Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach
In a modern power system with an increasing proportion of renewable energy, wind power prediction is crucial to the arrangement of power grid dispatching plans due to the volatility of wind power. However, traditional centralized forecasting methods raise concerns regarding data privacy-preserving a...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 329; S. 120291 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.01.2023
|
| Schlagworte: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In a modern power system with an increasing proportion of renewable energy, wind power prediction is crucial to the arrangement of power grid dispatching plans due to the volatility of wind power. However, traditional centralized forecasting methods raise concerns regarding data privacy-preserving and data islands problem. To handle the data privacy and openness, we propose a forecasting scheme that combines federated learning and deep reinforcement learning (DRL) for ultra-short-term wind power forecasting, called federated deep reinforcement learning (FedDRL). Firstly, this paper uses the deep deterministic policy gradient (DDPG) algorithm as the basic forecasting model to improve prediction accuracy. Secondly, we integrate the DDPG forecasting model into the framework of federated learning. The designed FedDRL can obtain an accurate prediction model in a decentralized way by sharing model parameters instead of sharing private data which can avoid sensitive privacy issues. The simulation results show that the proposed FedDRL outperforms the traditional prediction methods in terms of forecasting accuracy. More importantly, while ensuring the forecasting performance, FedDRL can effectively protect the data privacy and relieve the communication pressure compared with the traditional centralized forecasting method. In addition, a simulation with different federated learning parameters is conducted to confirm the robustness of the proposed scheme.
•A DDPG-based prediction model is built for ultra-short-term wind power forecasting.•Propose a FedDRL forecasting scheme to handle the data privacy and openness.•Combine automatic machine learning with DRL for hyperparameters selection.•Simulation tests were carried out on real-world historical data to examine the proposal. |
|---|---|
| AbstractList | In a modern power system with an increasing proportion of renewable energy, wind power prediction is crucial to the arrangement of power grid dispatching plans due to the volatility of wind power. However, traditional centralized forecasting methods raise concerns regarding data privacy-preserving and data islands problem. To handle the data privacy and openness, we propose a forecasting scheme that combines federated learning and deep reinforcement learning (DRL) for ultra-short-term wind power forecasting, called federated deep reinforcement learning (FedDRL). Firstly, this paper uses the deep deterministic policy gradient (DDPG) algorithm as the basic forecasting model to improve prediction accuracy. Secondly, we integrate the DDPG forecasting model into the framework of federated learning. The designed FedDRL can obtain an accurate prediction model in a decentralized way by sharing model parameters instead of sharing private data which can avoid sensitive privacy issues. The simulation results show that the proposed FedDRL outperforms the traditional prediction methods in terms of forecasting accuracy. More importantly, while ensuring the forecasting performance, FedDRL can effectively protect the data privacy and relieve the communication pressure compared with the traditional centralized forecasting method. In addition, a simulation with different federated learning parameters is conducted to confirm the robustness of the proposed scheme. In a modern power system with an increasing proportion of renewable energy, wind power prediction is crucial to the arrangement of power grid dispatching plans due to the volatility of wind power. However, traditional centralized forecasting methods raise concerns regarding data privacy-preserving and data islands problem. To handle the data privacy and openness, we propose a forecasting scheme that combines federated learning and deep reinforcement learning (DRL) for ultra-short-term wind power forecasting, called federated deep reinforcement learning (FedDRL). Firstly, this paper uses the deep deterministic policy gradient (DDPG) algorithm as the basic forecasting model to improve prediction accuracy. Secondly, we integrate the DDPG forecasting model into the framework of federated learning. The designed FedDRL can obtain an accurate prediction model in a decentralized way by sharing model parameters instead of sharing private data which can avoid sensitive privacy issues. The simulation results show that the proposed FedDRL outperforms the traditional prediction methods in terms of forecasting accuracy. More importantly, while ensuring the forecasting performance, FedDRL can effectively protect the data privacy and relieve the communication pressure compared with the traditional centralized forecasting method. In addition, a simulation with different federated learning parameters is conducted to confirm the robustness of the proposed scheme. •A DDPG-based prediction model is built for ultra-short-term wind power forecasting.•Propose a FedDRL forecasting scheme to handle the data privacy and openness.•Combine automatic machine learning with DRL for hyperparameters selection.•Simulation tests were carried out on real-world historical data to examine the proposal. |
| ArticleNumber | 120291 |
| Author | Li, Yang Wang, Ruinong Li, Yuanzheng Zhang, Meng Long, Chao |
| Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang email: liyang@neepu.edu.cn organization: Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China – sequence: 2 givenname: Ruinong surname: Wang fullname: Wang, Ruinong email: 624895223@qq.com organization: State Grid Jilin Power Supply Company, Jilin 132001, China – sequence: 3 givenname: Yuanzheng surname: Li fullname: Li, Yuanzheng email: Yuanzheng_Li@hust.edu.cn organization: School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 4 givenname: Meng surname: Zhang fullname: Zhang, Meng email: 964285846@qq.com organization: School of National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering, Wuhan 430033, China – sequence: 5 givenname: Chao surname: Long fullname: Long, Chao email: Chao.Long@cranfield.ac.uk organization: School of Water, Energy and Environment, Cranfield University, UK |
| BookMark | eNqFkcFuGyEURVGVSHWS_kLFsptxeTDGnqqLRFHaRLKUTaou0Rt4k2KNYQIklf8-jNxsusmGh9A9F3E4YychBmLsM4glCNBfd0ucKFB6PCylkHIJde3gA1vAZi2bDmBzwhZCCd1IDd1HdpbzTggha27Bxt8-OD7Fv5T4EBNZzMWHR25jyN5RmvcOC_Ip-Re0hzpjIVt8DN_4FR-oZrCQ445o4ol8qC2W9hQKHwlTmAtwqhTaPxfsdMAx06d_85z9-nHzcH3bbO9_3l1fbRurOlWaFlZdr4Z-sFI7SwpIr2UrV73VUq2lQ2xbaKVe9QPUc-U63XcoWxjkuteuV-fsy7G3Xvv0TLmYvc-WxhEDxedsFKzURoHSqka_H6M2xZwTDcb6gvPzSkI_GhBmlmx25k2ymSWbo-SK6__w6mmP6fA-eHkEqXp48ZRMtp6CJefrJxTjon-v4hVPfZ76 |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2024_141415 crossref_primary_10_1109_TNSE_2025_3547227 crossref_primary_10_1007_s00202_024_02759_0 crossref_primary_10_1007_s13042_024_02116_4 crossref_primary_10_1016_j_energy_2023_128406 crossref_primary_10_1002_acs_4053 crossref_primary_10_1016_j_apenergy_2025_126468 crossref_primary_10_1016_j_egyr_2024_07_030 crossref_primary_10_1002_acs_4050 crossref_primary_10_1007_s11227_025_07376_7 crossref_primary_10_1109_ACCESS_2023_3344029 crossref_primary_10_1016_j_epsr_2023_109461 crossref_primary_10_1007_s00521_025_11230_5 crossref_primary_10_1016_j_ref_2023_100520 crossref_primary_10_1109_JPROC_2023_3303358 crossref_primary_10_1016_j_energy_2024_132188 crossref_primary_10_3390_en17051053 crossref_primary_10_1016_j_egyr_2024_05_021 crossref_primary_10_1038_s41598_024_68339_1 crossref_primary_10_1016_j_egyr_2022_12_050 crossref_primary_10_1007_s40436_025_00552_1 crossref_primary_10_1016_j_egyr_2024_01_002 crossref_primary_10_1080_15435075_2024_2399189 crossref_primary_10_1007_s11227_024_06845_9 crossref_primary_10_1016_j_apenergy_2023_121468 crossref_primary_10_1049_rpg2_13110 crossref_primary_10_1109_ACCESS_2024_3507154 crossref_primary_10_1007_s12667_023_00590_3 crossref_primary_10_1016_j_apenergy_2023_121503 crossref_primary_10_3390_electricity4040020 crossref_primary_10_3390_en16227610 crossref_primary_10_1016_j_energy_2023_129847 crossref_primary_10_1016_j_energy_2023_130076 crossref_primary_10_1016_j_egyr_2022_12_002 crossref_primary_10_1109_ACCESS_2024_3407121 crossref_primary_10_1016_j_energy_2024_133023 crossref_primary_10_1016_j_egyr_2022_12_083 crossref_primary_10_1016_j_epsr_2025_111952 crossref_primary_10_1016_j_egyr_2023_01_078 crossref_primary_10_1016_j_egyr_2024_01_036 crossref_primary_10_1016_j_egyr_2023_01_079 crossref_primary_10_1016_j_apenergy_2024_124302 crossref_primary_10_1016_j_apenergy_2024_123611 crossref_primary_10_1016_j_eswa_2023_122226 crossref_primary_10_1016_j_jclepro_2023_139944 crossref_primary_10_1016_j_energy_2025_135055 crossref_primary_10_1049_gtd2_13299 crossref_primary_10_1016_j_apenergy_2023_121638 crossref_primary_10_1109_ACCESS_2024_3415781 crossref_primary_10_1109_TIM_2024_3522628 crossref_primary_10_1016_j_enconman_2025_119673 crossref_primary_10_1016_j_eswa_2025_127725 crossref_primary_10_1016_j_engappai_2024_108952 crossref_primary_10_1016_j_apenergy_2022_120540 crossref_primary_10_1016_j_apenergy_2025_126177 crossref_primary_10_1016_j_egyr_2024_03_016 crossref_primary_10_3390_electronics12214443 crossref_primary_10_1016_j_egyr_2024_07_007 crossref_primary_10_1016_j_energy_2025_136391 crossref_primary_10_1038_s41598_024_82585_3 crossref_primary_10_1007_s42524_023_0271_3 crossref_primary_10_1109_TIA_2024_3430264 crossref_primary_10_32604_cmc_2024_046797 crossref_primary_10_3390_en18143745 crossref_primary_10_1016_j_egyr_2022_11_165 crossref_primary_10_1016_j_egyr_2024_01_056 crossref_primary_10_1016_j_eswa_2025_127218 crossref_primary_10_1016_j_renene_2025_123550 crossref_primary_10_1016_j_cie_2024_110477 crossref_primary_10_1049_gtd2_13034 crossref_primary_10_3389_fenrg_2024_1401978 crossref_primary_10_3390_en16196889 crossref_primary_10_1016_j_egyr_2022_12_149 crossref_primary_10_1063_5_0250465 crossref_primary_10_1016_j_apenergy_2024_125053 crossref_primary_10_3233_JIFS_219428 crossref_primary_10_1080_23307706_2024_2434610 crossref_primary_10_1016_j_rser_2024_114648 crossref_primary_10_1016_j_apenergy_2023_122185 crossref_primary_10_3390_su151712914 crossref_primary_10_1109_TFUZZ_2024_3419559 crossref_primary_10_3390_en16176236 crossref_primary_10_1080_15435075_2023_2281329 crossref_primary_10_1016_j_measurement_2025_117541 crossref_primary_10_1016_j_apenergy_2024_122626 crossref_primary_10_1016_j_jclepro_2023_138676 crossref_primary_10_1016_j_energy_2024_134180 crossref_primary_10_1016_j_energy_2023_127914 crossref_primary_10_1016_j_epsr_2024_110534 crossref_primary_10_1049_rpg2_12736 crossref_primary_10_1016_j_egyr_2024_02_009 crossref_primary_10_1016_j_egyr_2024_05_061 crossref_primary_10_1038_s41598_024_63384_2 crossref_primary_10_1016_j_epsr_2024_110495 crossref_primary_10_1109_JIOT_2023_3293800 crossref_primary_10_1016_j_jobe_2024_110726 crossref_primary_10_1109_TSG_2024_3466768 crossref_primary_10_1016_j_epsr_2024_110771 crossref_primary_10_1109_JIOT_2024_3450433 crossref_primary_10_3390_en16073248 crossref_primary_10_1155_er_7215655 crossref_primary_10_3390_en16124773 crossref_primary_10_1007_s00704_025_05450_x crossref_primary_10_1016_j_egyr_2023_11_040 crossref_primary_10_1109_ACCESS_2025_3543594 crossref_primary_10_2298_CSIS241123038L crossref_primary_10_3389_fenrg_2023_1340639 crossref_primary_10_1016_j_egyr_2023_12_046 crossref_primary_10_3390_en17051124 crossref_primary_10_1016_j_energy_2025_134711 crossref_primary_10_1016_j_eswa_2025_128729 crossref_primary_10_1016_j_egyr_2024_01_074 crossref_primary_10_1016_j_egyr_2025_05_051 crossref_primary_10_1016_j_egyr_2022_12_049 crossref_primary_10_1016_j_energy_2024_130751 crossref_primary_10_7717_peerj_cs_2819 crossref_primary_10_29109_gujsc_1627535 crossref_primary_10_1016_j_seta_2024_103830 crossref_primary_10_1155_2023_5514460 crossref_primary_10_1016_j_energy_2023_128947 crossref_primary_10_1016_j_egyr_2025_02_034 crossref_primary_10_1038_s41598_023_48943_3 crossref_primary_10_3389_fenrg_2023_1211360 crossref_primary_10_3390_electronics13071281 crossref_primary_10_1016_j_segan_2024_101376 crossref_primary_10_1016_j_est_2024_114153 crossref_primary_10_1016_j_energy_2025_136344 crossref_primary_10_3390_fi17070308 crossref_primary_10_1016_j_egyr_2022_11_194 crossref_primary_10_1109_COMST_2024_3365076 crossref_primary_10_1016_j_energy_2024_134044 crossref_primary_10_1080_19942060_2024_2305318 crossref_primary_10_1016_j_apenergy_2023_120749 crossref_primary_10_1016_j_energy_2023_129639 crossref_primary_10_1016_j_energy_2024_133072 crossref_primary_10_1016_j_heliyon_2024_e31873 crossref_primary_10_1080_21642583_2024_2448626 crossref_primary_10_1007_s40747_023_01066_8 crossref_primary_10_1016_j_rser_2025_115407 crossref_primary_10_1109_TIA_2024_3371966 crossref_primary_10_1109_ACCESS_2025_3599360 crossref_primary_10_1016_j_egyr_2024_03_056 crossref_primary_10_1016_j_egyr_2023_12_055 crossref_primary_10_1016_j_apenergy_2024_124699 crossref_primary_10_4018_JOEUC_370005 crossref_primary_10_1016_j_egyr_2023_02_001 crossref_primary_10_3390_en18102515 crossref_primary_10_1016_j_apenergy_2024_122838 crossref_primary_10_1016_j_eswa_2023_121185 crossref_primary_10_1109_TIA_2024_3430229 |
| Cites_doi | 10.1145/3298981 10.1016/j.renene.2016.03.103 10.1109/MSP.2020.2975749 10.1109/TII.2015.2431642 10.1016/j.apenergy.2018.09.211 10.1016/j.apenergy.2021.118347 10.1109/TIFS.2016.2607691 10.1016/j.energy.2021.121492 10.1109/TSG.2022.3204796 10.1109/TII.2017.2730846 10.1016/j.energy.2018.07.200 10.1007/s11277-012-0939-1 10.1016/j.ijforecast.2020.06.003 10.1109/TPWRS.2018.2822784 10.1016/j.jclepro.2022.134540 10.1016/j.energy.2020.117794 10.1109/TIA.2021.3106573 10.1016/j.apenergy.2021.118392 10.1038/nature14236 10.1016/j.energy.2021.120492 10.1016/j.energy.2018.09.118 10.1109/TII.2021.3098259 10.1016/j.apenergy.2012.03.054 10.1016/j.apenergy.2016.03.096 10.1109/TSTE.2015.2480245 10.1109/JIOT.2020.2991401 10.29012/jpc.v1i2.570 10.1109/TSTE.2021.3105529 10.1016/j.energy.2022.123226 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2022.120291 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2022_120291 S0306261922015483 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c393t-4159b3fbfc26dce31e672425bc62372daa4414265bf12423d96b9a241f27b6db3 |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890577800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 10:49:40 EDT 2025 Tue Nov 18 21:59:16 EST 2025 Sat Nov 29 07:21:09 EST 2025 Fri Feb 23 02:39:58 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data openness and sharing Privacy protection Deep reinforcement learning Federated learning Wind power forecasting Uncertainty modeling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c393t-4159b3fbfc26dce31e672425bc62372daa4414265bf12423d96b9a241f27b6db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dspace.lib.cranfield.ac.uk/handle/1826/18727 |
| PQID | 3153831363 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153831363 crossref_citationtrail_10_1016_j_apenergy_2022_120291 crossref_primary_10_1016_j_apenergy_2022_120291 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120291 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hu, Zhang, Yu, Xie (b9) 2015; 7 Wang, Zhang, Wu, Wang (b10) 2016; 94 Li, Bu, Gao, Li (b37) 2022; 378 Li, Wang, Yang (b34) 2021; 13 Yang, Liu, Chen, Tong (b29) 2019; 10 Cassola, Burlando (b8) 2012; 99 Liu, Yu, Wu, Duan, Yan (b14) 2020; 202 Li ZL, Liang C-JM, He W, Zhu L, Dai W, Jiang J, et al. Metis: Robustly tuning tail latencies of cloud systems. In: 2018 {USENIX} Annual technical conference ({USENIX}{ATC} 18). 2018, p. 981–92. Li, Feng, Wang, Sun (b38) 2022; 245 Zhao, Ye, Li, Song, Lang, Su (b33) 2016; 177 Zhang, Chen, Yan, Zhang, Xu (b13) 2021; 236 Li, Wang, Yang, Li, Chen (b36) 2022; 308 Li, Wei, Li, Dong, Shahidehpour (b26) 2022; 13 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare (b23) 2015; 518 Li, Sahu, Talwalkar, Smith (b25) 2020; 37 Sweeney, Bessa, Browell, Pinson (b5) 2020; 9 Zhang, Zhu (b19) 2016; 12 Kuremoto, Hirata, Obayashi, Mabu, Kobayashi (b30) 2019 Wang, Qi, Liu, Song (b12) 2018; 165 Dwork, Smith (b18) 2010; 1 McMahan, Moore, Ramage, Hampson, y Arcas (b32) 2017 Gonçalves, Bessa, Pinson (b20) 2021; 37 Li, Zhang, Chen (b21) 2022; 308 Zhang, Wang (b17) 2018; 33 Liu, Lin, Feng (b7) 2021; 227 Buhan, Çadırcı (b3) 2015; 11 Li, Wang, Zhao, Li, Chen (b1) 2018; 162 Zeadally, Pathan, Alcaraz, Badra (b4) 2013; 73 Li, Ding, Liu, Yang, Wang, Wang, Yao (b35) 2022 Li, Wang, Yang, Li, Li (b22) 2022; 58 Arora, Jalali, Ahmadian, Panigrahi, Suganthan, Khosravi (b2) 2022 Silver, Lever, Heess, Degris, Wierstra, Riedmiller (b24) 2014 Voigt, Von dem Bussche (b16) 2017 Li, Yang, Li, Mu, Zhao, Chen (b15) 2018; 232 Rajagopalan, Santoso (b6) 2009 Khodayar, Kaynak, Khodayar (b11) 2017; 13 Li, Li, Wang (b28) 2022; 18 Liu, James, Kang, Niyato, Zhang (b27) 2020; 7 Zhang (10.1016/j.apenergy.2022.120291_b13) 2021; 236 Sweeney (10.1016/j.apenergy.2022.120291_b5) 2020; 9 10.1016/j.apenergy.2022.120291_b31 Li (10.1016/j.apenergy.2022.120291_b1) 2018; 162 Cassola (10.1016/j.apenergy.2022.120291_b8) 2012; 99 Li (10.1016/j.apenergy.2022.120291_b26) 2022; 13 Kuremoto (10.1016/j.apenergy.2022.120291_b30) 2019 Dwork (10.1016/j.apenergy.2022.120291_b18) 2010; 1 Li (10.1016/j.apenergy.2022.120291_b34) 2021; 13 Rajagopalan (10.1016/j.apenergy.2022.120291_b6) 2009 Li (10.1016/j.apenergy.2022.120291_b37) 2022; 378 Li (10.1016/j.apenergy.2022.120291_b25) 2020; 37 Liu (10.1016/j.apenergy.2022.120291_b14) 2020; 202 Gonçalves (10.1016/j.apenergy.2022.120291_b20) 2021; 37 Liu (10.1016/j.apenergy.2022.120291_b27) 2020; 7 Li (10.1016/j.apenergy.2022.120291_b21) 2022; 308 Zhao (10.1016/j.apenergy.2022.120291_b33) 2016; 177 Zhang (10.1016/j.apenergy.2022.120291_b17) 2018; 33 Wang (10.1016/j.apenergy.2022.120291_b10) 2016; 94 Mnih (10.1016/j.apenergy.2022.120291_b23) 2015; 518 Hu (10.1016/j.apenergy.2022.120291_b9) 2015; 7 Khodayar (10.1016/j.apenergy.2022.120291_b11) 2017; 13 Li (10.1016/j.apenergy.2022.120291_b38) 2022; 245 Buhan (10.1016/j.apenergy.2022.120291_b3) 2015; 11 Li (10.1016/j.apenergy.2022.120291_b22) 2022; 58 Li (10.1016/j.apenergy.2022.120291_b15) 2018; 232 Liu (10.1016/j.apenergy.2022.120291_b7) 2021; 227 Voigt (10.1016/j.apenergy.2022.120291_b16) 2017 Wang (10.1016/j.apenergy.2022.120291_b12) 2018; 165 Zhang (10.1016/j.apenergy.2022.120291_b19) 2016; 12 Silver (10.1016/j.apenergy.2022.120291_b24) 2014 McMahan (10.1016/j.apenergy.2022.120291_b32) 2017 Li (10.1016/j.apenergy.2022.120291_b36) 2022; 308 Li (10.1016/j.apenergy.2022.120291_b35) 2022 Arora (10.1016/j.apenergy.2022.120291_b2) 2022 Yang (10.1016/j.apenergy.2022.120291_b29) 2019; 10 Zeadally (10.1016/j.apenergy.2022.120291_b4) 2013; 73 Li (10.1016/j.apenergy.2022.120291_b28) 2022; 18 |
| References_xml | – volume: 94 start-page: 629 year: 2016 end-page: 636 ident: b10 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renew Energy – volume: 37 start-page: 322 year: 2021 end-page: 342 ident: b20 article-title: A critical overview of privacy-preserving approaches for collaborative forecasting publication-title: Int J Forecast – volume: 378 year: 2022 ident: b37 article-title: Optimal dispatch of low-carbon integrated energy system considering nuclear heating and carbon trading publication-title: J Cleaner Prod – volume: 9 year: 2020 ident: b5 article-title: The future of forecasting for renewable energy publication-title: Wiley Interdiscip Rev Energy Environ – volume: 308 year: 2022 ident: b21 article-title: A deep-learning intelligent system incorporating data augmentation for short-term voltage stability assessment of power systems publication-title: Appl Energy – volume: 13 start-page: 4862 year: 2022 end-page: 4872 ident: b26 article-title: Detection of false data injection attacks in smart grid: A secure federated deep learning approach publication-title: IEEE Trans Smart Grid – volume: 165 start-page: 840 year: 2018 end-page: 852 ident: b12 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy – volume: 245 year: 2022 ident: b38 article-title: Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach publication-title: Energy – volume: 13 start-page: 2770 year: 2017 end-page: 2779 ident: b11 article-title: Rough deep neural architecture for short-term wind speed forecasting publication-title: IEEE Trans Ind Inf – volume: 13 start-page: 159 year: 2021 end-page: 169 ident: b34 article-title: Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting publication-title: IEEE Trans Sustain Energy – year: 2022 ident: b2 article-title: Probabilistic wind power forecasting using optimised deep auto-regressive recurrent neural networks publication-title: IEEE Trans Ind Inf – volume: 58 start-page: 2640 year: 2022 end-page: 2651 ident: b22 article-title: Optimal scheduling of integrated demand response-enabled community-integrated energy systems in uncertain environments publication-title: IEEE Trans Ind Appl – start-page: 1273 year: 2017 end-page: 1282 ident: b32 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Artificial intelligence and statistics – volume: 99 start-page: 154 year: 2012 end-page: 166 ident: b8 article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output publication-title: Appl Energy – volume: 11 start-page: 1231 year: 2015 end-page: 1242 ident: b3 article-title: Multistage wind-electric power forecast by using a combination of advanced statistical methods publication-title: IEEE Trans Ind Inf – volume: 33 start-page: 5714 year: 2018 end-page: 5726 ident: b17 article-title: A distributed approach for wind power probabilistic forecasting considering spatio-temporal correlation without direct access to off-site information publication-title: IEEE Trans Power Syst – volume: 202 year: 2020 ident: b14 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: b23 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 177 start-page: 793 year: 2016 end-page: 803 ident: b33 article-title: A novel bidirectional mechanism based on time series model for wind power forecasting publication-title: Appl Energy – volume: 232 start-page: 54 year: 2018 end-page: 68 ident: b15 article-title: Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing publication-title: Appl Energy – volume: 7 start-page: 241 year: 2015 end-page: 249 ident: b9 article-title: Short-term wind speed or power forecasting with heteroscedastic support vector regression publication-title: IEEE Trans Sustain Energy – volume: 7 start-page: 7751 year: 2020 end-page: 7763 ident: b27 article-title: Privacy-preserving traffic flow prediction: A federated learning approach publication-title: IEEE Internet Things J – start-page: 1 year: 2009 end-page: 6 ident: b6 article-title: Wind power forecasting and error analysis using the autoregressive moving average modeling publication-title: 2009 IEEE power & energy society general meeting – volume: 227 year: 2021 ident: b7 article-title: Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM publication-title: Energy – year: 2022 ident: b35 article-title: Dense skip attention based deep learning for day-ahead electricity price forecasting publication-title: IEEE Trans Power Syst – volume: 1 year: 2010 ident: b18 article-title: Differential privacy for statistics: What we know and what we want to learn publication-title: J Privacy Confident – year: 2017 ident: b16 article-title: The EU general data protection regulation (GDPR) publication-title: A Practical Guide, vol. 10 – volume: 37 start-page: 50 year: 2020 end-page: 60 ident: b25 article-title: Federated learning: Challenges, methods, and future directions publication-title: IEEE Signal Process Mag – volume: 10 start-page: 1 year: 2019 end-page: 19 ident: b29 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans Intell Syst Technol – start-page: 387 year: 2014 end-page: 395 ident: b24 article-title: Deterministic policy gradient algorithms publication-title: International conference on machine learning – volume: 308 year: 2022 ident: b36 article-title: Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game publication-title: Appl Energy – year: 2019 ident: b30 article-title: Training deep neural networks with reinforcement learning for time series forecasting publication-title: Time series analysis-data, methods, and applications – volume: 18 start-page: 2310 year: 2022 end-page: 2320 ident: b28 article-title: Privacy-preserving spatiotemporal scenario generation of renewable energies: A federated deep generative learning approach publication-title: IEEE Trans Ind Inf – volume: 73 start-page: 23 year: 2013 end-page: 50 ident: b4 article-title: Towards privacy protection in smart grid publication-title: Wirel Pers Commun – volume: 12 start-page: 172 year: 2016 end-page: 187 ident: b19 article-title: Dynamic differential privacy for ADMM-based distributed classification learning publication-title: IEEE Trans Inf Forensics Secur – reference: Li ZL, Liang C-JM, He W, Zhu L, Dai W, Jiang J, et al. Metis: Robustly tuning tail latencies of cloud systems. In: 2018 {USENIX} Annual technical conference ({USENIX}{ATC} 18). 2018, p. 981–92. – volume: 162 start-page: 237 year: 2018 end-page: 254 ident: b1 article-title: A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making publication-title: Energy – volume: 236 year: 2021 ident: b13 article-title: A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting publication-title: Energy – volume: 10 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.apenergy.2022.120291_b29 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans Intell Syst Technol doi: 10.1145/3298981 – year: 2022 ident: 10.1016/j.apenergy.2022.120291_b35 article-title: Dense skip attention based deep learning for day-ahead electricity price forecasting publication-title: IEEE Trans Power Syst – volume: 94 start-page: 629 year: 2016 ident: 10.1016/j.apenergy.2022.120291_b10 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.103 – volume: 37 start-page: 50 issue: 3 year: 2020 ident: 10.1016/j.apenergy.2022.120291_b25 article-title: Federated learning: Challenges, methods, and future directions publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2020.2975749 – volume: 11 start-page: 1231 issue: 5 year: 2015 ident: 10.1016/j.apenergy.2022.120291_b3 article-title: Multistage wind-electric power forecast by using a combination of advanced statistical methods publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2015.2431642 – volume: 232 start-page: 54 year: 2018 ident: 10.1016/j.apenergy.2022.120291_b15 article-title: Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.211 – volume: 308 year: 2022 ident: 10.1016/j.apenergy.2022.120291_b21 article-title: A deep-learning intelligent system incorporating data augmentation for short-term voltage stability assessment of power systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118347 – volume: 12 start-page: 172 issue: 1 year: 2016 ident: 10.1016/j.apenergy.2022.120291_b19 article-title: Dynamic differential privacy for ADMM-based distributed classification learning publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2016.2607691 – start-page: 1 year: 2009 ident: 10.1016/j.apenergy.2022.120291_b6 article-title: Wind power forecasting and error analysis using the autoregressive moving average modeling – volume: 236 year: 2021 ident: 10.1016/j.apenergy.2022.120291_b13 article-title: A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting publication-title: Energy doi: 10.1016/j.energy.2021.121492 – ident: 10.1016/j.apenergy.2022.120291_b31 – volume: 13 start-page: 4862 issue: 6 year: 2022 ident: 10.1016/j.apenergy.2022.120291_b26 article-title: Detection of false data injection attacks in smart grid: A secure federated deep learning approach publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2022.3204796 – volume: 13 start-page: 2770 issue: 6 year: 2017 ident: 10.1016/j.apenergy.2022.120291_b11 article-title: Rough deep neural architecture for short-term wind speed forecasting publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2730846 – volume: 162 start-page: 237 year: 2018 ident: 10.1016/j.apenergy.2022.120291_b1 article-title: A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making publication-title: Energy doi: 10.1016/j.energy.2018.07.200 – start-page: 1273 year: 2017 ident: 10.1016/j.apenergy.2022.120291_b32 article-title: Communication-efficient learning of deep networks from decentralized data – volume: 73 start-page: 23 issue: 1 year: 2013 ident: 10.1016/j.apenergy.2022.120291_b4 article-title: Towards privacy protection in smart grid publication-title: Wirel Pers Commun doi: 10.1007/s11277-012-0939-1 – volume: 37 start-page: 322 issue: 1 year: 2021 ident: 10.1016/j.apenergy.2022.120291_b20 article-title: A critical overview of privacy-preserving approaches for collaborative forecasting publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2020.06.003 – year: 2019 ident: 10.1016/j.apenergy.2022.120291_b30 article-title: Training deep neural networks with reinforcement learning for time series forecasting – volume: 33 start-page: 5714 issue: 5 year: 2018 ident: 10.1016/j.apenergy.2022.120291_b17 article-title: A distributed approach for wind power probabilistic forecasting considering spatio-temporal correlation without direct access to off-site information publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2822784 – volume: 378 year: 2022 ident: 10.1016/j.apenergy.2022.120291_b37 article-title: Optimal dispatch of low-carbon integrated energy system considering nuclear heating and carbon trading publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2022.134540 – volume: 202 year: 2020 ident: 10.1016/j.apenergy.2022.120291_b14 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting publication-title: Energy doi: 10.1016/j.energy.2020.117794 – volume: 58 start-page: 2640 issue: 2 year: 2022 ident: 10.1016/j.apenergy.2022.120291_b22 article-title: Optimal scheduling of integrated demand response-enabled community-integrated energy systems in uncertain environments publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2021.3106573 – volume: 308 year: 2022 ident: 10.1016/j.apenergy.2022.120291_b36 article-title: Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.118392 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.apenergy.2022.120291_b23 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – year: 2022 ident: 10.1016/j.apenergy.2022.120291_b2 article-title: Probabilistic wind power forecasting using optimised deep auto-regressive recurrent neural networks publication-title: IEEE Trans Ind Inf – volume: 9 issue: 2 year: 2020 ident: 10.1016/j.apenergy.2022.120291_b5 article-title: The future of forecasting for renewable energy publication-title: Wiley Interdiscip Rev Energy Environ – volume: 227 year: 2021 ident: 10.1016/j.apenergy.2022.120291_b7 article-title: Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM publication-title: Energy doi: 10.1016/j.energy.2021.120492 – volume: 165 start-page: 840 year: 2018 ident: 10.1016/j.apenergy.2022.120291_b12 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy doi: 10.1016/j.energy.2018.09.118 – volume: 18 start-page: 2310 issue: 4 year: 2022 ident: 10.1016/j.apenergy.2022.120291_b28 article-title: Privacy-preserving spatiotemporal scenario generation of renewable energies: A federated deep generative learning approach publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3098259 – volume: 99 start-page: 154 year: 2012 ident: 10.1016/j.apenergy.2022.120291_b8 article-title: Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.03.054 – volume: 177 start-page: 793 year: 2016 ident: 10.1016/j.apenergy.2022.120291_b33 article-title: A novel bidirectional mechanism based on time series model for wind power forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.096 – volume: 7 start-page: 241 issue: 1 year: 2015 ident: 10.1016/j.apenergy.2022.120291_b9 article-title: Short-term wind speed or power forecasting with heteroscedastic support vector regression publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2015.2480245 – start-page: 387 year: 2014 ident: 10.1016/j.apenergy.2022.120291_b24 article-title: Deterministic policy gradient algorithms – volume: 7 start-page: 7751 issue: 8 year: 2020 ident: 10.1016/j.apenergy.2022.120291_b27 article-title: Privacy-preserving traffic flow prediction: A federated learning approach publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2991401 – volume: 1 issue: 2 year: 2010 ident: 10.1016/j.apenergy.2022.120291_b18 article-title: Differential privacy for statistics: What we know and what we want to learn publication-title: J Privacy Confident doi: 10.29012/jpc.v1i2.570 – year: 2017 ident: 10.1016/j.apenergy.2022.120291_b16 article-title: The EU general data protection regulation (GDPR) – volume: 13 start-page: 159 issue: 1 year: 2021 ident: 10.1016/j.apenergy.2022.120291_b34 article-title: Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2021.3105529 – volume: 245 year: 2022 ident: 10.1016/j.apenergy.2022.120291_b38 article-title: Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach publication-title: Energy doi: 10.1016/j.energy.2022.123226 |
| SSID | ssj0002120 |
| Score | 2.7057123 |
| Snippet | In a modern power system with an increasing proportion of renewable energy, wind power prediction is crucial to the arrangement of power grid dispatching plans... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120291 |
| SubjectTerms | algorithms Data openness and sharing Deep reinforcement learning energy Federated learning issues and policy prediction Privacy protection Uncertainty modeling wind power Wind power forecasting |
| Title | Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach |
| URI | https://dx.doi.org/10.1016/j.apenergy.2022.120291 https://www.proquest.com/docview/3153831363 |
| Volume | 329 |
| WOSCitedRecordID | wos000890577800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEBQqSgEZidsqZWNvHua2QosAiQqhIpaT5Tg2bLVKo32pV_55Z2I7Scuj9MAliiyPlex8GX-enQchLxOdA88tbBRbUMM4NipSRRJHmdJJLkawAaq8aTaRHR_ns5n4NBj8DLkw20VWVfn5uaj_q6phDJSNqbM3UHe7KAzAPSgdrqB2uP6T4r_OMfUfm59hCKHRarV2ibWuMyfeY1josF7Ot9jr3Vdq8DEek6HF8hIKiWhpTD1cmqa2qm7ciKHJxPe2Fnmf3AZGa5p8wjbUp4kX-Kb8Ftk4752B-byZV2fdsJ-4Abb6w3TDrUv7Yxj0TgrGe04Kn5w1SiM8rPUNL_e-Dmc6Y5Bzjbt-serOwXB6pGr3AnCsZ-yoE7hcRvvK9tYGHYZ4tlMZ1pG4jnTr3CK7LEsE2Pbdyfvp7EO7nTNf2zO8QS_N_PdP9CeGc2WvbwjMyX1yz5886MQh5gEZmGqP3O3Vo9wj-9Mu7RGmeru_ekgWCCragIr2QEV7oKIIKupBRTtQvaYT2kKKIqToJUjRACkaIPWIfHk7PXnzLvJ9OiLNBV_DF56IgtvCapaW2vDYpBmeZAsN3DpjpVLAuYEJJoWNkb6XIi2EAupoWVakZcH3yQ7AzTwmtOSpFXxkU8bMmHMttB2pbGwEh7mxSA5IEn5bqX0Re-ylspB_1-4BedXK1a6My7USIqhOejLqSKYEVF4r-yLoWoK1xr_gVGXONivJkWDwmKf8yY2f6JDc6T6tp2RnvdyYZ-S23q7nq-VzD9sL4tK-Pw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+power+forecasting+considering+data+privacy+protection%3A+A+federated+deep+reinforcement+learning+approach&rft.jtitle=Applied+energy&rft.au=Li%2C+Yang&rft.au=Wang%2C+Ruinong&rft.au=Li%2C+Yuanzheng&rft.au=Zhang%2C+Meng&rft.date=2023-01-01&rft.issn=0306-2619&rft.volume=329&rft.spage=120291&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120291&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2022_120291 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |