditions
  publication-title: Anal Chem
  doi: 10.1021/ac303253b
– volume: 40
  start-page: 70
  year: 2002
  ident: 10.1016/j.apenergy.2023.122120_bb0445
  article-title: Modelling one-and two-dimensional solid-state NMR spectra †
  publication-title: Magn Reson Chem
  doi: 10.1002/mrc.984
– volume: 63
  start-page: 1767
  year: 2018
  ident: 10.1016/j.apenergy.2023.122120_bb0275
  article-title: Methane hydrate uptake of MCM-41 mesoporous molecular sieves with Preadsorbed water
  publication-title: J Chem Eng Data
  doi: 10.1021/acs.jced.8b00060
– volume: 300
  year: 2021
  ident: 10.1016/j.apenergy.2023.122120_bb0495
  article-title: Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117398
– volume: 144
  start-page: 18054
  year: 2022
  ident: 10.1016/j.apenergy.2023.122120_bb0465
  article-title: Hydrogen-bonded water-aminium assemblies for synthesis of zeotypes with ordered heteroatoms
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.2c07661
– volume: 119
  start-page: 9167
  year: 2015
  ident: 10.1016/j.apenergy.2023.122120_bb0090
  article-title: Hydrogen bonding between water and tetrahydrofuran relevant to clathrate formation
  publication-title: J Phys Chem B
  doi: 10.1021/jp509343x
– volume: 269
  year: 2020
  ident: 10.1016/j.apenergy.2023.122120_bb0080
  article-title: Rapid methane storage via sII hydrates at ambient temperature
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115142
– volume: 81
  start-page: 4164
  year: 1998
  ident: 10.1016/j.apenergy.2023.122120_bb0385
  article-title: Hydrophobic hydration and the formation of a clathrate hydrate
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.81.4164
– volume: 25
  start-page: 1893
  year: 2018
  ident: 10.1016/j.apenergy.2023.122120_bb0430
  article-title: Low-cost disposable high-pressure setup for in situ X-ray experiments
  publication-title: J Synchrotron Radiat
  doi: 10.1107/S1600577518011165
– start-page: 200
  year: 2009
  ident: 10.1016/j.apenergy.2023.122120_bb0490
  article-title: Clathrate hydrate physical property database
  publication-title: Nation Energy Technol Lab US Departm Energy
– volume: 162
  start-page: 1633
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0035
  article-title: Review of natural gas hydrates as an energy resource: prospects and challenges
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.061
– volume: 22
  start-page: 10028
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0140
  article-title: High-performance of gas hydrates in confined nanospace for reversible CH4/CO2 storage
  publication-title: Chem A Eur J
  doi: 10.1002/chem.201600958
– volume: 60
  start-page: 2178
  year: 2015
  ident: 10.1016/j.apenergy.2023.122120_bb0215
  article-title: Phase equilibria of CO2 and CH4 hydrates in intergranular Meso/macro pores of MIL-53 metal organic framework
  publication-title: J Chem Eng Data
  doi: 10.1021/acs.jced.5b00322
– volume: 232
  start-page: 1003
  year: 2018
  ident: 10.1016/j.apenergy.2023.122120_bb0460
  article-title: A combined solid-state NMR, dielectric spectroscopy and calorimetric study of water in lowly hydrated MCM-41 samples
  publication-title: Zeitschrift Für Physikalische Chemie
  doi: 10.1515/zpch-2017-1030
– volume: 22
  start-page: 12246
  year: 2012
  ident: 10.1016/j.apenergy.2023.122120_bb0200
  article-title: A novel method to improve the gas storage capacity of ZIF-8
  publication-title: J Mater Chem
  doi: 10.1039/c2jm31541f
– volume: 1
  start-page: 272
  year: 2021
  ident: 10.1016/j.apenergy.2023.122120_bb0070
  article-title: Surface coatings and treatments for controlled hydrate formation: a Mini review
  publication-title: Physchem
  doi: 10.3390/physchem1030021
– volume: 32
  start-page: 1
  year: 2021
  ident: 10.1016/j.apenergy.2023.122120_bb0055
  article-title: A comprehensive review of the effect of different kinetic promoters on methane hydrate formation
  publication-title: Chin J Chem Eng
  doi: 10.1016/j.cjche.2020.09.027
– volume: 142
  start-page: 13391
  year: 2020
  ident: 10.1016/j.apenergy.2023.122120_bb0210
  article-title: Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c01459
– volume: 19
  start-page: 1298
  year: 2018
  ident: 10.1016/j.apenergy.2023.122120_bb0100
  article-title: Methane hydrate in confined spaces: an alternative storage system
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201701250
– volume: 130
  start-page: 11608
  year: 2008
  ident: 10.1016/j.apenergy.2023.122120_bb0290
  article-title: Methane storage in dry water gas hydrates
  publication-title: J Am Chem Soc
  doi: 10.1021/ja8048173
– volume: 44
  start-page: 1386
  year: 2006
  ident: 10.1016/j.apenergy.2023.122120_bb0150
  article-title: Methane sorption on ordered mesoporous carbon in the presence of water
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.11.018
– volume: 20
  start-page: 13528
  year: 2018
  ident: 10.1016/j.apenergy.2023.122120_bb0470
  article-title: Reversible room temperature ammonia gas absorption in pore water of microporous silica–alumina for sensing applications
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C8CP01586D
– volume: 18
  start-page: 9164
  year: 2002
  ident: 10.1016/j.apenergy.2023.122120_bb0335
  article-title: Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling
  publication-title: Langmuir
  doi: 10.1021/la0257844
– volume: 18
  start-page: 20607
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0165
  article-title: Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C6CP03993F
– volume: 16
  start-page: 1413
  year: 2002
  ident: 10.1016/j.apenergy.2023.122120_bb0245
  article-title: Promotion effect of polymers and surfactants on hydrate formation rate
  publication-title: Energy Fuel
  doi: 10.1021/ef020023u
– volume: 62
  start-page: 6524
  year: 2007
  ident: 10.1016/j.apenergy.2023.122120_bb0045
  article-title: Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2007.07.038
– start-page: 8
  year: 2020
  ident: 10.1016/j.apenergy.2023.122120_bb0370
  article-title: Adsorption-hydration sequence method for methane storage in porous material slurry
  publication-title: Front Chem
– year: 2021
  ident: 10.1016/j.apenergy.2023.122120_bb0480
  article-title: Interfacial study of clathrates confined in reversed silica pores
  publication-title: J Mater Chem A
  doi: 10.1039/D1TA03105H
– volume: 48
  start-page: 393
  year: 2002
  ident: 10.1016/j.apenergy.2023.122120_bb0345
  article-title: Methane hydrate equilibria in silica gels with broad pore-size distributions
  publication-title: AIChE J
  doi: 10.1002/aic.690480222
– volume: 305
  year: 2022
  ident: 10.1016/j.apenergy.2023.122120_bb0130
  article-title: Experimental study of methane hydrate formation and decomposition in the porous medium with different thermal conductivities and grain sizes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117852
– volume: 32
  start-page: 5321
  year: 2018
  ident: 10.1016/j.apenergy.2023.122120_bb0475
  article-title: Effect of pore size distribution on dissociation temperature depression and phase boundary shift of gas hydrate in various fine-grained sediments
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.8b00074
– volume: 26
  start-page: 3186
  year: 2010
  ident: 10.1016/j.apenergy.2023.122120_bb0285
  article-title: Gas storage in “dry water” and “dry gel” clathrates
  publication-title: Langmuir
  doi: 10.1021/la903120p
– volume: 220
  start-page: 185
  year: 2018
  ident: 10.1016/j.apenergy.2023.122120_bb0240
  article-title: Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.01.067
– volume: 200
  start-page: 226
  year: 2009
  ident: 10.1016/j.apenergy.2023.122120_bb0450
  article-title: Efficient heteronuclear dipolar decoupling in solid-state NMR using frequency-swept SPINAL sequences
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2009.07.006
– volume: 60
  start-page: 429
  year: 2015
  ident: 10.1016/j.apenergy.2023.122120_bb0015
  article-title: Permafrost-associated gas hydrate: is it really approximately 1% of the global system?
  publication-title: J Chem Eng Data
  doi: 10.1021/je500770m
– volume: 11
  start-page: 939
  year: 2021
  ident: 10.1016/j.apenergy.2023.122120_bb0425
  article-title: Surface grafting of silica nanoparticles using 3-aminopropyl (triethoxysilane) to improve the CO2 absorption and enhance the gas consumption during the CO2 hydrate formation
  publication-title: Greenhouse Gases Sci Technol
  doi: 10.1002/ghg.2105
– volume: 336
  year: 2023
  ident: 10.1016/j.apenergy.2023.122120_bb0255
  article-title: Recyclable and efficient hydrate-based CH4 storage strengthened by fabrics
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120820
– volume: 17
  start-page: 1283
  year: 2003
  ident: 10.1016/j.apenergy.2023.122120_bb0185
  article-title: Methane storage within dry and wet active carbons: a comparative study
  publication-title: Energy Fuel
  doi: 10.1021/ef030067i
– volume: 13
  start-page: 4946
  year: 2020
  ident: 10.1016/j.apenergy.2023.122120_bb0075
  article-title: Ultra-rapid uptake and the highly stable storage of methane as combustible ice
  publication-title: Energ Environ Sci
  doi: 10.1039/D0EE02315A
– start-page: 9
  year: 2021
  ident: 10.1016/j.apenergy.2023.122120_bb0520
  article-title: Study on hydrate phase equilibrium diagram of methane containing system based on thermodynamic model
  publication-title: Front Energy Res
– volume: 87
  start-page: 1051
  year: 2015
  ident: 10.1016/j.apenergy.2023.122120_bb0485
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)
  publication-title: Pure Appl Chem
  doi: 10.1515/pac-2014-1117
– volume: 15
  start-page: 5362
  year: 2022
  ident: 10.1016/j.apenergy.2023.122120_bb0060
  article-title: Synthesis of methane hydrate at ambient temperature with ultra-rapid formation and high gas storage capacity
  publication-title: Energ Environ Sci
  doi: 10.1039/D2EE01968J
– volume: 55
  start-page: 7973
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0235
  article-title: Investigation of CO2 capture from a CO2 + CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve
  publication-title: Industr Eng Chem Res
  doi: 10.1021/acs.iecr.5b03989
– volume: 20
  start-page: 1085
  year: 2003
  ident: 10.1016/j.apenergy.2023.122120_bb0505
  article-title: 13C NMR analysis and gas uptake measurements of pure and mixed gas hydrates: development of natural gas transport and storage method using gas hydrate
  publication-title: Korean J Chem Eng
  doi: 10.1007/BF02706941
– volume: 225
  start-page: 827
  year: 2018
  ident: 10.1016/j.apenergy.2023.122120_bb0355
  article-title: Experimental and modeling study on controlling factor of methane hydrate formation in silica gels
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.059
– volume: 114
  start-page: E10266
  year: 2017
  ident: 10.1016/j.apenergy.2023.122120_bb0400
  article-title: Intrusion and extrusion of water in hydrophobic nanopores
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1714796114
– volume: 145
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0110
  article-title: Overview: nucleation of clathrate hydrates
  publication-title: J Chem Phys
  doi: 10.1063/1.4968590
– volume: 129
  start-page: 12406
  year: 2007
  ident: 10.1016/j.apenergy.2023.122120_bb0515
  article-title: 2 H solid-state NMR of mobile protons: it is not always the simple way
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0754857
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.apenergy.2023.122120_bb0220
  article-title: Methane hydrate formation in hollow ZIF-8 nanoparticles for improved methane storage capacity
  publication-title: Catalysts
– start-page: 19
  year: 2005
  ident: 10.1016/j.apenergy.2023.122120_bb0010
  article-title: Global distribution of methane hydrate in ocean sediment
  publication-title: Energy Fuel
– volume: 60
  start-page: 383
  year: 2015
  ident: 10.1016/j.apenergy.2023.122120_bb0305
  article-title: Use of hydrophobic particles as kinetic promoters for gas hydrate formation
  publication-title: J Chem Eng Data
  doi: 10.1021/je5006455
– volume: 23
  start-page: 5496
  year: 2009
  ident: 10.1016/j.apenergy.2023.122120_bb0260
  article-title: Gas hydrate formation in a variable volume bed of silica sand particles
  publication-title: Energy Fuel
  doi: 10.1021/ef900542m
– volume: 61
  start-page: 1573
  year: 2014
  ident: 10.1016/j.apenergy.2023.122120_bb0280
  article-title: Comparison of methane hydrate formation in stirred reactor and porous media in the presence of SDS
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.12.174
– volume: 288
  year: 2021
  ident: 10.1016/j.apenergy.2023.122120_bb0250
  article-title: Polymeric superabsorbent hydrogel-based kinetic promotion for gas hydrate formation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119676
– volume: 94
  start-page: 2160
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0040
  article-title: Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: application in energy storage and transportation
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.22583
– volume: 139
  year: 2013
  ident: 10.1016/j.apenergy.2023.122120_bb0120
  article-title: On the molecular origin of high-pressure effects in nanoconfinement: the role of surface chemistry and roughness
  publication-title: J Chem Phys
  doi: 10.1063/1.4824125
– volume: 182
  start-page: 907
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0065
  article-title: Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: application to natural gas storage
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.05.068
– volume: 74
  start-page: 454
  year: 2022
  ident: 10.1016/j.apenergy.2023.122120_bb0105
  article-title: Methane hydrate formation in porous media: overview and perspectives
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2022.07.019
– volume: 103
  start-page: 3659
  year: 1999
  ident: 10.1016/j.apenergy.2023.122120_bb0265
  article-title: Dissociation condition measurements of methane hydrate in confined small pores of porous glass
  publication-title: J Phys Chem B
  doi: 10.1021/jp984559l
– volume: 268
  year: 2020
  ident: 10.1016/j.apenergy.2023.122120_bb0500
  article-title: Experimental research on self-preservation effect of methane hydrate in porous sediments
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115008
– volume: 48
  start-page: 2412
  year: 2002
  ident: 10.1016/j.apenergy.2023.122120_bb0175
  article-title: Enhancement of the methane storage on activated carbon by preadsorbed water
  publication-title: AIChE J
  doi: 10.1002/aic.690481030
– volume: 85
  start-page: 957
  year: 2006
  ident: 10.1016/j.apenergy.2023.122120_bb0180
  article-title: Optimal wetting of active carbons for methane hydrate formation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2005.10.019
– volume: 17
  start-page: 854
  year: 2009
  ident: 10.1016/j.apenergy.2023.122120_bb0230
  article-title: Influence of A-type zeolite on methane hydrate formation
  publication-title: Chin J Chem Eng
  doi: 10.1016/S1004-9541(08)60287-6
– volume: 13
  start-page: 17163
  year: 2011
  ident: 10.1016/j.apenergy.2023.122120_bb0115
  article-title: Pressure enhancement in carbon nanopores: a major confinement effect
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C1CP21407A
– volume: 7
  start-page: 33666
  year: 2022
  ident: 10.1016/j.apenergy.2023.122120_bb0145
  article-title: A review of the effect of porous media on gas hydrate formation
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c03048
– volume: 55
  start-page: 7981
  year: 2016
  ident: 10.1016/j.apenergy.2023.122120_bb0320
  article-title: Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment
  publication-title: Industr Eng Chem Res
  doi: 10.1021/acs.iecr.5b03908
– volume: 58
  start-page: 16687
  year: 2019
  ident: 10.1016/j.apenergy.2023.122120_bb0315
  article-title: Impact of modified silica beads on methane hydrate formation in a fixed-bed reactor
  publication-title: Industr Eng Chem Res
  doi: 10.1021/acs.iecr.9b01952
– volume: 123
  start-page: 299
  year: 2017
  ident: 10.1016/j.apenergy.2023.122120_bb0160
  article-title: Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.07.061
– volume: 109
  start-page: 22710
  year: 2005
  ident: 10.1016/j.apenergy.2023.122120_bb0350
  article-title: Methane sorption in ordered mesoporous silica SBA-15 in the presence of water
  publication-title: J Phys Chem B
  doi: 10.1021/jp0546002
– volume: 9
  year: 2023
  ident: 10.1016/j.apenergy.2023.122120_bb0360
  article-title: Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e17662
– volume: 216
  start-page: 262
  year: 2018
  ident: 10.1016/j.apenergy.2023.122120_bb0030
  article-title: A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.059
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.apenergy.2023.122120_bb0135
  article-title: Methane hydrate formation in confined nanospace can surpass nature
  publication-title: Nat Commun
  doi: 10.1038/ncomms7432
– volume: 106
  start-page: 53
  year: 2014
  ident: 10.1016/j.apenergy.2023.122120_bb0300
  article-title: Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2013.11.032
– volume: 311
  year: 2022
  ident: 10.1016/j.apenergy.2023.122120_bb0085
  article-title: Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118678
– volume: 1218
  start-page: 6464
  year: 2011
  ident: 10.1016/j.apenergy.2023.122120_bb0440
  article-title: Synthesis and characterization of surface modified SBA-15 silica materials and their application in chromatography
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2011.07.035
– volume: 96
  start-page: 8599
  year: 1992
  ident: 10.1016/j.apenergy.2023.122120_bb0330
  article-title: Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Å-radius silica gel pores
  publication-title: J Phys Chem
  doi: 10.1021/j100200a071
– volume: 49
  start-page: 2557
  year: 2020
  ident: 10.1016/j.apenergy.2023.122120_bb0395
  article-title: Water as a tuneable solvent: a perspective
  publication-title: Chem Soc Rev
  doi: 10.1039/C9CS00545E
– volume: 56
  start-page: 12348
  year: 2017
  ident: 10.1016/j.apenergy.2023.122120_bb0415
  article-title: Properties of water confined in periodic mesoporous Organosilicas: nanoimprinting the local structure
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201705707
– volume: 123
  start-page: 811
  year: 2019
  ident: 10.1016/j.apenergy.2023.122120_bb0390
  article-title: Factors promoting the formation of clathrate-like ordering of water in biomolecular structure at ambient temperature and pressure
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.8b11172
SSID ssj0002120
Score 2.5031497
Snippet Confinement of water and methane in mesopores of hydrophobized SBA-15 is demonstrated to promote methane hydrate formation. In comparison to as-synthesized...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122120
SubjectTerms Clathrate hydrate
crystallization
desorption
energy
Ice
Kinetics
methane
Methane hydrate
NMR
nuclear magnetic resonance spectroscopy
porosity
SBA-15
species
spectral analysis
surface area
X-ray diffraction
Title Structure I methane hydrate confined in C8-grafted SBA-15: A highly efficient storage system enabling ultrafast methane loading and unloading
URI https://dx.doi.org/10.1016/j.apenergy.2023.122120
https://www.proquest.com/docview/3040444776
Volume 353
WOSCitedRecordID wos001092824700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgM8IBhMjC8ZibcqJU3sxOatTEUrQhPSxrS3yHGSraOk1dqO7Ufwm_hr3Gs7TjRAAyFerDaq48j31Pfk-txrQl7JCnhyONRBLmQZsFypIC94grI_oXUocmbyK44-pPv74vhYfuz1vje5MBeztK7F5aVc_FdTwzUwNqbO_oW5_U3hAnwGo0MLZof2jwx_YCrC4r7AxJwPrYBGnl4VWBICNeYV0MrC5PqJ4OQcjwgHxvl2FAy5TVLH-sWzK9R5TE2uZB_lkyjssTWf-yUmW2F8YT1bQXe1XPlRZnMjyDf7Eevafeuy34bylibh0EcCSv35q92wN9HV8RdYqTBxu5U37s2xSjhK0U5tdFyhFNXjencKHhlluwYwqlgHNtTf0S7UMAFWXzDoH03redENd0TsWrjD5-G0oieT-xUmAb4LWq9ml3KRRriUi-5aH9vKxD_5DRvCOBuohZ2BAZ4qPxhG4NjD1lN6_eIBDmjfPTEiy8QtshmlXMKyujmajI_fezIQucqgzQN2ktR_Pdrv-NE1pmDoz-F9cs-9t9CRxdsD0ivrLXK3U81yi2yP26RJ-KnzGsuH5JuHJJ1QBxbqIEkbSNJpTVtIUgvJN3RELSCpByR1gKQWkLQBJPWA9GM4CFKwPvWAfEQ-vRsf7u4F7hiQQMcyXgWM8yqJqyoPudKay7wocxYCby6gqRhnqtQ8VdEwrFSu0yiRRc7ToVSqquK4rOJtslHP6_IxoZyLUlYxK1jBoRFSxLnKw0hzrROZ8B3Cm8nPtKuRj0e1zLJGDHmWNUbL0GiZNdoOee37LWyVmBt7yMa2meO6lsNmAMkb-75swJCBM8AdPpjT-XqZxeCSGWNpmjz5h_s_JXfaf94zsgEYKZ-T2_piNV2ev3AI_wHn2OIj
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+I+methane+hydrate+confined+in+C8-grafted+SBA-15%3A+A+highly+efficient+storage+system+enabling+ultrafast+methane+loading+and+unloading&rft.jtitle=Applied+energy&rft.au=Beckw%C3%A9e%2C+Emile+Jules&rft.au=Houlleberghs%2C+Maarten&rft.au=Ciocarlan%2C+Radu-George&rft.au=Chandran%2C+C.+Vinod&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=353&rft_id=info:doi/10.1016%2Fj.apenergy.2023.122120&rft.externalDocID=S0306261923014848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon