Intelligent computing for electromagnetohydrodynamic bioconvection flow of micropolar nanofluid with thermal radiation and stratification: Levenberg–Marquardt backpropagation algorithm

The Levenberg–Marquardt (LM) backpropagation optimization algorithm, an artificial neural network algorithm, is used in this study to perform integrated numerical computing to evaluate the electromagnetohydrodynamic bioconvection flow of micropolar nanofluid with thermal radiation and stratification...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIP advances Ročník 14; číslo 3; s. 035224 - 035224-25
Hlavní autoři: Khan, Zeeshan, Alfwzan, Wafa F., Ali, Aatif, Innab, Nisreen, Zuhra, Samina, Islam, Saeed, Asamoah, Joshua Kiddy K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Melville American Institute of Physics 01.03.2024
AIP Publishing LLC
Témata:
ISSN:2158-3226, 2158-3226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Levenberg–Marquardt (LM) backpropagation optimization algorithm, an artificial neural network algorithm, is used in this study to perform integrated numerical computing to evaluate the electromagnetohydrodynamic bioconvection flow of micropolar nanofluid with thermal radiation and stratification. The model is then reduced to a collection of boundary value problems, which are solved with the help of a numerical technique and the proposed scheme, i.e., the LM algorithm, which is an iterative approach to determine the minimum of a nonlinear function defined as the sum of squares. As a blend of the steepest descent and the Gauss–Newton method, it has become a typical approach for nonlinear least-squares problems. Furthermore, the stability and consistency of the algorithm are ensured. For validation purposes, the results are also compared with those of previous research and the MATLAB bvp4c solver. Neural networking is also utilized for velocity, temperature, and concentration profile mapping from input to output. These findings demonstrate the accuracy of forecasts and optimizations produced by artificial neural networks. The performance of the bvp4c solver, which is used to reduce the mean square error, is used to generalize a dataset. The artificial neural network-based LM backpropagation optimization algorithm operates using data based on the ratio of testing (13%), validation (17%), and training (70%). This stochastic computing work presents an activation log-sigmoid function based LM backpropagation optimization algorithm, in which tens of neurons and hidden and output layers are used for solving the learning language model. The overlapping of the results and the small computed absolute errors, which range from 10−3 to 10−10 and from 106 to 108 for each model class, indicate the accuracy of the artificial neural network-based LM backpropagation optimization algorithm. Furthermore, each model case’s regression performance is evaluated as if it were an ideal model. In addition, function fitness and histogram are used to validate the dependability of the algorithm. Numerical approaches and artificial neural networks are an excellent combination for fluid dynamics, and this could lead to new advancements in many domains. The findings of this research could contribute to the optimization of fluid systems, resulting in increased efficiency and production across various technical domains.
AbstractList The Levenberg–Marquardt (LM) backpropagation optimization algorithm, an artificial neural network algorithm, is used in this study to perform integrated numerical computing to evaluate the electromagnetohydrodynamic bioconvection flow of micropolar nanofluid with thermal radiation and stratification. The model is then reduced to a collection of boundary value problems, which are solved with the help of a numerical technique and the proposed scheme, i.e., the LM algorithm, which is an iterative approach to determine the minimum of a nonlinear function defined as the sum of squares. As a blend of the steepest descent and the Gauss–Newton method, it has become a typical approach for nonlinear least-squares problems. Furthermore, the stability and consistency of the algorithm are ensured. For validation purposes, the results are also compared with those of previous research and the MATLAB bvp4c solver. Neural networking is also utilized for velocity, temperature, and concentration profile mapping from input to output. These findings demonstrate the accuracy of forecasts and optimizations produced by artificial neural networks. The performance of the bvp4c solver, which is used to reduce the mean square error, is used to generalize a dataset. The artificial neural network-based LM backpropagation optimization algorithm operates using data based on the ratio of testing (13%), validation (17%), and training (70%). This stochastic computing work presents an activation log-sigmoid function based LM backpropagation optimization algorithm, in which tens of neurons and hidden and output layers are used for solving the learning language model. The overlapping of the results and the small computed absolute errors, which range from 10−3 to 10−10 and from 106 to 108 for each model class, indicate the accuracy of the artificial neural network-based LM backpropagation optimization algorithm. Furthermore, each model case’s regression performance is evaluated as if it were an ideal model. In addition, function fitness and histogram are used to validate the dependability of the algorithm. Numerical approaches and artificial neural networks are an excellent combination for fluid dynamics, and this could lead to new advancements in many domains. The findings of this research could contribute to the optimization of fluid systems, resulting in increased efficiency and production across various technical domains.
Author Ali, Aatif
Khan, Zeeshan
Alfwzan, Wafa F.
Asamoah, Joshua Kiddy K.
Innab, Nisreen
Zuhra, Samina
Islam, Saeed
Author_xml – sequence: 1
  givenname: Zeeshan
  surname: Khan
  fullname: Khan, Zeeshan
  organization: Department of Mathematics, Abdul Wali Khan University Mardan
– sequence: 2
  givenname: Wafa F.
  surname: Alfwzan
  fullname: Alfwzan, Wafa F.
  organization: Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University
– sequence: 3
  givenname: Aatif
  surname: Ali
  fullname: Ali, Aatif
  organization: 7Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
– sequence: 4
  givenname: Nisreen
  surname: Innab
  fullname: Innab, Nisreen
  organization: Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University
– sequence: 5
  givenname: Samina
  surname: Zuhra
  fullname: Zuhra, Samina
  organization: Department of Computing and Technology, Abasyn University
– sequence: 6
  givenname: Saeed
  surname: Islam
  fullname: Islam, Saeed
  organization: Department of Mathematics, Abdul Wali Khan University Mardan
– sequence: 7
  givenname: Joshua Kiddy K.
  surname: Asamoah
  fullname: Asamoah, Joshua Kiddy K.
  organization: 7Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
BookMark eNp9kctu1DAUhiNUJErpgjewxAqkae04cRx2qCp0pEFsYG0d3zIeHHvqOK1mxzvwNjwOT1J3ZiohhPDG9jn__-lcXlYnIQZTVa8JviCY0cv2AhPekbp5Vp3WpOULWtfs5I_3i-p8mja4nKYnmDen1a9lyMZ7N5iQkYrjds4uDMjGhIw3Kqc4whBMjuudTlHvAoxOIemiiuGu5F0MyPp4j6JFJZPiNnpIKECI1s9Oo3uX1yivTRrBowTawd4DQaMpp_KxTu1D79HK3JkgTRp-__j5GdLtDElnJEF93xYuDEenH2Iq0PFV9dyCn8z58T6rvn28_np1s1h9-bS8-rBaKNrTvKDStopQ2ilJWy6V0rzRHDpo-kb3LWWkZEBJpjGxlhvSY8O0xEz20vQc6Fm1PHB1hI3YJjdC2okITuwDMQ0CUnbKG0GgxkRh0EzWjWwY9KxtaceNBdZoSgrrzYFVOrqdzZTFJs4plPJF3bct7zDrHlWXB1WZ5zQlY4Vyed99mZjzgmDxuG_RiuO-i-PtX46nOv-lfXfQTk_U_4gfAAztwTo
CODEN AAIDBI
CitedBy_id crossref_primary_10_1080_10407782_2024_2355520
crossref_primary_10_1007_s10973_025_14761_0
crossref_primary_10_1016_j_csite_2025_106530
crossref_primary_10_1016_j_ijft_2025_101382
crossref_primary_10_3389_fenrg_2024_1491332
crossref_primary_10_1016_j_ijheatfluidflow_2024_109507
crossref_primary_10_1016_j_ijft_2024_100976
crossref_primary_10_1016_j_knosys_2024_112481
crossref_primary_10_1016_j_ijheatfluidflow_2024_109721
crossref_primary_10_1007_s10973_025_14031_z
crossref_primary_10_1063_5_0203555
crossref_primary_10_1063_5_0237487
crossref_primary_10_1038_s41598_024_82017_2
crossref_primary_10_1002_zamm_70007
crossref_primary_10_1016_j_rineng_2024_102294
crossref_primary_10_1142_S0217984925501544
crossref_primary_10_1007_s10973_024_13815_z
crossref_primary_10_1063_5_0217140
Cites_doi 10.1002/adfm.201906041
10.1016/0022-247x(72)90106-0
10.1016/j.icheatmasstransfer.2021.105800
10.1007/s42452-020-04007-z
10.1016/j.fluiddyn.2005.03.002
10.1007/s13204-020-01282-5
10.1016/j.jksus.2020.06.010
10.1007/s00162-020-00542-y
10.1016/0020-7225(64)90005-9
10.1063/1.5054679
10.3390/coatings9120842
10.1016/j.asej.2021.06.005
10.1016/j.matcom.2021.11.019
10.1080/17455030.2022.2088892
10.1016/j.aej.2022.07.023
10.1186/1556-276x-6-300
10.1155/2022/9888379
10.1007/s10973-019-08434-y
10.1016/j.matcom.2021.08.004
10.1038/s41598-022-07254-9
10.1016/j.jppr.2023.07.002
10.1038/s41598-023-48412-x
10.1007/s40314-018-0683-6
10.1080/10407790.2023.2273512
10.1007/s10973-023-12600-8
10.1108/hff-02-2021-0103
10.1007/s12648-023-02737-5
10.1016/j.aej.2021.07.032
10.3390/computation8010015
10.22055/JACM.2020.31062.1821
10.1515/phys-2022-0036
10.1038/s41598-021-04581-1
10.1007/s10409-021-01154-3
10.1063/1.4946894
10.3389/fenrg.2022.965603
10.1038/s41598-022-06458-3
10.1512/iumj.1967.16.16001
10.1080/17458080.2017.1285445
10.1140/epjp/s13360-023-03798-5
10.1016/j.asej.2021.08.015
10.1016/j.petrol.2018.04.019
10.1016/j.ijheatmasstransfer.2017.05.042
10.7717/peerj-cs.364
10.1063/1.5085742
10.1016/j.csite.2021.101168
10.3390/fluids7030116
10.1063/1.4935649
10.1016/j.compbiomed.2021.104606
10.1177/09544089211057971
10.1002/zamm.202300001
10.1016/j.aej.2021.08.040
10.1038/s41598-023-46353-z
10.1140/epjp/s13360-022-03583-w
10.1002/mma.8234
ContentType Journal Article
Copyright Author(s)
2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOA
DOI 10.1063/5.0187124
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2158-3226
EndPage 035224-25
ExternalDocumentID oai_doaj_org_article_1a201c0ad6b24b46a9655378efa64d31
10_1063_5_0187124
adv
GroupedDBID 5VS
61.
AAFWJ
ABFTF
ACGFO
ADBBV
ADCTM
AEGXH
AENEX
AFPKN
AGKCL
AGLKD
AHSDT
AIAGR
AJDQP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
FRP
GROUPED_DOAJ
HH5
KQ8
M~E
OK1
RIP
RNS
RQS
AAYXX
ABJGX
ADMLS
AKSGC
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c393t-3bf5c1337cb358bccd84d8a7a494d953617cbacb6d01ff8e190e6db06b9be98a3
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001182738500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-3226
IngestDate Fri Oct 03 12:51:13 EDT 2025
Sun Jun 29 15:54:41 EDT 2025
Tue Nov 18 22:36:15 EST 2025
Sat Nov 29 07:51:19 EST 2025
Fri Jun 21 00:11:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-3bf5c1337cb358bccd84d8a7a494d953617cbacb6d01ff8e190e6db06b9be98a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9701-4809
0000-0001-8595-1419
0000-0001-5263-4871
0000-0003-0792-337X
0000-0002-7066-246X
0000-0003-4412-7727
OpenAccessLink https://doaj.org/article/1a201c0ad6b24b46a9655378efa64d31
PQID 2955870671
PQPubID 2050671
PageCount 25
ParticipantIDs crossref_primary_10_1063_5_0187124
doaj_primary_oai_doaj_org_article_1a201c0ad6b24b46a9655378efa64d31
crossref_citationtrail_10_1063_5_0187124
proquest_journals_2955870671
scitation_primary_10_1063_5_0187124
PublicationCentury 2000
PublicationDate 20240301
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 20240301
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP advances
PublicationYear 2024
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Alqahtani, Bilal, Ali, Khalifa, Alqahtani (c11) published online, 2023
Agrawal, Choudhary (c36) 2016; 4
Alharbi, Bilal, Ali, Eldin, Soliman, Rahman (c13) 2023; 13
Ali, Shafiq, Manan, Wakif, Hussain (c26) 2022; 194
Geng, Al-Rashed, Mahmoudi, Alsagri, Shahsavar, Talebizadehsardari (c4) 2020; 139
Zhang, Noack (c42) 2021; 37
Hsiao (c50) 2017; 112
Manna (c2) 2009; 89
Algehyne, Areshi, Saeed, Bilal, Kumam, Kumam (c27) 2022; 12
Sofos, Stavrogiannis, Exarchou-Kouveli, Akabua, Charilas, Karakasidis (c40) 2022; 7
Abdal, Siddique, Alrowaili, Al-Mdallal, Hussain (c24) 2022; 12
Elzeki, Abd Elfattah, Salem, Hassanien, Shams (c56) 2021; 7
Bilal, Saeed, Gul, Kumam, Mukhtar, Kumam (c18) 2022; 12
Khan, Zuhra, Nawaz, Duraisamy, Alqahtani, Nisar, Jamshed, Abbas (c30) 2022; 20
Hill, Pedley (c22) 2005; 37
Shafiq, Çolak, Sindhu (c48) 2023; 138
Ali, Liu, Ali, Mujeed, Abdal (c34) 2019; 9
Eringen (c16) 1972; 38
Reddy, Anki Reddy (c21) 2020; 7
Fedele, Colla, Bobbo, Barison, Agresti (c6) 2011; 6
Tlili, Ramzan, Un Nisa, Shutaywi, Shah, Kumam (c35) 2020; 32
Wang, Zhang, Snoussi, Zhang (c38) 2020; 30
Brunton, Hemati, Taira (c39) 2020; 34
Saeed, Gul (c31) 2021; 3
Eringen (c15) 1966; 16
Khentout, Kezzar, Sari, Ismail, Tich Tich, Boutelba, Eid (c10) 2022; 236
Pasha, Mirzaei, Zarinfar (c20) 2022; 61
Raja, Shoaib, Khan, Zuhra, Saleel, Nisar, Islam, Khan (c54) 2022; 13
Khashi’ie, Arifin, Pop (c8) 2022; 61
Jakeer, Lakshmi Rupa, Reddisekhar Reddy, Rashad (c43) 2023; 12
Zuhra, Khan, Shah, Islam, Bonyah (c28) 2018; 8
Habib, Salamat, Ahsan, Abdal, Siddique, Ali (c33) published online, 2022
Mabood, Shamshuddin, Mishra (c19) 2022; 191
Khan, Zuhra, Islam, Raja, Ali (c51) 2023; 138
Khan, Shehzad, Ali (c23) 2020; 10
Reddy, Jakeer, Rupa (c44) 2023; 97
Frank, Drikakis, Charissis (c37) 2020; 8
Hayat, Rashid, Imtiaz, Alsaedi (c7) 2015; 5
Pattnaik, Bhatti, Mishra, Abbas, Bég (c17); 2022
Atif, Hussain, Sagheer (c49) 2019; 9
Raja, Khan, Zuhra, Chaudhary, Khan, He, Islam, Shoaib (c46) 2021; 26
Zhang, Nazar, Bhatti, Michaelides (c3) 2021; 32
Dawar, Wakif, Thumma, Shah (c12) 2022; 130
Habib, Salamat, Abdal, Siddique, Ang, Ahmadian (c25) 2022; 13
Eringen (c14) 1964; 2
Agwu, Akpabio, Alabi, Dosunmu (c41) 2018; 167
Nasir, Berrouk, Gul, Ali (c55) 2023; 13
Choudhary, Khurana, Kumar, Subudhi (c5) 2017; 12
Zuhra, Khan, Islam (c29) 2018; 37
Anand, Ali, Jakeer, Reddy (c45) published online, 2023
Chu, Bashir, Ramzan, Malik (c9) 2022; 46
Shafiq, Çolak, Sindhu (c47) published online, 2023
Shahzad, Imran, Tahir, Ali Khan, Akgül, Abdullaev, Park, Zahran, Yahia (c32) 2023; 62
Shams, Elzeki, Abouelmagd, Hassanien, Elfattah, Salem (c53) 2021; 135
Ali, Ahammad, Tag-Eldin, Gamaoun, Daradkeh, Yassen (c52) 2022; 10
(2024031213113560900_c39) 2020; 34
(2024031213113560900_c29) 2018; 37
(2024031213113560900_c30) 2022; 20
(2024031213113560900_c45) , 2023
(2024031213113560900_c37) 2020; 8
(2024031213113560900_c53) 2021; 135
(2024031213113560900_c44) 2023; 97
(2024031213113560900_c52) 2022; 10
(2024031213113560900_c25) 2022; 13
(2024031213113560900_c51) 2023; 138
(2024031213113560900_c55) 2023; 13
(2024031213113560900_c11) , 2023
(2024031213113560900_c5) 2017; 12
(2024031213113560900_c9) 2022; 46
(2024031213113560900_c10) 2022; 236
(2024031213113560900_c18) 2022; 12
(2024031213113560900_c19) 2022; 191
2024031213113560900_c1
(2024031213113560900_c46) 2021; 26
(2024031213113560900_c21) 2020; 7
(2024031213113560900_c24) 2022; 12
(2024031213113560900_c20) 2022; 61
(2024031213113560900_c41) 2018; 167
(2024031213113560900_c50) 2017; 112
(2024031213113560900_c42) 2021; 37
(2024031213113560900_c43) 2023; 12
(2024031213113560900_c27) 2022; 12
(2024031213113560900_c33) , 2022
(2024031213113560900_c8) 2022; 61
(2024031213113560900_c16) 1972; 38
(2024031213113560900_c12) 2022; 130
(2024031213113560900_c31) 2021; 3
(2024031213113560900_c22) 2005; 37
(2024031213113560900_c40) 2022; 7
(2024031213113560900_c32) 2023; 62
(2024031213113560900_c48) 2023; 138
(2024031213113560900_c49) 2019; 9
(2024031213113560900_c56) 2021; 7
(2024031213113560900_c54) 2022; 13
(2024031213113560900_c2) 2009; 89
(2024031213113560900_c36) 2016; 4
(2024031213113560900_c4) 2020; 139
(2024031213113560900_c17); 2022
(2024031213113560900_c14) 1964; 2
(2024031213113560900_c3) 2021; 32
(2024031213113560900_c38) 2020; 30
(2024031213113560900_c23) 2020; 10
(2024031213113560900_c28) 2018; 8
(2024031213113560900_c26) 2022; 194
(2024031213113560900_c13) 2023; 13
(2024031213113560900_c6) 2011; 6
(2024031213113560900_c7) 2015; 5
(2024031213113560900_c35) 2020; 32
(2024031213113560900_c34) 2019; 9
(2024031213113560900_c47) , 2023
(2024031213113560900_c15) 1966; 16
References_xml – volume: 62
  start-page: 1
  year: 2023
  ident: c32
  article-title: Brownian motion and thermophoretic diffusion impact on Darcy–Forchheimer flow of bioconvective micropolar nanofluid between double disks with Cattaneo–Christov heat flux
  publication-title: Alexandria Eng. J.
– volume: 37
  start-page: 1
  year: 2005
  ident: c22
  article-title: Bioconvection
  publication-title: Fluid Dyn. Res.
– volume: 7
  start-page: 116
  year: 2022
  ident: c40
  article-title: Current trends in fluid research in the era of artificial intelligence: A review
  publication-title: Fluids
– volume: 46
  start-page: 11568
  year: 2022
  ident: c9
  article-title: Model‐based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects
  publication-title: Math. Methods Appl. Sci.
– volume: 9
  start-page: 025208
  year: 2019
  ident: c49
  article-title: Magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms
  publication-title: AIP Adv.
– volume: 8
  start-page: 105210
  year: 2018
  ident: c28
  article-title: Simulation of bioconvection in the suspension of second grade nanofluid containing nanoparticles and gyrotactic microorganisms
  publication-title: AIP Adv.
– volume: 13
  start-page: 101573
  year: 2022
  ident: c54
  article-title: Supervised neural networks learning algorithm for three dimensional hybrid nanofluid flow with radiative heat and mass fluxes
  publication-title: Ain Shams Eng. J.
– volume: 130
  start-page: 105800
  year: 2022
  ident: c12
  article-title: Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based iron oxide exposed to incident solar energy
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 9
  start-page: 842
  year: 2019
  ident: c34
  article-title: Finite element simulation of multi-slip effects on unsteady MHD bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions
  publication-title: Coatings
– volume: 8
  start-page: 15
  year: 2020
  ident: c37
  article-title: Machine-learning methods for computational science and engineering
  publication-title: Computation
– volume: 97
  start-page: 3801
  year: 2023
  ident: c44
  article-title: ANN model of three-dimensional micropolar dusty hybrid nanofluid flow with coriolis force: Biomedical applications
  publication-title: Indian J. Phys.
– volume: 135
  start-page: 104606
  year: 2021
  ident: c53
  article-title: HANA: A healthy artificial nutrition analysis model during COVID-19 pandemic
  publication-title: Comput. Biol. Med.
– volume: 139
  start-page: 1553
  year: 2020
  ident: c4
  article-title: Characterization of the nanoparticles, the stability analysis and the evaluation of a new hybrid nano-oil thermal conductivity
  publication-title: J. Therm. Anal. Calorim.
– volume: 191
  start-page: 187
  year: 2022
  ident: c19
  article-title: Characteristics of thermophoresis and Brownian motion on radiative reactive micropolar fluid flow towards continuously moving flat plate: HAM solution
  publication-title: Math. Comput. Simul.
– volume: 61
  start-page: 1938
  year: 2022
  ident: c8
  article-title: Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating
  publication-title: Alexandria Eng. J.
– volume: 10
  start-page: 3325
  year: 2020
  ident: c23
  article-title: Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity
  publication-title: Appl. Nanosci.
– start-page: e20230001
  year: published online, 2023
  ident: c11
  article-title: Numerical calculation of unsteady MHD nanofluid flow across two fluctuating discs with chemical reaction and zero mass flux
  publication-title: Z. Angew. Math. Mech.
– volume: 37
  start-page: 1715
  year: 2021
  ident: c42
  article-title: Artificial intelligence in fluid mechanics
  publication-title: Acta Mech. Sin.
– volume: 6
  start-page: 300
  year: 2011
  ident: c6
  article-title: Experimental stability analysis of different water-based nanofluids
  publication-title: Nanoscale Res. Lett.
– volume: 89
  start-page: 21
  year: 2009
  ident: c2
  article-title: Synthesis, characterization and application of nanofluid—An overview
  publication-title: J. Indian Inst. Sci.
– volume: 10
  start-page: 1175
  year: 2022
  ident: c52
  article-title: MHD Williamson nanofluid flow in the rheology of thermal radiation, Joule heating, and chemical reaction using the Levenberg–Marquardt neural network algorithm
  publication-title: Front. Energy Res.
– volume: 167
  start-page: 300
  year: 2018
  ident: c41
  article-title: Artificial intelligence techniques and their applications in drilling fluid engineering: A review
  publication-title: J. Pet. Sci. Eng.
– volume: 2022
  start-page: 9888379
  ident: c17
  article-title: Mixed convective-radiative dissipative magnetized micropolar nanofluid flow over a stretching surface in porous media with double stratification and chemical reaction effects: ADM-Padé computation
  publication-title: J. Math.
– volume: 37
  start-page: 6332
  year: 2018
  ident: c29
  article-title: Magnetohydrodynamic second-grade nanofluid flow containing nanoparticles and gyrotactic microorganisms
  publication-title: Comput. Appl. Math.
– volume: 32
  start-page: 2741
  year: 2020
  ident: c35
  article-title: Onset of gyrotactic microorganisms in MHD micropolar nanofluid flow with partial slip and double stratification
  publication-title: J. King Saud Univ. Sci.
– year: published online, 2023
  ident: c45
  article-title: Entropy-optimized MHD three-dimensional solar slendering sheet of micropolar hybrid nanofluid flow using a machine learning approach
  publication-title: J. Therm. Anal. Calorim.
– volume: 38
  start-page: 480
  year: 1972
  ident: c16
  article-title: Theory of thermomicrofluids
  publication-title: J. Math. Anal. Appl.
– volume: 3
  start-page: 78
  year: 2021
  ident: c31
  article-title: Bioconvection Casson nanofluid flow together with Darcy–Forchheimer due to a rotating disk with thermal radiation and arrhenius activation energy
  publication-title: SN Appl. Sci.
– year: published online, 2022
  ident: c33
  article-title: Significance of bioconvection and mass transpiration for MHD micropolar Maxwell nanofluid flow over an extending sheet
  publication-title: Waves Random Complex Media
– volume: 34
  start-page: 333
  year: 2020
  ident: c39
  article-title: Special issue on machine learning and data-driven methods in fluid dynamics
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 12
  start-page: 410
  year: 2023
  ident: c43
  article-title: Artificial neural network model of non-Darcy MHD Sutterby hybrid nanofluid flow over a curved permeable surface: Solar energy applications
  publication-title: Propuls. Power Res.
– volume: 26
  start-page: 101168
  year: 2021
  ident: c46
  article-title: Cattaneo–Christov heat flux model of 3D hall current involving biconvection nanofluidic flow with Darcy–Forchheimer law effect: Backpropagation neural networks approach
  publication-title: Case Stud. Therm. Eng.
– volume: 13
  start-page: 19093
  year: 2023
  ident: c13
  article-title: Stagnation point flow of hybrid nanofluid flow passing over a rotating sphere subjected to thermophoretic diffusion and thermal radiation
  publication-title: Sci. Rep.
– volume: 16
  start-page: 1
  year: 1966
  ident: c15
  article-title: Theory of micropolar fluids
  publication-title: Indiana Univ. Math. J.
– volume: 236
  start-page: 1134
  year: 2022
  ident: c10
  article-title: The electrical magnetohydrodynamic (MHD) and shape factor impacts in a mixture fluid suspended by hybrid nanoparticles between non-parallel plates
  publication-title: Proc. Inst. Mech. Eng., Part E
– volume: 12
  start-page: 278
  year: 2022
  ident: c24
  article-title: Exploring the magnetohydrodynamic stretched flow of Williamson Maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy
  publication-title: Sci. Rep.
– volume: 4
  start-page: 053208
  year: 2016
  ident: c36
  article-title: Perspective: Materials informatics and big data: Realization of the ‘fourth paradigm’ of science in materials science
  publication-title: APL Mater.
– volume: 20
  start-page: 470
  year: 2022
  ident: c30
  article-title: Numerical analysis of bioconvection-MHD flow of Williamson nanofluid with gyrotactic microbes and thermal radiation: New iterative method
  publication-title: Open Phys.
– volume: 138
  start-page: 107
  year: 2023
  ident: c51
  article-title: Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: Toward a new approach on Buongiorno’s model using artificial neural network (ANN)
  publication-title: Eur. Phys. J. Plus
– volume: 138
  start-page: 213
  year: 2023
  ident: c48
  article-title: Significance of EMHD graphene oxide (GO) water ethylene glycol nanofluid flow in a Darcy–Forchheimer medium by machine learning algorithm
  publication-title: Eur. Phys. J. Plus
– volume: 61
  start-page: 2663
  year: 2022
  ident: c20
  article-title: Application of numerical methods in micropolar fluid flow and heat transfer in permeable plates
  publication-title: Alexandria Eng. J.
– volume: 13
  start-page: 21039
  year: 2023
  ident: c55
  article-title: Develop the artificial neural network approach to predict thermal transport analysis of nanofluid inside a porous enclosure
  publication-title: Sci. Rep.
– year: published online, 2023
  ident: c47
  article-title: Development of an intelligent computing system using neural networks for modeling bioconvection flow of second-grade nanofluid with gyrotactic microorganisms
  publication-title: Numer. Heat Transfer, Part B
– volume: 12
  start-page: 2542
  year: 2022
  ident: c18
  article-title: Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface
  publication-title: Sci. Rep.
– volume: 5
  start-page: 117121
  year: 2015
  ident: c7
  article-title: Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction
  publication-title: AIP Adv.
– volume: 12
  start-page: 3228
  year: 2022
  ident: c27
  article-title: Numerical simulation of bioconvective Darcy–Forchhemier nanofluid flow with energy transition over a permeable vertical plate
  publication-title: Sci. Rep.
– volume: 32
  start-page: 740
  year: 2021
  ident: c3
  article-title: Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al O ) nanoparticles under Lorentz force
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 7
  start-page: e364
  year: 2021
  ident: c56
  article-title: A novel perceptual two layer image fusion using deep learning for imbalanced COVID-19 dataset
  publication-title: PeerJ Comput. Sci.
– volume: 194
  start-page: 254
  year: 2022
  ident: c26
  article-title: Bioconvection: Significance of mixed convection and MHD on dynamics of Casson nanofluid in the stagnation point of rotating sphere via finite element simulation
  publication-title: Math. Comput. Simul.
– volume: 30
  start-page: 1906041
  year: 2020
  ident: c38
  article-title: Machine learning approaches for thermoelectric materials research
  publication-title: Adv. Funct. Mater.
– volume: 112
  start-page: 983
  year: 2017
  ident: c50
  article-title: Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature
  publication-title: Int. J. Heat Mass Transfer
– volume: 13
  start-page: 101519
  year: 2022
  ident: c25
  article-title: On the role of bioconvection and activation energy for time dependent nanofluid slip transpiration due to extending domain in the presence of electric and magnetic fields
  publication-title: Ain Shams Eng. J.
– volume: 7
  start-page: 1403
  year: 2020
  ident: c21
  article-title: Numerical simulations of unsteady 3D MHD micropolar fluid flow over a slendering sheet
  publication-title: J. Appl. Comput. Mech.
– volume: 12
  start-page: 140
  year: 2017
  ident: c5
  article-title: Stability analysis of Al O /water nanofluids
  publication-title: J. Exp. Nanosci.
– volume: 2
  start-page: 205
  year: 1964
  ident: c14
  article-title: Simple microfluids
  publication-title: Int. J. Eng. Sci.
– volume: 30
  start-page: 1906041
  year: 2020
  ident: 2024031213113560900_c38
  article-title: Machine learning approaches for thermoelectric materials research
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906041
– volume: 38
  start-page: 480
  year: 1972
  ident: 2024031213113560900_c16
  article-title: Theory of thermomicrofluids
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247x(72)90106-0
– volume: 130
  start-page: 105800
  year: 2022
  ident: 2024031213113560900_c12
  article-title: Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based iron oxide exposed to incident solar energy
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105800
– volume: 3
  start-page: 78
  year: 2021
  ident: 2024031213113560900_c31
  article-title: Bioconvection Casson nanofluid flow together with Darcy–Forchheimer due to a rotating disk with thermal radiation and arrhenius activation energy
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-04007-z
– volume: 37
  start-page: 1
  year: 2005
  ident: 2024031213113560900_c22
  article-title: Bioconvection
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/j.fluiddyn.2005.03.002
– volume: 10
  start-page: 3325
  year: 2020
  ident: 2024031213113560900_c23
  article-title: Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01282-5
– volume: 32
  start-page: 2741
  year: 2020
  ident: 2024031213113560900_c35
  article-title: Onset of gyrotactic microorganisms in MHD micropolar nanofluid flow with partial slip and double stratification
  publication-title: J. King Saud Univ. Sci.
  doi: 10.1016/j.jksus.2020.06.010
– volume: 34
  start-page: 333
  year: 2020
  ident: 2024031213113560900_c39
  article-title: Special issue on machine learning and data-driven methods in fluid dynamics
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-020-00542-y
– volume: 2
  start-page: 205
  year: 1964
  ident: 2024031213113560900_c14
  article-title: Simple microfluids
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(64)90005-9
– volume: 8
  start-page: 105210
  year: 2018
  ident: 2024031213113560900_c28
  article-title: Simulation of bioconvection in the suspension of second grade nanofluid containing nanoparticles and gyrotactic microorganisms
  publication-title: AIP Adv.
  doi: 10.1063/1.5054679
– volume: 9
  start-page: 842
  year: 2019
  ident: 2024031213113560900_c34
  article-title: Finite element simulation of multi-slip effects on unsteady MHD bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions
  publication-title: Coatings
  doi: 10.3390/coatings9120842
– volume: 89
  start-page: 21
  year: 2009
  ident: 2024031213113560900_c2
  article-title: Synthesis, characterization and application of nanofluid—An overview
  publication-title: J. Indian Inst. Sci.
– volume: 13
  start-page: 101519
  year: 2022
  ident: 2024031213113560900_c25
  article-title: On the role of bioconvection and activation energy for time dependent nanofluid slip transpiration due to extending domain in the presence of electric and magnetic fields
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.06.005
– volume: 194
  start-page: 254
  year: 2022
  ident: 2024031213113560900_c26
  article-title: Bioconvection: Significance of mixed convection and MHD on dynamics of Casson nanofluid in the stagnation point of rotating sphere via finite element simulation
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.11.019
– year: , 2022
  ident: 2024031213113560900_c33
  article-title: Significance of bioconvection and mass transpiration for MHD micropolar Maxwell nanofluid flow over an extending sheet
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2022.2088892
– volume: 62
  start-page: 1
  year: 2023
  ident: 2024031213113560900_c32
  article-title: Brownian motion and thermophoretic diffusion impact on Darcy–Forchheimer flow of bioconvective micropolar nanofluid between double disks with Cattaneo–Christov heat flux
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2022.07.023
– volume: 6
  start-page: 300
  year: 2011
  ident: 2024031213113560900_c6
  article-title: Experimental stability analysis of different water-based nanofluids
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276x-6-300
– volume: 2022
  start-page: 9888379
  ident: 2024031213113560900_c17
  article-title: Mixed convective-radiative dissipative magnetized micropolar nanofluid flow over a stretching surface in porous media with double stratification and chemical reaction effects: ADM-Padé computation
  publication-title: J. Math.
  doi: 10.1155/2022/9888379
– volume: 139
  start-page: 1553
  year: 2020
  ident: 2024031213113560900_c4
  article-title: Characterization of the nanoparticles, the stability analysis and the evaluation of a new hybrid nano-oil thermal conductivity
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08434-y
– volume: 191
  start-page: 187
  year: 2022
  ident: 2024031213113560900_c19
  article-title: Characteristics of thermophoresis and Brownian motion on radiative reactive micropolar fluid flow towards continuously moving flat plate: HAM solution
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.08.004
– volume: 12
  start-page: 3228
  year: 2022
  ident: 2024031213113560900_c27
  article-title: Numerical simulation of bioconvective Darcy–Forchhemier nanofluid flow with energy transition over a permeable vertical plate
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-07254-9
– volume: 12
  start-page: 410
  year: 2023
  ident: 2024031213113560900_c43
  article-title: Artificial neural network model of non-Darcy MHD Sutterby hybrid nanofluid flow over a curved permeable surface: Solar energy applications
  publication-title: Propuls. Power Res.
  doi: 10.1016/j.jppr.2023.07.002
– volume: 13
  start-page: 21039
  year: 2023
  ident: 2024031213113560900_c55
  article-title: Develop the artificial neural network approach to predict thermal transport analysis of nanofluid inside a porous enclosure
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-48412-x
– volume: 37
  start-page: 6332
  year: 2018
  ident: 2024031213113560900_c29
  article-title: Magnetohydrodynamic second-grade nanofluid flow containing nanoparticles and gyrotactic microorganisms
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-018-0683-6
– year: , 2023
  ident: 2024031213113560900_c47
  article-title: Development of an intelligent computing system using neural networks for modeling bioconvection flow of second-grade nanofluid with gyrotactic microorganisms
  publication-title: Numer. Heat Transfer, Part B
  doi: 10.1080/10407790.2023.2273512
– year: , 2023
  ident: 2024031213113560900_c45
  article-title: Entropy-optimized MHD three-dimensional solar slendering sheet of micropolar hybrid nanofluid flow using a machine learning approach
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-12600-8
– ident: 2024031213113560900_c1
– volume: 32
  start-page: 740
  year: 2021
  ident: 2024031213113560900_c3
  article-title: Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under Lorentz force
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/hff-02-2021-0103
– volume: 97
  start-page: 3801
  year: 2023
  ident: 2024031213113560900_c44
  article-title: ANN model of three-dimensional micropolar dusty hybrid nanofluid flow with coriolis force: Biomedical applications
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-023-02737-5
– volume: 61
  start-page: 1938
  year: 2022
  ident: 2024031213113560900_c8
  article-title: Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2021.07.032
– volume: 8
  start-page: 15
  year: 2020
  ident: 2024031213113560900_c37
  article-title: Machine-learning methods for computational science and engineering
  publication-title: Computation
  doi: 10.3390/computation8010015
– volume: 7
  start-page: 1403
  year: 2020
  ident: 2024031213113560900_c21
  article-title: Numerical simulations of unsteady 3D MHD micropolar fluid flow over a slendering sheet
  publication-title: J. Appl. Comput. Mech.
  doi: 10.22055/JACM.2020.31062.1821
– volume: 20
  start-page: 470
  year: 2022
  ident: 2024031213113560900_c30
  article-title: Numerical analysis of bioconvection-MHD flow of Williamson nanofluid with gyrotactic microbes and thermal radiation: New iterative method
  publication-title: Open Phys.
  doi: 10.1515/phys-2022-0036
– volume: 12
  start-page: 278
  year: 2022
  ident: 2024031213113560900_c24
  article-title: Exploring the magnetohydrodynamic stretched flow of Williamson Maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-04581-1
– volume: 37
  start-page: 1715
  year: 2021
  ident: 2024031213113560900_c42
  article-title: Artificial intelligence in fluid mechanics
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-021-01154-3
– volume: 4
  start-page: 053208
  year: 2016
  ident: 2024031213113560900_c36
  article-title: Perspective: Materials informatics and big data: Realization of the ‘fourth paradigm’ of science in materials science
  publication-title: APL Mater.
  doi: 10.1063/1.4946894
– volume: 10
  start-page: 1175
  year: 2022
  ident: 2024031213113560900_c52
  article-title: MHD Williamson nanofluid flow in the rheology of thermal radiation, Joule heating, and chemical reaction using the Levenberg–Marquardt neural network algorithm
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.965603
– volume: 12
  start-page: 2542
  year: 2022
  ident: 2024031213113560900_c18
  article-title: Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06458-3
– volume: 16
  start-page: 1
  year: 1966
  ident: 2024031213113560900_c15
  article-title: Theory of micropolar fluids
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1967.16.16001
– volume: 12
  start-page: 140
  year: 2017
  ident: 2024031213113560900_c5
  article-title: Stability analysis of Al2O3/water nanofluids
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2017.1285445
– volume: 138
  start-page: 213
  year: 2023
  ident: 2024031213113560900_c48
  article-title: Significance of EMHD graphene oxide (GO) water ethylene glycol nanofluid flow in a Darcy–Forchheimer medium by machine learning algorithm
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-023-03798-5
– volume: 13
  start-page: 101573
  year: 2022
  ident: 2024031213113560900_c54
  article-title: Supervised neural networks learning algorithm for three dimensional hybrid nanofluid flow with radiative heat and mass fluxes
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.08.015
– volume: 167
  start-page: 300
  year: 2018
  ident: 2024031213113560900_c41
  article-title: Artificial intelligence techniques and their applications in drilling fluid engineering: A review
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.04.019
– volume: 112
  start-page: 983
  year: 2017
  ident: 2024031213113560900_c50
  article-title: Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.05.042
– volume: 7
  start-page: e364
  year: 2021
  ident: 2024031213113560900_c56
  article-title: A novel perceptual two layer image fusion using deep learning for imbalanced COVID-19 dataset
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.364
– volume: 9
  start-page: 025208
  year: 2019
  ident: 2024031213113560900_c49
  article-title: Magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms
  publication-title: AIP Adv.
  doi: 10.1063/1.5085742
– volume: 26
  start-page: 101168
  year: 2021
  ident: 2024031213113560900_c46
  article-title: Cattaneo–Christov heat flux model of 3D hall current involving biconvection nanofluidic flow with Darcy–Forchheimer law effect: Backpropagation neural networks approach
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101168
– volume: 7
  start-page: 116
  year: 2022
  ident: 2024031213113560900_c40
  article-title: Current trends in fluid research in the era of artificial intelligence: A review
  publication-title: Fluids
  doi: 10.3390/fluids7030116
– volume: 5
  start-page: 117121
  year: 2015
  ident: 2024031213113560900_c7
  article-title: Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction
  publication-title: AIP Adv.
  doi: 10.1063/1.4935649
– volume: 135
  start-page: 104606
  year: 2021
  ident: 2024031213113560900_c53
  article-title: HANA: A healthy artificial nutrition analysis model during COVID-19 pandemic
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104606
– volume: 236
  start-page: 1134
  year: 2022
  ident: 2024031213113560900_c10
  article-title: The electrical magnetohydrodynamic (MHD) and shape factor impacts in a mixture fluid suspended by hybrid nanoparticles between non-parallel plates
  publication-title: Proc. Inst. Mech. Eng., Part E
  doi: 10.1177/09544089211057971
– start-page: e20230001
  year: , 2023
  ident: 2024031213113560900_c11
  article-title: Numerical calculation of unsteady MHD nanofluid flow across two fluctuating discs with chemical reaction and zero mass flux
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.202300001
– volume: 61
  start-page: 2663
  year: 2022
  ident: 2024031213113560900_c20
  article-title: Application of numerical methods in micropolar fluid flow and heat transfer in permeable plates
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2021.08.040
– volume: 13
  start-page: 19093
  year: 2023
  ident: 2024031213113560900_c13
  article-title: Stagnation point flow of hybrid nanofluid flow passing over a rotating sphere subjected to thermophoretic diffusion and thermal radiation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-46353-z
– volume: 138
  start-page: 107
  year: 2023
  ident: 2024031213113560900_c51
  article-title: Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: Toward a new approach on Buongiorno’s model using artificial neural network (ANN)
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-022-03583-w
– volume: 46
  start-page: 11568
  year: 2022
  ident: 2024031213113560900_c9
  article-title: Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.8234
SSID ssj0000491084
Score 2.4092987
Snippet The Levenberg–Marquardt (LM) backpropagation optimization algorithm, an artificial neural network algorithm, is used in this study to perform integrated...
SourceID doaj
proquest
crossref
scitation
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 035224
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Back propagation
Back propagation networks
Boundary value problems
Computation
Domains
Fluid dynamics
Iterative methods
Nanofluids
Neural networks
Newton methods
Optimization
Optimization algorithms
Performance evaluation
Radiation
Regression models
Solvers
Stratification
Thermal radiation
Title Intelligent computing for electromagnetohydrodynamic bioconvection flow of micropolar nanofluid with thermal radiation and stratification: Levenberg–Marquardt backpropagation algorithm
URI http://dx.doi.org/10.1063/5.0187124
https://www.proquest.com/docview/2955870671
https://doaj.org/article/1a201c0ad6b24b46a9655378efa64d31
Volume 14
WOSCitedRecordID wos001182738500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2158-3226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491084
  issn: 2158-3226
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2158-3226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491084
  issn: 2158-3226
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQVQQXVP7EQkEWcOASNRv_xO4NUCuQaMUBpN4ij3_Kwm5SsimIC-o78DY8Dk_C2M6uthKIC5ccYjua2JPMjGf8fYQ8BfAcdOBFUNwX3GOcYmrJC2acsdppUQmbyCbq42N1cqLfblB9xZqwDA-cJ25vatBE2dI4CRUHLo2WQrBa-WAkd-kEdVXWeiOY-pj93mmp-ApKSLK9iM6JwUHFLxmghNN_ybm8hpYnJ8E37MzhDrkxOoj0eRbsJrni21vkairUtMvb5OfrNYbmQG2iZEDjQ9H1pCOjzcKctn7oPnxz-G_MfPMUZl0qL0-HGGiYd19pF-giFuOdxdiWtqbtwvx85mjcmKXRK1ygFH1ELkhjTOtohtgN4y7fPn0T0Z9ifdivix9Hpv8ctW2gYOwnfFH8UY0j56ddjw9d3CHvDw_evXxVjPwLhWWaDQWDICzGsLUFJhRY6xR3ytSGa-5i2neKLcaCdOU0BOXRt_DSQSlBg9fKsLtkq-1af49QYDpUqgQZNOPgwGiM-1SwPEivpaon5NlqUZrV_EeOjHmTkuSSNaIZ129CHq-7nmVEjj91ehFXdt0hgminG6hazahazb9Ua0J2V3rRjF_2sqm0EDE3XGPzk7Wu_F2S-_9DkgfkeoXOVK592yVbQ3_uH5Jt-2WYLftHSfXxevT94Dc1nRFS
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+computing+for+electromagnetohydrodynamic+bioconvection+flow+of+micropolar+nanofluid+with+thermal+radiation+and+stratification%3A+Levenberg%E2%80%93Marquardt+backpropagation+algorithm&rft.jtitle=AIP+advances&rft.au=Khan%2C+Zeeshan&rft.au=Alfwzan%2C+Wafa+F.&rft.au=Ali%2C+Aatif&rft.au=Innab%2C+Nisreen&rft.date=2024-03-01&rft.issn=2158-3226&rft.eissn=2158-3226&rft.volume=14&rft.issue=3&rft_id=info:doi/10.1063%2F5.0187124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0187124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon