Activity classification using accelerometers and machine learning for complex construction worker activities
Automated Construction worker activity classification has the potential to not only benefit the worker performance in terms of productivity and safety, but also the overall project management and control. The activity-level knowledge and indicators that can be extracted from this process may support...
Uložené v:
| Vydané v: | Journal of Building Engineering Ročník 35; s. 102001 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.03.2021
|
| Predmet: | |
| ISSN: | 2352-7102, 2352-7102 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Automated Construction worker activity classification has the potential to not only benefit the worker performance in terms of productivity and safety, but also the overall project management and control. The activity-level knowledge and indicators that can be extracted from this process may support project decision making, aiding in project schedule adjustment, resource management, construction site control, among others.
Previous works on this topic focused on the collection and classification of worker acceleration data using wearable accelerometers and supervised machine learning algorithms, respectively. However, most of these studies tend to consider small sets of activities performed in an instructed manner, which can lead to higher accuracy results than those expected in a real construction scenario. To this end, this paper builds on the results of these past studies, committing to expand this discussion by covering a larger set of complex Construction activities than the current state-of-the-art, while avoiding the need to instruct test subjects on how and when to perform each activity.
As such, a Machine Learning methodology was developed to train and evaluate 13 classifiers using artificial features extracted from raw accelerometer data segments. An experimental study was carried out under the form of a realistic activity-circuit to recognise ten different activities: gearing up; hammering; masonry; painting; roughcasting; sawing; screwing; sitting; standing still; and walking; with most activities being a cluster of simpler tasks (i.e. masonry includes fetching, transporting, and laying bricks). Activities were initially separated and tested in three different activity groups, before assessing all activities together. It was found that a segment length of 6 s, with a 75% overlap, enhanced the classifier performance. Feature selection was carried out to speed the algorithm running time. A nested cross-validation approach was performed for hyperparameter tuning and classifier training and testing. User-dependent and -independent approaches (differing in whether the system must undergo an additional training phase for each new user) were evaluated. Results indicate that accelerometers can be used to create a robust system to recognise large sets of Construction worker activities automatically. The K-Nearest Neighbours and Gradient Boosting algorithms were selected according to their performances, respectively, for the user-dependent and -independent scenarios. In both cases, the classifiers showed balanced accuracies above 84% for their respective approaches and test groups. Results also indicate that a user-dependent approach using task groups provides the highest accuracy.
•Acceleration-based classification of ten complex construction worker's activities.•Uninstructed data acquisition with six workers and three wearable accelerometers.•Evaluation of thirteen classifiers for subject-dependent and independent approaches.•Results prove the potential of this method in classifying large sets of activities.•Best algorithm shows an average accuracy of 93.69% in a subject-dependent approach. |
|---|---|
| AbstractList | Automated Construction worker activity classification has the potential to not only benefit the worker performance in terms of productivity and safety, but also the overall project management and control. The activity-level knowledge and indicators that can be extracted from this process may support project decision making, aiding in project schedule adjustment, resource management, construction site control, among others.
Previous works on this topic focused on the collection and classification of worker acceleration data using wearable accelerometers and supervised machine learning algorithms, respectively. However, most of these studies tend to consider small sets of activities performed in an instructed manner, which can lead to higher accuracy results than those expected in a real construction scenario. To this end, this paper builds on the results of these past studies, committing to expand this discussion by covering a larger set of complex Construction activities than the current state-of-the-art, while avoiding the need to instruct test subjects on how and when to perform each activity.
As such, a Machine Learning methodology was developed to train and evaluate 13 classifiers using artificial features extracted from raw accelerometer data segments. An experimental study was carried out under the form of a realistic activity-circuit to recognise ten different activities: gearing up; hammering; masonry; painting; roughcasting; sawing; screwing; sitting; standing still; and walking; with most activities being a cluster of simpler tasks (i.e. masonry includes fetching, transporting, and laying bricks). Activities were initially separated and tested in three different activity groups, before assessing all activities together. It was found that a segment length of 6 s, with a 75% overlap, enhanced the classifier performance. Feature selection was carried out to speed the algorithm running time. A nested cross-validation approach was performed for hyperparameter tuning and classifier training and testing. User-dependent and -independent approaches (differing in whether the system must undergo an additional training phase for each new user) were evaluated. Results indicate that accelerometers can be used to create a robust system to recognise large sets of Construction worker activities automatically. The K-Nearest Neighbours and Gradient Boosting algorithms were selected according to their performances, respectively, for the user-dependent and -independent scenarios. In both cases, the classifiers showed balanced accuracies above 84% for their respective approaches and test groups. Results also indicate that a user-dependent approach using task groups provides the highest accuracy.
•Acceleration-based classification of ten complex construction worker's activities.•Uninstructed data acquisition with six workers and three wearable accelerometers.•Evaluation of thirteen classifiers for subject-dependent and independent approaches.•Results prove the potential of this method in classifying large sets of activities.•Best algorithm shows an average accuracy of 93.69% in a subject-dependent approach. |
| ArticleNumber | 102001 |
| Author | Martins, João Poças Sousa, Hipólito Ramos, Nuno M.M. Mêda, Pedro Gonçalves, Miguel Chichorro Calvetti, Diego Sanhudo, Luís |
| Author_xml | – sequence: 1 givenname: Luís surname: Sanhudo fullname: Sanhudo, Luís email: lpnsanhudo@fe.up.pt organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal – sequence: 2 givenname: Diego surname: Calvetti fullname: Calvetti, Diego organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal – sequence: 3 givenname: João Poças surname: Martins fullname: Martins, João Poças organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal – sequence: 4 givenname: Nuno M.M. surname: Ramos fullname: Ramos, Nuno M.M. organization: CONSTRUCT-LFC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal – sequence: 5 givenname: Pedro surname: Mêda fullname: Mêda, Pedro organization: Construction Institute, CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal – sequence: 6 givenname: Miguel Chichorro surname: Gonçalves fullname: Gonçalves, Miguel Chichorro organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal – sequence: 7 givenname: Hipólito surname: Sousa fullname: Sousa, Hipólito organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal |
| BookMark | eNp9kMtOwzAQRS0EEqX0B1jlB1L8SNJGYlNVvKRKbGBtueMxOCR2ZbuF_j1JywKxqGYxD825o7lX5Nx5h4TcMDpllFW3zbTxa5xyyocBp5SdkREXJc9nfXv-p74kkxgbSimvSzGvihFpF5DszqZ9Bq2K0RoLKlnvsm207j1TANhi8B0mDDFTTmedgg_rMGtRBTfsGB8y8N2mxe8-u5jCFg4SXz58Yug1DhcsxmtyYVQbcfKbx-Tt4f51-ZSvXh6fl4tVDqIWKRdlqdW6KAxnYqZQ94FiVhVVUaMSoJVAVlS6FqIyMDeU6zVqEKbUnLIChRiT-VEXgo8xoJFg0-GtFJRtJaNyME42cjBODsbJo3E9yv-hm2A7FfanobsjhP1TO4tBRrDoALUNCElqb0_hP6I_jMk |
| CitedBy_id | crossref_primary_10_1186_s13677_024_00649_1 crossref_primary_10_1080_00140139_2022_2039410 crossref_primary_10_3390_s23177635 crossref_primary_10_1007_s10614_021_10110_z crossref_primary_10_1088_1755_1315_1101_7_072008 crossref_primary_10_3390_s24237436 crossref_primary_10_1061_JCEMD4_COENG_16072 crossref_primary_10_1016_j_autcon_2023_105104 crossref_primary_10_1016_j_autcon_2024_105300 crossref_primary_10_1061_JCEMD4_COENG_14645 crossref_primary_10_3390_s25134028 crossref_primary_10_3390_app14010090 crossref_primary_10_3390_s24144508 crossref_primary_10_1007_s12652_024_04753_7 crossref_primary_10_1061_JCEMD4_COENG_16728 crossref_primary_10_1108_ECAM_08_2024_1036 crossref_primary_10_1016_j_jobe_2022_104007 crossref_primary_10_3390_s21217147 crossref_primary_10_1016_j_jobe_2021_102404 crossref_primary_10_1007_s10462_024_10839_7 crossref_primary_10_1186_s12984_023_01167_y crossref_primary_10_3390_buildings14010219 crossref_primary_10_3390_life12081103 crossref_primary_10_1016_j_aei_2025_103203 crossref_primary_10_1016_j_autcon_2022_104148 crossref_primary_10_1007_s11831_023_09938_5 crossref_primary_10_3390_buildings12060734 crossref_primary_10_3390_buildings12030344 crossref_primary_10_3390_s24020672 crossref_primary_10_1007_s10462_024_10727_0 crossref_primary_10_3390_s22239451 crossref_primary_10_3390_buildings12081174 crossref_primary_10_1108_IJPPM_10_2022_0507 crossref_primary_10_1016_j_desal_2021_114980 crossref_primary_10_1109_TAI_2021_3105494 crossref_primary_10_1109_ACCESS_2022_3208686 crossref_primary_10_3389_fbuil_2021_721742 crossref_primary_10_3390_buildings12050533 |
| Cites_doi | 10.1080/1091367X.2016.1192038 10.1016/j.aei.2011.06.002 10.1109/TITB.2005.856863 10.1016/j.autcon.2017.08.001 10.4108/ICST.PERVASIVEHEALTH2010.8853 10.1016/S0167-9473(01)00065-2 10.1016/j.autcon.2012.12.002 10.1109/IE.2011.11 10.1109/72.991427 10.1016/j.autcon.2013.05.001 10.1061/(ASCE)CO.1943-7862.0001843 10.1061/(ASCE)CO.1943-7862.0000816 10.1061/(ASCE)CP.1943-5487.0000911 10.1061/(ASCE)CO.1943-7862.0000332 10.3390/s18072146 10.1061/(ASCE)CO.1943-7862.0001182 10.1016/j.patrec.2008.08.002 10.1109/SKIMA.2011.6089975 10.1016/j.autcon.2015.04.009 10.1061/(ASCE)CO.1943-7862.0001579 10.3390/s140406474 10.1061/(ASCE)CP.1943-5487.0000863 10.1109/MED.2009.5164574 10.1061/(ASCE)CO.1943-7862.0000827 10.1016/j.autcon.2013.06.012 10.1061/(ASCE)CO.1943-7862.0001049 10.1061/(ASCE)0733-9364(2003)129:6(680) 10.1061/(ASCE)CP.1943-5487.0000027 10.1016/j.gaitpost.2018.12.003 10.1016/j.autcon.2005.06.004 10.1016/j.ssci.2014.01.012 10.1007/s40999-019-00409-2 10.1016/j.procs.2016.09.070 10.1109/IE.2012.39 10.1023/A:1018628609742 10.1016/j.aei.2018.08.020 10.1016/j.promfg.2018.07.152 10.1016/j.autcon.2016.04.007 10.1023/A:1010933404324 10.1016/j.autcon.2011.04.019 10.1109/FGCN.2008.165 10.3390/s130709183 10.1109/BSN.2009.46 10.1016/j.autcon.2020.103361 10.1016/j.autcon.2017.05.005 10.1016/j.autcon.2017.05.002 10.1061/(ASCE)CP.1943-5487.0000097 10.3390/s16010115 10.1016/j.autcon.2017.01.020 10.1109/WSC.2015.7408495 10.1016/j.aei.2015.03.001 10.1061/(ASCE)0733-9364(2003)129:4(437) 10.1016/j.autcon.2014.08.003 10.1016/j.autcon.2016.08.015 10.1108/IJPPM-05-2013-0099 10.1016/j.aei.2009.06.011 10.1016/j.autcon.2011.05.005 10.1007/s10994-006-6226-1 10.1016/S0926-5805(03)00057-8 10.1016/j.aei.2013.09.001 10.1061/(ASCE)CP.1943-5487.0000222 10.1080/01446193.2013.831463 10.1016/j.autcon.2017.04.010 10.1080/01446193.2013.848995 10.3390/s16040426 10.1016/j.aei.2015.02.001 10.1016/j.ssci.2015.12.012 10.1016/j.aei.2010.06.008 10.1109/PERCOM.2016.7456521 10.1016/j.autcon.2017.06.005 10.1061/(ASCE)0733-9364(2005)131:2(230) 10.1007/BF02348434 10.1109/TBCAS.2011.2160540 10.1061/(ASCE)0887-3801(2007)21:4(238) 10.1145/1964897.1964918 10.1016/j.autcon.2012.02.015 10.1016/j.autcon.2011.05.001 10.1061/(ASCE)CP.1943-5487.0000337 10.1088/0967-3334/30/4/R01 10.1061/(ASCE)CO.1943-7862.0001208 10.3390/s151229858 10.1093/bioinformatics/btm344 10.1109/72.159058 10.1016/j.autcon.2012.08.003 10.1080/00031305.1992.10475879 10.1061/(ASCE)0887-3801(2007)21:1(11) 10.1007/s00779-010-0293-9 10.1016/j.ins.2013.01.029 10.1007/978-3-540-24646-6_1 10.1136/oem.2004.018135 10.1016/j.apergo.2015.11.020 10.1109/BSN.2010.23 10.3390/s18082667 10.1109/SAI.2014.6918213 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jobe.2020.102001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-7102 |
| ExternalDocumentID | 10_1016_j_jobe_2020_102001 S2352710220336330 |
| GroupedDBID | --M 0R~ 4.4 457 7-5 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ABXDB ACDAQ ACGFS ACHRH ACNTT ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FEDTE FIRID FYGXN GBLVA HVGLF KOM M41 O9- OAUVE ROL SPC SPCBC SSB SSL SST SSZ T5K ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG |
| ID | FETCH-LOGICAL-c393t-355dab44f2137aededee3764649ea3cda3e146d9336fc8f02dbedc3f5d2014e33 |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618180400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-7102 |
| IngestDate | Sat Nov 29 06:11:54 EST 2025 Tue Nov 18 20:47:34 EST 2025 Sat Feb 22 15:43:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Supervised machine learning Productivity analysis Activity classification Wearable accelerometers Construction workers |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c393t-355dab44f2137aededee3764649ea3cda3e146d9336fc8f02dbedc3f5d2014e33 |
| OpenAccessLink | http://hdl.handle.net/10216/158161 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jobe_2020_102001 crossref_primary_10_1016_j_jobe_2020_102001 elsevier_sciencedirect_doi_10_1016_j_jobe_2020_102001 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Building Engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Haykin (bib129) 2010 Chernbumroong, Atkins, Yu (bib63) 2011 5th Sztyler, Stuckenschmidt (bib83) 2016 Umer (bib101) 2017; 143 Akhavian, Behzadan (bib23) 2016; 71 Stewart, Meyers (bib15) 2002 Ravi (bib75) 2005 Hassoun (bib128) 1995 Tsai (bib97) 2014; 66 Aft (bib20) 1983 Dietterich (bib140) 2002; vol. 2 Khoury (bib93) 2015; 56 Joshua, Varghese (bib91) 2014 Suykens, Vandewalle (bib131) 1999; 9 Jaselskis, El-Misalami (bib28) 2003; 129 Farrahi (bib111) 2019; 68 Pal, Mitra (bib130) 1992; 3 Zou, Kim (bib51) 2007; 21 Valero (bib100) 2017; 83 Memarzadeh, Golparvar-Fard, Niebles (bib52) 2013; 32 Golparvar-Fard, Heydarian, Niebles (bib13) 2013; 27 Freund, Schapire (bib136) 1996 Hsu, Lin (bib132) 2002; 13 Friedman (bib137) 2001 Han, Lee (bib58) 2013; 35 Sherafat (bib39) 2020; 146 Bao, Intille (bib73) 2004 Yang (bib80) 2015 Nasir (bib2) 2014; 32 Lee, Scarpiniti, Uncini (bib41) 2020; 34 Cheng (bib45) 2017; 81 Kim (bib49) 2009 Weerasinghe, Ruwanpura (bib50) 2009 Alvarez-Alvarez, Alonso, Trivino (bib103) 2013; 233 Rashid, Louis (bib40) 2020; 119 Banos (bib112) 2014; 14 Saeys, Inza, Larrañaga (bib121) 2007; 23 Goodrum, McLaren, Durfee (bib32) 2006; 15 Friedman (bib138) 2002; 38 Ryu (bib6) 2019; 145 Calvetti (bib24) 2019 Dietterich (bib139) 2000 Ordóñez, Roggen (bib82) 2016; 16 Figo (bib118) 2010; 14 Cawley, Talbot (bib142) 2010; 11 Pirttikangas, Fujinami, Nakajima (bib123) 2006 Darren Graham, Smith, Dunlop (bib113) 2005; 131 Oloufa, Ikeda, Oda (bib27) 2003; 12 Carbonari, Giretti, Naticchia (bib34) 2011; 20 Hong (bib67) 2008 Lim (bib98) 2016; 142 Nasrabadi (bib124) 2007; 16 Sink (bib21) 1985 Montoye (bib110) 2016; 20 Jebelli, Ahn, Stentz (bib102) 2016; 84 Gao (bib3) 2014; 140 Akhavian, Behzadan (bib22) 2015 Krassnig (bib68) 2010 Atallah (bib109) 2011; 5 Khosrowpour, Niebles, Golparvar-Fard (bib60) 2014; 48 Attal (bib78) 2015; 15 Niebel, Freivalds (bib16) 2009 Cheng (bib48) 2017 Altman (bib125) 1992; 46 Tao (bib77) 2018; 26 Cleland (bib107) 2013; 13 Chen, Qiu, Ahn (bib79) 2017; 77 Yang (bib92) 2017; 82 Hall (bib120) 1999 Montaser, Moselhi (bib30) 2012 Ahn, Lee, Peña-Mora (bib94) 2013; 29 Akhavian, Behzadan (bib89) 2018; 23 Akhavian, Brito, Behzadan (bib25) 2015 Kwapisz, Weiss, Moore (bib71) 2011; 12 Akhavian, Behzadan (bib5) 2015; 29 Arndt (bib7) 2005; 62 Ahn, Lee, Peña-Mora (bib95) 2013 Yang (bib55) 2010; 24 Parkka (bib74) 2006; 10 Valero (bib99) 2016; 54 Teizer, Vela (bib54) 2009; 23 Gong, Caldas (bib62) 2011; 20 Cheng (bib36) 2013; 27 Li (bib70) 2009 Khan (bib119) 2011 Koskimaki (bib66) 2009 Atallah (bib108) 2010 Yang, Wang, Chen (bib65) 2008; 29 Hamdy Ali, Atia, Sami (bib104) 2014 Gatti (bib10) 2014; 32 Montaser, Moselhi (bib29) 2014; 39 Yu (bib59) 2017; 82 Cho, Lee, Zhang (bib42) 2017 Preece (bib115) 2009; 30 Dernbach (bib76) 2012 Re, Valentini (bib141) 2012 Erdaş (bib85) 2016; 98 Pedregosa (bib105) 2011; 12 Cheng (bib46) 2016 Ergen (bib33) 2007; 21 Adrian (bib19) 1995 Zheng, Wang, Ordieres-Meré (bib87) 2018; 18 Gilbreth (bib18) 1911 Gong, Caldas (bib1) 2010; 24 Peddi (bib56) 2009 Dadi (bib4) 2014; 140 Cheng (bib9) 2013; 29 Taneja (bib14) 2011; 137 Khalid, Khalil, Nasreen (bib117) 2014 Groover (bib17) 2007 Sherafat (bib44) 2019 Orth, Welty, Jenkins (bib12) 2006 Seo, Lee, Seo (bib8) 2016; 142 Seo (bib37) 2015; 29 Gjoreski, Lustrek, Gams (bib106) 2011 Geurts, Ernst, Wehenkel (bib134) 2006; 63 Sabillon (bib43) 2020; 34 Cheng (bib47) 2019; 17 Yang (bib96) 2019 Breiman (bib133) 2001; 45 Zhang (bib38) 2018 Zhang (bib84) 2018; 18 Navon, Goldschmidt (bib26) 2003; 129 Cheng (bib35) 2011; 20 Costin, Pradhananga, Teizer (bib31) 2012; 24 Nath, Chaspari, Behzadan (bib86) 2018; 38 Frank (bib69) 2010 DeVaul, Dunn (bib114) 2001 Guyon, Elisseeff (bib122) 2003; 3 Freund, Schapire, Abe (bib135) 1999; 14 Zhu, Ren, Chen (bib53) 2017; 81 Guyon (bib116) 2008; vol. 207 Brodersen (bib143) 2010 Gong, Caldas, Gordon (bib61) 2011; 25 Friedman, Hastie, Tibshirani (bib127) 2001; vol. 1 Akhavian, Behzadan (bib88) 2016 Shoaib (bib64) 2016; 16 Gonsalves, Teizer (bib57) 2009 Yang (bib81) 2016; 68 Joshua, Varghese (bib11) 2010; 25 Mathie (bib72) 2003; 41 Ryu (bib90) 2016 Sutton (bib126) 2012 Sabillon (10.1016/j.jobe.2020.102001_bib43) 2020; 34 Atallah (10.1016/j.jobe.2020.102001_bib109) 2011; 5 Pal (10.1016/j.jobe.2020.102001_bib130) 1992; 3 DeVaul (10.1016/j.jobe.2020.102001_bib114) 2001 Hong (10.1016/j.jobe.2020.102001_bib67) 2008 Teizer (10.1016/j.jobe.2020.102001_bib54) 2009; 23 Banos (10.1016/j.jobe.2020.102001_bib112) 2014; 14 Dietterich (10.1016/j.jobe.2020.102001_bib139) 2000 Stewart (10.1016/j.jobe.2020.102001_bib15) 2002 Suykens (10.1016/j.jobe.2020.102001_bib131) 1999; 9 Yang (10.1016/j.jobe.2020.102001_bib81) 2016; 68 Nasir (10.1016/j.jobe.2020.102001_bib2) 2014; 32 Hall (10.1016/j.jobe.2020.102001_bib120) 1999 Haykin (10.1016/j.jobe.2020.102001_bib129) 2010 Joshua (10.1016/j.jobe.2020.102001_bib11) 2010; 25 Akhavian (10.1016/j.jobe.2020.102001_bib23) 2016; 71 Cheng (10.1016/j.jobe.2020.102001_bib45) 2017; 81 Chen (10.1016/j.jobe.2020.102001_bib79) 2017; 77 Aft (10.1016/j.jobe.2020.102001_bib20) 1983 Golparvar-Fard (10.1016/j.jobe.2020.102001_bib13) 2013; 27 Taneja (10.1016/j.jobe.2020.102001_bib14) 2011; 137 Zou (10.1016/j.jobe.2020.102001_bib51) 2007; 21 Ryu (10.1016/j.jobe.2020.102001_bib6) 2019; 145 Li (10.1016/j.jobe.2020.102001_bib70) 2009 Valero (10.1016/j.jobe.2020.102001_bib100) 2017; 83 Yu (10.1016/j.jobe.2020.102001_bib59) 2017; 82 Han (10.1016/j.jobe.2020.102001_bib58) 2013; 35 Cheng (10.1016/j.jobe.2020.102001_bib46) 2016 Friedman (10.1016/j.jobe.2020.102001_bib138) 2002; 38 Breiman (10.1016/j.jobe.2020.102001_bib133) 2001; 45 Cho (10.1016/j.jobe.2020.102001_bib42) 2017 Pedregosa (10.1016/j.jobe.2020.102001_bib105) 2011; 12 Gilbreth (10.1016/j.jobe.2020.102001_bib18) 1911 Pirttikangas (10.1016/j.jobe.2020.102001_bib123) 2006 Gong (10.1016/j.jobe.2020.102001_bib1) 2010; 24 Valero (10.1016/j.jobe.2020.102001_bib99) 2016; 54 Krassnig (10.1016/j.jobe.2020.102001_bib68) 2010 Parkka (10.1016/j.jobe.2020.102001_bib74) 2006; 10 Darren Graham (10.1016/j.jobe.2020.102001_bib113) 2005; 131 Gong (10.1016/j.jobe.2020.102001_bib61) 2011; 25 Figo (10.1016/j.jobe.2020.102001_bib118) 2010; 14 Weerasinghe (10.1016/j.jobe.2020.102001_bib50) 2009 Chernbumroong (10.1016/j.jobe.2020.102001_bib63) 2011 Shoaib (10.1016/j.jobe.2020.102001_bib64) 2016; 16 Atallah (10.1016/j.jobe.2020.102001_bib108) 2010 Zheng (10.1016/j.jobe.2020.102001_bib87) 2018; 18 Altman (10.1016/j.jobe.2020.102001_bib125) 1992; 46 Khalid (10.1016/j.jobe.2020.102001_bib117) 2014 Joshua (10.1016/j.jobe.2020.102001_bib91) 2014 Geurts (10.1016/j.jobe.2020.102001_bib134) 2006; 63 Lim (10.1016/j.jobe.2020.102001_bib98) 2016; 142 Ergen (10.1016/j.jobe.2020.102001_bib33) 2007; 21 Calvetti (10.1016/j.jobe.2020.102001_bib24) 2019 Re (10.1016/j.jobe.2020.102001_bib141) 2012 Costin (10.1016/j.jobe.2020.102001_bib31) 2012; 24 Brodersen (10.1016/j.jobe.2020.102001_bib143) 2010 Koskimaki (10.1016/j.jobe.2020.102001_bib66) 2009 Montaser (10.1016/j.jobe.2020.102001_bib29) 2014; 39 Adrian (10.1016/j.jobe.2020.102001_bib19) 1995 Gjoreski (10.1016/j.jobe.2020.102001_bib106) 2011 Ordóñez (10.1016/j.jobe.2020.102001_bib82) 2016; 16 Dadi (10.1016/j.jobe.2020.102001_bib4) 2014; 140 Arndt (10.1016/j.jobe.2020.102001_bib7) 2005; 62 Sherafat (10.1016/j.jobe.2020.102001_bib44) 2019 Zhang (10.1016/j.jobe.2020.102001_bib84) 2018; 18 Saeys (10.1016/j.jobe.2020.102001_bib121) 2007; 23 Cheng (10.1016/j.jobe.2020.102001_bib35) 2011; 20 Hamdy Ali (10.1016/j.jobe.2020.102001_bib104) 2014 Zhu (10.1016/j.jobe.2020.102001_bib53) 2017; 81 Bao (10.1016/j.jobe.2020.102001_bib73) 2004 Rashid (10.1016/j.jobe.2020.102001_bib40) 2020; 119 Oloufa (10.1016/j.jobe.2020.102001_bib27) 2003; 12 Yang (10.1016/j.jobe.2020.102001_bib65) 2008; 29 Cheng (10.1016/j.jobe.2020.102001_bib48) 2017 Akhavian (10.1016/j.jobe.2020.102001_bib25) 2015 Ahn (10.1016/j.jobe.2020.102001_bib95) 2013 Khan (10.1016/j.jobe.2020.102001_bib119) 2011 Freund (10.1016/j.jobe.2020.102001_bib136) 1996 Niebel (10.1016/j.jobe.2020.102001_bib16) 2009 Alvarez-Alvarez (10.1016/j.jobe.2020.102001_bib103) 2013; 233 Akhavian (10.1016/j.jobe.2020.102001_bib22) 2015 Lee (10.1016/j.jobe.2020.102001_bib41) 2020; 34 Friedman (10.1016/j.jobe.2020.102001_bib137) 2001 Dietterich (10.1016/j.jobe.2020.102001_bib140) 2002; vol. 2 Ahn (10.1016/j.jobe.2020.102001_bib94) 2013; 29 Montaser (10.1016/j.jobe.2020.102001_bib30) 2012 Tao (10.1016/j.jobe.2020.102001_bib77) 2018; 26 Hsu (10.1016/j.jobe.2020.102001_bib132) 2002; 13 Jebelli (10.1016/j.jobe.2020.102001_bib102) 2016; 84 Preece (10.1016/j.jobe.2020.102001_bib115) 2009; 30 Yang (10.1016/j.jobe.2020.102001_bib96) 2019 Friedman (10.1016/j.jobe.2020.102001_bib127) 2001; vol. 1 Memarzadeh (10.1016/j.jobe.2020.102001_bib52) 2013; 32 Groover (10.1016/j.jobe.2020.102001_bib17) 2007 Zhang (10.1016/j.jobe.2020.102001_bib38) 2018 Nath (10.1016/j.jobe.2020.102001_bib86) 2018; 38 Cheng (10.1016/j.jobe.2020.102001_bib9) 2013; 29 Dernbach (10.1016/j.jobe.2020.102001_bib76) 2012 Akhavian (10.1016/j.jobe.2020.102001_bib88) 2016 Nasrabadi (10.1016/j.jobe.2020.102001_bib124) 2007; 16 Cheng (10.1016/j.jobe.2020.102001_bib36) 2013; 27 Freund (10.1016/j.jobe.2020.102001_bib135) 1999; 14 Ravi (10.1016/j.jobe.2020.102001_bib75) 2005 Carbonari (10.1016/j.jobe.2020.102001_bib34) 2011; 20 Cheng (10.1016/j.jobe.2020.102001_bib47) 2019; 17 Gonsalves (10.1016/j.jobe.2020.102001_bib57) 2009 Sink (10.1016/j.jobe.2020.102001_bib21) 1985 Yang (10.1016/j.jobe.2020.102001_bib80) 2015 Akhavian (10.1016/j.jobe.2020.102001_bib5) 2015; 29 Montoye (10.1016/j.jobe.2020.102001_bib110) 2016; 20 Peddi (10.1016/j.jobe.2020.102001_bib56) 2009 Gatti (10.1016/j.jobe.2020.102001_bib10) 2014; 32 Cawley (10.1016/j.jobe.2020.102001_bib142) 2010; 11 Seo (10.1016/j.jobe.2020.102001_bib8) 2016; 142 Kim (10.1016/j.jobe.2020.102001_bib49) 2009 Tsai (10.1016/j.jobe.2020.102001_bib97) 2014; 66 Jaselskis (10.1016/j.jobe.2020.102001_bib28) 2003; 129 Attal (10.1016/j.jobe.2020.102001_bib78) 2015; 15 Khoury (10.1016/j.jobe.2020.102001_bib93) 2015; 56 Ryu (10.1016/j.jobe.2020.102001_bib90) 2016 Umer (10.1016/j.jobe.2020.102001_bib101) 2017; 143 Navon (10.1016/j.jobe.2020.102001_bib26) 2003; 129 Mathie (10.1016/j.jobe.2020.102001_bib72) 2003; 41 Orth (10.1016/j.jobe.2020.102001_bib12) 2006 Goodrum (10.1016/j.jobe.2020.102001_bib32) 2006; 15 Yang (10.1016/j.jobe.2020.102001_bib92) 2017; 82 Guyon (10.1016/j.jobe.2020.102001_bib116) 2008; vol. 207 Gong (10.1016/j.jobe.2020.102001_bib62) 2011; 20 Yang (10.1016/j.jobe.2020.102001_bib55) 2010; 24 Guyon (10.1016/j.jobe.2020.102001_bib122) 2003; 3 Sutton (10.1016/j.jobe.2020.102001_bib126) 2012 Cleland (10.1016/j.jobe.2020.102001_bib107) 2013; 13 Gao (10.1016/j.jobe.2020.102001_bib3) 2014; 140 Seo (10.1016/j.jobe.2020.102001_bib37) 2015; 29 Frank (10.1016/j.jobe.2020.102001_bib69) 2010 Farrahi (10.1016/j.jobe.2020.102001_bib111) 2019; 68 Erdaş (10.1016/j.jobe.2020.102001_bib85) 2016; 98 Sherafat (10.1016/j.jobe.2020.102001_bib39) 2020; 146 Kwapisz (10.1016/j.jobe.2020.102001_bib71) 2011; 12 Hassoun (10.1016/j.jobe.2020.102001_bib128) 1995 Khosrowpour (10.1016/j.jobe.2020.102001_bib60) 2014; 48 Akhavian (10.1016/j.jobe.2020.102001_bib89) 2018; 23 Sztyler (10.1016/j.jobe.2020.102001_bib83) 2016 |
| References_xml | – year: 2009 ident: bib49 article-title: Measuring Construction Productivity Using the Write System. In Construction Research Congress publication-title: Building a Sustainable Future – volume: 137 start-page: 870 year: 2011 end-page: 881 ident: bib14 article-title: Sensing and field data capture for construction and facility operations publication-title: J. Construct. Eng. Manag. – volume: 20 start-page: 686 year: 2011 end-page: 698 ident: bib34 article-title: A proactive system for real-time safety management in construction sites publication-title: Autom. ConStruct. – volume: 16 year: 2007 ident: bib124 article-title: Pattern recognition and machine learning publication-title: J. Electron. Imag. – volume: 82 start-page: 193 year: 2017 end-page: 206 ident: bib59 article-title: An experimental study of real-time identification of construction workers' unsafe behaviors publication-title: Autom. ConStruct. – volume: 20 start-page: 173 year: 2016 end-page: 183 ident: bib110 article-title: Comparison of activity type classification accuracy from accelerometers worn on the hip, wrists, and thigh in young, apparently healthy adults publication-title: Meas. Phys. Educ. Exerc. Sci. – start-page: 148 year: 2015 end-page: 155 ident: bib80 article-title: Threshold-based Approach to Detect Near-Miss Falls of Iron Workers Using Inertial Measurement Units, in Computing in Civil Engineering – year: 2011 ident: bib119 article-title: A Feature Extraction Method for Realtime Human Activity Recognition on Cell Phones. In Proceedings of 3rd International Symposium on Quality of Life Technology (isQoLT 2011) – year: 2019 ident: bib44 article-title: Automated Activity Recognition of Construction Equipment Using a Data Fusion Approach – year: 2016 ident: bib46 article-title: Audio Signal Processing for Activity Recognition of Construction Heavy Equipment. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction – year: 1996 ident: bib136 article-title: Schapire R: Experiments with a new boosting algorithm publication-title: Thirteenth International Conference on ML – volume: 23 start-page: 452 year: 2009 end-page: 462 ident: bib54 article-title: Personnel tracking on construction sites using video cameras publication-title: Adv. Eng. Inf. – volume: 81 start-page: 161 year: 2017 end-page: 171 ident: bib53 article-title: Integrated detection and tracking of workforce and equipment from construction jobsite videos publication-title: Autom. ConStruct. – year: 2010 ident: bib143 article-title: The balanced accuracy and its posterior distribution publication-title: 2010 20th International Conference on Pattern Recognition – volume: 12 start-page: 74 year: 2011 end-page: 82 ident: bib71 article-title: Activity recognition using cell phone accelerometers publication-title: ACM SigKDD Explor. Newsl. – volume: 25 start-page: 771 year: 2011 end-page: 782 ident: bib61 article-title: Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models publication-title: Adv. Eng. Inf. – volume: 13 year: 2013 ident: bib107 article-title: Optimal placement of accelerometers for the detection of everyday activities publication-title: Sensors – year: 2009 ident: bib66 article-title: Activity Recognition Using a Wrist-Worn Inertial Measurement Unit: A Case Study for Industrial Assembly Lines publication-title: 17th Mediterranean Conference on Control and Automation – year: 1999 ident: bib120 article-title: Correlation-based Feature Selection for Machine Learning – volume: 18 start-page: 2146 year: 2018 ident: bib87 article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0 publication-title: Sensors – volume: 77 start-page: 67 year: 2017 end-page: 81 ident: bib79 article-title: Construction worker's awkward posture recognition through supervised motion tensor decomposition publication-title: Autom. ConStruct. – volume: 5 start-page: 320 year: 2011 end-page: 329 ident: bib109 article-title: Sensor positioning for activity recognition using wearable accelerometers publication-title: IEEE Trans. Biomed. Circ. Syst. – year: 2011 ident: bib106 article-title: Accelerometer Placement for Posture Recognition and Fall Detection publication-title: Seventh International Conference on Intelligent Environments – year: 2014 ident: bib117 article-title: A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning publication-title: Science and Information Conference – start-page: 326 year: 2017 end-page: 334 ident: bib42 article-title: Sound Recognition Techniques for Multi-Layered Construction Activities and Events, in Computing in Civil Engineering – year: 2005 ident: bib75 article-title: Activity Recognition from Accelerometer Data – volume: 24 start-page: 1 year: 2012 end-page: 15 ident: bib31 article-title: Leveraging passive RFID technology for construction resource field mobility and status monitoring in a high-rise renovation project publication-title: Autom. ConStruct. – year: 2001 ident: bib114 article-title: Real-time Motion Classification for Wearable Computing Applications – year: 1985 ident: bib21 article-title: Productivity Management: Planning, Measurement and Evaluation, Control and Improvement – volume: 27 start-page: 320 year: 2013 end-page: 335 ident: bib36 article-title: Data fusion of real-time location sensing and physiological status monitoring for ergonomics analysis of construction workers publication-title: J. Comput. Civ. Eng. – volume: 29 year: 2013 ident: bib94 article-title: Application of low-cost accelerometers for measuring the operational efficiency of a construction equipment fleet publication-title: J. Comput. Civ. Eng. – volume: 54 start-page: 120 year: 2016 end-page: 130 ident: bib99 article-title: Musculoskeletal disorders in construction: a review and a novel system for activity tracking with body area network publication-title: Appl. Ergon. – volume: 32 start-page: 24 year: 2013 end-page: 37 ident: bib52 article-title: Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors publication-title: Autom. ConStruct. – year: 1983 ident: bib20 article-title: Productivity Measurement and Improvement – year: 2009 ident: bib50 article-title: Automated Data Acquisition System to Assess Construction Worker Performance. In Construction Research Congress publication-title: Building a Sustainable Future – volume: 13 start-page: 415 year: 2002 end-page: 425 ident: bib132 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Network. – volume: 16 start-page: 115 year: 2016 ident: bib82 article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors – volume: 15 start-page: 31314 year: 2015 end-page: 31338 ident: bib78 article-title: Physical human activity recognition using wearable sensors publication-title: Sensors – year: 2016 ident: bib88 article-title: Productivity analysis of construction worker activities using smartphone sensors publication-title: Proc., 16th Int. Conf. Comput. Civil Building Eng. – year: 2010 ident: bib108 article-title: Sensor Placement for Activity Detection Using Wearable Accelerometers publication-title: International Conference on Body Sensor Networks – year: 2006 ident: bib12 article-title: Analyzing Labor Productivity through Work Sampling. In Proceedings of the 42nd Annual Conference of the Associated Schools of Construction – volume: 20 start-page: 1173 year: 2011 end-page: 1184 ident: bib35 article-title: Performance evaluation of ultra wideband technology for construction resource location tracking in harsh environments publication-title: Autom. ConStruct. – volume: 83 start-page: 48 year: 2017 end-page: 55 ident: bib100 article-title: Analysis of construction trade worker body motions using a wearable and wireless motion sensor network publication-title: Autom. ConStruct. – year: 2014 ident: bib91 article-title: Automated recognition of construction labour activity using accelerometers in field situations publication-title: Int. J. Prod. Perform. Manag. – volume: 30 start-page: R1 year: 2009 ident: bib115 article-title: Activity identification using body-mounted sensors—a review of classification techniques publication-title: Physiol. Meas. – volume: 48 start-page: 74 year: 2014 end-page: 87 ident: bib60 article-title: Vision-based workface assessment using depth images for activity analysis of interior construction operations publication-title: Autom. ConStruct. – volume: 82 start-page: 166 year: 2017 end-page: 178 ident: bib92 article-title: Collective sensing of workers' gait patterns to identify fall hazards in construction publication-title: Autom. ConStruct. – volume: 18 start-page: 2667 year: 2018 ident: bib84 article-title: Research on construction workers' activity recognition based on smartphone publication-title: Sensors – volume: 84 start-page: 161 year: 2016 end-page: 170 ident: bib102 article-title: Fall risk analysis of construction workers using inertial measurement units: validating the usefulness of the postural stability metrics in construction publication-title: Saf. Sci. – year: 2014 ident: bib104 article-title: A Comparative Study of User Dependent and Independent Accelerometer-Based Gesture Recognition Algorithms. In Distributed, Ambient, and Pervasive Interactions – volume: 145 year: 2019 ident: bib6 article-title: Automated action recognition using an accelerometer-embedded wristband-type activity tracker publication-title: J. Construct. Eng. Manag. – volume: 39 start-page: 167 year: 2014 end-page: 179 ident: bib29 article-title: RFID indoor location identification for construction projects publication-title: Autom. ConStruct. – year: 2015 ident: bib25 article-title: Integrated Mobile Sensor-Based Activity Recognition of Construction Equipment and Human Crews. In Proceedings of the 2015 Conference on Autonomous and Robotic Construction of Infrastructure – volume: 119 start-page: 103361 year: 2020 ident: bib40 article-title: Activity identification in modular construction using audio signals and machine learning publication-title: Autom. ConStruct. – start-page: 563 year: 2012 end-page: 594 ident: bib141 article-title: Ensemble Methods: A Review – year: 2015 ident: bib22 article-title: Wearable Sensor-Based Activity Recognition for Data-Driven Simulation of Construction Workers' Activities publication-title: Winter Simulation Conference – year: 2009 ident: bib57 article-title: Human motion analysis using 3D range imaging technology publication-title: Int. Symp. on Automation and Robotics in Construction – volume: 20 start-page: 1211 year: 2011 end-page: 1226 ident: bib62 article-title: An object recognition, tracking, and contextual reasoning-based video interpretation method for rapid productivity analysis of construction operations publication-title: Autom. ConStruct. – volume: 143 year: 2017 ident: bib101 article-title: Identification of biomechanical risk factors for the development of lower-back disorders during manual rebar tying publication-title: J. Construct. Eng. Manag. – volume: vol. 207 year: 2008 ident: bib116 publication-title: Feature Extraction: Foundations and Applications – year: 1995 ident: bib128 article-title: Fundamentals of Artificial Neural Networks – year: 2010 ident: bib69 article-title: Reliable Real-Time Recognition of Motion Related Human Activities Using MEMS Inertial Sensors – volume: 142 year: 2016 ident: bib98 article-title: Artificial neural network–based slip-trip classifier using smart sensor for construction workplace publication-title: J. Construct. Eng. Manag. – year: 2019 ident: bib24 article-title: Sensing Technologies Embedding Construction Workers Outcomes/key Performance Indicators – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bib134 article-title: Extremely randomized trees publication-title: Mach. Learn. – volume: 32 start-page: 548 year: 2014 end-page: 564 ident: bib10 article-title: An exploratory study of the relationship between construction workforce physical strain and task level productivity publication-title: Construct. Manag. Econ. – volume: 34 year: 2020 ident: bib41 article-title: Advanced sound classifiers and performance analyses for accurate audio-based construction project monitoring publication-title: J. Comput. Civ. Eng. – volume: 15 start-page: 292 year: 2006 end-page: 302 ident: bib32 article-title: The application of active radio frequency identification technology for tool tracking on construction job sites publication-title: Autom. ConStruct. – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: bib125 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Statistician – year: 2000 ident: bib139 article-title: Ensemble Methods in Machine Learning. In International Workshop on Multiple Classifier Systems – volume: 131 start-page: 230 year: 2005 end-page: 238 ident: bib113 article-title: Lognormal distribution provides an optimum representation of the concrete delivery and placement process publication-title: J. Construct. Eng. Manag. – volume: 25 start-page: 370 year: 2010 end-page: 379 ident: bib11 article-title: Accelerometer-based activity recognition in construction publication-title: J. Comput. Civ. Eng. – start-page: 1 year: 2012 end-page: 10 ident: bib126 article-title: Introduction to K Nearest Neighbour Classification and Condensed Nearest Neighbour Data Reduction – start-page: 358 year: 2018 end-page: 366 ident: bib38 article-title: A supervised machine learning-based sound identification for construction activity monitoring and performance evaluation publication-title: Construct. Res. Congr. – volume: 29 start-page: 2213 year: 2008 end-page: 2220 ident: bib65 article-title: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers publication-title: Pattern Recogn. Lett. – volume: 27 start-page: 652 year: 2013 end-page: 663 ident: bib13 article-title: Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers publication-title: Adv. Eng. Inf. – volume: 14 start-page: 1612 year: 1999 ident: bib135 article-title: A short introduction to boosting publication-title: J. Jpn. Soc. Artif. Intell. – volume: 11 start-page: 2079 year: 2010 end-page: 2107 ident: bib142 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib133 article-title: Random forests publication-title: Mach. Learn. – year: 2004 ident: bib73 article-title: Activity Recognition from User-Annotated Acceleration Data publication-title: International Conference on Pervasive Computing – volume: 81 start-page: 240 year: 2017 end-page: 253 ident: bib45 article-title: Activity analysis of construction equipment using audio signals and support vector machines publication-title: Autom. ConStruct. – volume: 32 start-page: 595 year: 2014 end-page: 607 ident: bib2 article-title: An analysis of construction productivity differences between Canada and the United States publication-title: Construct. Manag. Econ. – volume: 21 start-page: 11 year: 2007 end-page: 20 ident: bib33 article-title: Tracking components and maintenance history within a facility utilizing radio frequency identification technology publication-title: J. Comput. Civ. Eng. – volume: 3 start-page: 683 year: 1992 end-page: 697 ident: bib130 article-title: Multilayer perceptron, fuzzy sets, and classification publication-title: IEEE Trans. Neural Network. – volume: 29 start-page: 239 year: 2015 end-page: 251 ident: bib37 article-title: Computer vision techniques for construction safety and health monitoring publication-title: Adv. Eng. Inf. – year: 2008 ident: bib67 article-title: Activity Recognition Using Wearable Sensors for Elder Care publication-title: Second International Conference on Future Generation Communication and Networking – volume: 38 start-page: 514 year: 2018 end-page: 526 ident: bib86 article-title: Automated ergonomic risk monitoring using body-mounted sensors and machine learning publication-title: Adv. Eng. Inf. – volume: 68 start-page: 285 year: 2019 end-page: 299 ident: bib111 article-title: Calibration and validation of accelerometer-based activity monitors: a systematic review of machine-learning approaches publication-title: Gait Posture – volume: 66 start-page: 19 year: 2014 end-page: 26 ident: bib97 article-title: Automatically determining accidental falls in field surveying: a case study of integrating accelerometer determination and image recognition publication-title: Saf. Sci. – volume: 71 start-page: 198 year: 2016 end-page: 209 ident: bib23 article-title: Smartphone-based construction workers' activity recognition and classification publication-title: Autom. ConStruct. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib131 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – year: 2010 ident: bib68 article-title: User-friendly System for Recognition of Activities with an Accelerometer publication-title: 4th International Conference on Pervasive Computing Technologies for Healthcare – volume: 23 start-page: 1 year: 2018 end-page: 15 ident: bib89 article-title: Coupling human activity recognition and wearable sensors for data-driven construction simulation publication-title: ITcon – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: bib121 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 12 start-page: 737 year: 2003 end-page: 748 ident: bib27 article-title: Situational awareness of construction equipment using GPS, wireless and web technologies publication-title: Autom. ConStruct. – volume: 24 start-page: 252 year: 2010 end-page: 263 ident: bib1 article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations publication-title: J. Comput. Civ. Eng. – volume: 129 start-page: 437 year: 2003 end-page: 445 ident: bib26 article-title: Can labor inputs be measured and controlled automatically? publication-title: J. Construct. Eng. Manag. – year: 2012 ident: bib30 article-title: RFID+ for Tracking Earthmoving Operations. In Construction Research Congress 2012: Construction Challenges in a Flat World – year: 2016 ident: bib90 article-title: Action recognition using a wristband-type activity tracker: case study of masonry work publication-title: Construct. Res. Congr. – volume: vol. 1 year: 2001 ident: bib127 publication-title: The Elements of Statistical Learning – volume: 14 start-page: 645 year: 2010 end-page: 662 ident: bib118 article-title: Preprocessing techniques for context recognition from accelerometer data publication-title: Personal Ubiquitous Comput. – volume: 129 start-page: 680 year: 2003 end-page: 688 ident: bib28 article-title: Implementing radio frequency identification in the construction process publication-title: J. Construct. Eng. Manag. – volume: 24 start-page: 428 year: 2010 end-page: 434 ident: bib55 article-title: Tracking multiple workers on construction sites using video cameras publication-title: Adv. Eng. Inf. – volume: 146 year: 2020 ident: bib39 article-title: Automated methods for activity recognition of construction workers and equipment: state-of-the-art review publication-title: J. Construct. Eng. Manag. – volume: vol. 2 start-page: 110 year: 2002 end-page: 125 ident: bib140 article-title: Ensemble learning publication-title: The Handbook of Brain Theory and Neural Networks – volume: 34 year: 2020 ident: bib43 article-title: Audio-based Bayesian model for productivity estimation of cyclic construction activities publication-title: J. Comput. Civ. Eng. – volume: 14 start-page: 6474 year: 2014 end-page: 6499 ident: bib112 article-title: Window size impact in human activity recognition publication-title: Sensors – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib122 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 98 start-page: 522 year: 2016 end-page: 527 ident: bib85 article-title: Integrating features for accelerometer-based activity recognition publication-title: Procedia Comput. Sci. – year: 2009 ident: bib16 article-title: Niebel's Methods, Standards, and Work Design – year: 1911 ident: bib18 article-title: Motion Study: A Method for Increasing the Efficiency of the Workman – volume: 17 start-page: 1469 year: 2019 end-page: 1480 ident: bib47 article-title: Evaluation of software and hardware settings for audio-based analysis of construction operations publication-title: Int. J. Civ. Eng. – year: 1995 ident: bib19 article-title: Construction Productivity: Measurement and Improvement – year: 2002 ident: bib15 article-title: Motion Time Study for Lean Manufacturing – year: 2016 ident: bib83 article-title: On-body Localization of Wearable Devices: an Investigation of Position-Aware Activity Recognition publication-title: IEEE International Conference on Pervasive Computing and Communications (PerCom) – volume: 21 start-page: 238 year: 2007 end-page: 246 ident: bib51 article-title: Using hue, saturation, and value color space for hydraulic excavator idle time analysis publication-title: J. Comput. Civ. Eng. – year: 2006 ident: bib123 article-title: Feature Selection and Activity Recognition from Wearable Sensors. In International Symposium on Ubiquitious Computing Systems – year: 2011 5th ident: bib63 article-title: Activity Classification Using a Single Wrist-Worn Accelerometer publication-title: International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA) Proceedings – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: bib138 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. – volume: 56 start-page: 47 year: 2015 end-page: 66 ident: bib93 article-title: Infrastructureless approach for ubiquitous user location tracking in construction environments publication-title: Autom. ConStruct. – volume: 29 start-page: 24 year: 2013 end-page: 39 ident: bib9 article-title: Automated task-level activity analysis through fusion of real time location sensors and worker's thoracic posture data publication-title: Autom. ConStruct. – volume: 16 start-page: 426 year: 2016 ident: bib64 article-title: Complex human activity recognition using smartphone and wrist-worn motion sensors publication-title: Sensors – volume: 26 start-page: 1159 year: 2018 end-page: 1166 ident: bib77 article-title: Worker activity recognition in smart manufacturing using IMU and sEMG signals with convolutional neural networks publication-title: Procedia Manuf. – year: 2007 ident: bib17 article-title: Measurement, and Management – volume: 142 year: 2016 ident: bib8 article-title: Simulation-based assessment of workers' muscle fatigue and its impact on construction operations publication-title: J. Construct. Eng. Manag. – year: 2009 ident: bib70 article-title: Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information publication-title: Sixth International Workshop on Wearable and Implantable Body Sensor Networks. 2009 – year: 2019 ident: bib96 article-title: A Low-Cost and Smart IMU Tool for Tracking Construction Activities. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib105 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – year: 2012 ident: bib76 article-title: Simple and Complex Activity Recognition through Smart Phones publication-title: Eighth International Conference on Intelligent Environments – volume: 68 start-page: 194 year: 2016 end-page: 202 ident: bib81 article-title: Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit publication-title: Autom. ConStruct. – year: 2010 ident: bib129 article-title: Neural Networks and Learning Machines, 3/E – year: 2009 ident: bib56 article-title: Development of Human Pose Analyzing Algorithms for the Determination of Construction Productivity in Real-Time. In Construction Research Congress publication-title: Building a Sustainable Future – volume: 41 start-page: 296 year: 2003 end-page: 301 ident: bib72 article-title: Detection of daily physical activities using a triaxial accelerometer publication-title: Med. Biol. Eng. Comput. – start-page: 352 year: 2017 end-page: 359 ident: bib48 article-title: Acoustical Modeling of Construction Jobsites: Hardware and Software Requirements, in Computing in Civil Engineering – volume: 10 start-page: 119 year: 2006 end-page: 128 ident: bib74 article-title: Activity classification using realistic data from wearable sensors publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 140 year: 2014 ident: bib3 article-title: Proactive productivity management at job sites: understanding characteristics of assumptions made for construction processes during planning based on case studies and interviews publication-title: J. Construct. Eng. Manag. – volume: 62 start-page: 559 year: 2005 ident: bib7 article-title: Construction work and risk of occupational disability: a ten year follow up of 14 474 male workers publication-title: Occup. Environ. Med. – volume: 29 start-page: 867 year: 2015 end-page: 877 ident: bib5 article-title: Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers publication-title: Adv. Eng. Inf. – start-page: 565 year: 2013 end-page: 572 ident: bib95 article-title: Accelerometer-based Measurement of Construction Equipment Operating Efficiency for Monitoring Environmental Performance publication-title: Computing in Civil Engineering – volume: 140 year: 2014 ident: bib4 article-title: Cognitive workload demands using 2D and 3D spatial engineering information formats publication-title: J. Construct. Eng. Manag. – volume: 35 start-page: 131 year: 2013 end-page: 141 ident: bib58 article-title: A vision-based motion capture and recognition framework for behavior-based safety management publication-title: Autom. ConStruct. – volume: 233 start-page: 162 year: 2013 end-page: 182 ident: bib103 article-title: Human activity recognition in indoor environments by means of fusing information extracted from intensity of WiFi signal and accelerations publication-title: Inf. Sci. – start-page: 1189 year: 2001 end-page: 1232 ident: bib137 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: vol. 207 year: 2008 ident: 10.1016/j.jobe.2020.102001_bib116 – volume: 20 start-page: 173 issue: 3 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib110 article-title: Comparison of activity type classification accuracy from accelerometers worn on the hip, wrists, and thigh in young, apparently healthy adults publication-title: Meas. Phys. Educ. Exerc. Sci. doi: 10.1080/1091367X.2016.1192038 – volume: 25 start-page: 771 issue: 4 year: 2011 ident: 10.1016/j.jobe.2020.102001_bib61 article-title: Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2011.06.002 – volume: 10 start-page: 119 issue: 1 year: 2006 ident: 10.1016/j.jobe.2020.102001_bib74 article-title: Activity classification using realistic data from wearable sensors publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2005.856863 – start-page: 358 year: 2018 ident: 10.1016/j.jobe.2020.102001_bib38 article-title: A supervised machine learning-based sound identification for construction activity monitoring and performance evaluation publication-title: Construct. Res. Congr. – volume: 83 start-page: 48 year: 2017 ident: 10.1016/j.jobe.2020.102001_bib100 article-title: Analysis of construction trade worker body motions using a wearable and wireless motion sensor network publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2017.08.001 – year: 2010 ident: 10.1016/j.jobe.2020.102001_bib68 article-title: User-friendly System for Recognition of Activities with an Accelerometer doi: 10.4108/ICST.PERVASIVEHEALTH2010.8853 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.jobe.2020.102001_bib138 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – volume: 32 start-page: 24 year: 2013 ident: 10.1016/j.jobe.2020.102001_bib52 article-title: Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2012.12.002 – year: 2011 ident: 10.1016/j.jobe.2020.102001_bib106 article-title: Accelerometer Placement for Posture Recognition and Fall Detection doi: 10.1109/IE.2011.11 – volume: 13 start-page: 415 issue: 2 year: 2002 ident: 10.1016/j.jobe.2020.102001_bib132 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.991427 – volume: 35 start-page: 131 year: 2013 ident: 10.1016/j.jobe.2020.102001_bib58 article-title: A vision-based motion capture and recognition framework for behavior-based safety management publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2013.05.001 – year: 1999 ident: 10.1016/j.jobe.2020.102001_bib120 – volume: 146 issue: 6 year: 2020 ident: 10.1016/j.jobe.2020.102001_bib39 article-title: Automated methods for activity recognition of construction workers and equipment: state-of-the-art review publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001843 – volume: 140 issue: 3 year: 2014 ident: 10.1016/j.jobe.2020.102001_bib3 article-title: Proactive productivity management at job sites: understanding characteristics of assumptions made for construction processes during planning based on case studies and interviews publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0000816 – year: 2012 ident: 10.1016/j.jobe.2020.102001_bib30 – volume: 34 issue: 5 year: 2020 ident: 10.1016/j.jobe.2020.102001_bib41 article-title: Advanced sound classifiers and performance analyses for accurate audio-based construction project monitoring publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000911 – volume: 137 start-page: 870 issue: 10 year: 2011 ident: 10.1016/j.jobe.2020.102001_bib14 article-title: Sensing and field data capture for construction and facility operations publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0000332 – volume: 18 start-page: 2146 issue: 7 year: 2018 ident: 10.1016/j.jobe.2020.102001_bib87 article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0 publication-title: Sensors doi: 10.3390/s18072146 – volume: 142 issue: 11 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib8 article-title: Simulation-based assessment of workers' muscle fatigue and its impact on construction operations publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001182 – volume: 29 start-page: 2213 issue: 16 year: 2008 ident: 10.1016/j.jobe.2020.102001_bib65 article-title: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2008.08.002 – year: 2011 ident: 10.1016/j.jobe.2020.102001_bib63 article-title: Activity Classification Using a Single Wrist-Worn Accelerometer doi: 10.1109/SKIMA.2011.6089975 – volume: 56 start-page: 47 year: 2015 ident: 10.1016/j.jobe.2020.102001_bib93 article-title: Infrastructureless approach for ubiquitous user location tracking in construction environments publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2015.04.009 – year: 2009 ident: 10.1016/j.jobe.2020.102001_bib57 article-title: Human motion analysis using 3D range imaging technology – volume: 145 issue: 1 year: 2019 ident: 10.1016/j.jobe.2020.102001_bib6 article-title: Automated action recognition using an accelerometer-embedded wristband-type activity tracker publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001579 – volume: 14 start-page: 6474 issue: 4 year: 2014 ident: 10.1016/j.jobe.2020.102001_bib112 article-title: Window size impact in human activity recognition publication-title: Sensors doi: 10.3390/s140406474 – start-page: 148 year: 2015 ident: 10.1016/j.jobe.2020.102001_bib80 – volume: 34 issue: 1 year: 2020 ident: 10.1016/j.jobe.2020.102001_bib43 article-title: Audio-based Bayesian model for productivity estimation of cyclic construction activities publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000863 – year: 2009 ident: 10.1016/j.jobe.2020.102001_bib66 article-title: Activity Recognition Using a Wrist-Worn Inertial Measurement Unit: A Case Study for Industrial Assembly Lines doi: 10.1109/MED.2009.5164574 – volume: 3 start-page: 1157 issue: Mar year: 2003 ident: 10.1016/j.jobe.2020.102001_bib122 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – year: 2009 ident: 10.1016/j.jobe.2020.102001_bib50 article-title: Automated Data Acquisition System to Assess Construction Worker Performance. In Construction Research Congress – year: 2009 ident: 10.1016/j.jobe.2020.102001_bib56 article-title: Development of Human Pose Analyzing Algorithms for the Determination of Construction Productivity in Real-Time. In Construction Research Congress – volume: 140 issue: 5 year: 2014 ident: 10.1016/j.jobe.2020.102001_bib4 article-title: Cognitive workload demands using 2D and 3D spatial engineering information formats publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0000827 – volume: 39 start-page: 167 year: 2014 ident: 10.1016/j.jobe.2020.102001_bib29 article-title: RFID indoor location identification for construction projects publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2013.06.012 – year: 2001 ident: 10.1016/j.jobe.2020.102001_bib114 – start-page: 1189 year: 2001 ident: 10.1016/j.jobe.2020.102001_bib137 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 142 issue: 2 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib98 article-title: Artificial neural network–based slip-trip classifier using smart sensor for construction workplace publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001049 – year: 1983 ident: 10.1016/j.jobe.2020.102001_bib20 – volume: 129 start-page: 680 issue: 6 year: 2003 ident: 10.1016/j.jobe.2020.102001_bib28 article-title: Implementing radio frequency identification in the construction process publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)0733-9364(2003)129:6(680) – volume: 24 start-page: 252 issue: 3 year: 2010 ident: 10.1016/j.jobe.2020.102001_bib1 article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000027 – volume: 68 start-page: 285 year: 2019 ident: 10.1016/j.jobe.2020.102001_bib111 article-title: Calibration and validation of accelerometer-based activity monitors: a systematic review of machine-learning approaches publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.12.003 – volume: 15 start-page: 292 issue: 3 year: 2006 ident: 10.1016/j.jobe.2020.102001_bib32 article-title: The application of active radio frequency identification technology for tool tracking on construction job sites publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2005.06.004 – year: 1995 ident: 10.1016/j.jobe.2020.102001_bib128 – year: 2019 ident: 10.1016/j.jobe.2020.102001_bib24 – year: 2010 ident: 10.1016/j.jobe.2020.102001_bib129 – volume: 66 start-page: 19 year: 2014 ident: 10.1016/j.jobe.2020.102001_bib97 article-title: Automatically determining accidental falls in field surveying: a case study of integrating accelerometer determination and image recognition publication-title: Saf. Sci. doi: 10.1016/j.ssci.2014.01.012 – volume: 17 start-page: 1469 issue: 9 year: 2019 ident: 10.1016/j.jobe.2020.102001_bib47 article-title: Evaluation of software and hardware settings for audio-based analysis of construction operations publication-title: Int. J. Civ. Eng. doi: 10.1007/s40999-019-00409-2 – volume: 98 start-page: 522 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib85 article-title: Integrating features for accelerometer-based activity recognition publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.070 – year: 2012 ident: 10.1016/j.jobe.2020.102001_bib76 article-title: Simple and Complex Activity Recognition through Smart Phones doi: 10.1109/IE.2012.39 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.jobe.2020.102001_bib131 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 38 start-page: 514 year: 2018 ident: 10.1016/j.jobe.2020.102001_bib86 article-title: Automated ergonomic risk monitoring using body-mounted sensors and machine learning publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2018.08.020 – volume: 12 start-page: 2825 issue: Oct year: 2011 ident: 10.1016/j.jobe.2020.102001_bib105 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 26 start-page: 1159 year: 2018 ident: 10.1016/j.jobe.2020.102001_bib77 article-title: Worker activity recognition in smart manufacturing using IMU and sEMG signals with convolutional neural networks publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.07.152 – start-page: 563 year: 2012 ident: 10.1016/j.jobe.2020.102001_bib141 – volume: 68 start-page: 194 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib81 article-title: Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2016.04.007 – start-page: 326 year: 2017 ident: 10.1016/j.jobe.2020.102001_bib42 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.jobe.2020.102001_bib133 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2009 ident: 10.1016/j.jobe.2020.102001_bib16 – year: 2015 ident: 10.1016/j.jobe.2020.102001_bib25 – volume: 20 start-page: 686 issue: 6 year: 2011 ident: 10.1016/j.jobe.2020.102001_bib34 article-title: A proactive system for real-time safety management in construction sites publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2011.04.019 – year: 2008 ident: 10.1016/j.jobe.2020.102001_bib67 article-title: Activity Recognition Using Wearable Sensors for Elder Care doi: 10.1109/FGCN.2008.165 – volume: 13 issue: 7 year: 2013 ident: 10.1016/j.jobe.2020.102001_bib107 article-title: Optimal placement of accelerometers for the detection of everyday activities publication-title: Sensors doi: 10.3390/s130709183 – year: 2009 ident: 10.1016/j.jobe.2020.102001_bib70 article-title: Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information doi: 10.1109/BSN.2009.46 – year: 1911 ident: 10.1016/j.jobe.2020.102001_bib18 – year: 2005 ident: 10.1016/j.jobe.2020.102001_bib75 – volume: 119 start-page: 103361 year: 2020 ident: 10.1016/j.jobe.2020.102001_bib40 article-title: Activity identification in modular construction using audio signals and machine learning publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2020.103361 – volume: 81 start-page: 161 year: 2017 ident: 10.1016/j.jobe.2020.102001_bib53 article-title: Integrated detection and tracking of workforce and equipment from construction jobsite videos publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2017.05.005 – volume: 82 start-page: 193 year: 2017 ident: 10.1016/j.jobe.2020.102001_bib59 article-title: An experimental study of real-time identification of construction workers' unsafe behaviors publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2017.05.002 – volume: 25 start-page: 370 issue: 5 year: 2010 ident: 10.1016/j.jobe.2020.102001_bib11 article-title: Accelerometer-based activity recognition in construction publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000097 – volume: 16 start-page: 115 issue: 1 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib82 article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors doi: 10.3390/s16010115 – year: 2002 ident: 10.1016/j.jobe.2020.102001_bib15 – year: 2007 ident: 10.1016/j.jobe.2020.102001_bib17 – year: 2019 ident: 10.1016/j.jobe.2020.102001_bib44 – volume: 77 start-page: 67 year: 2017 ident: 10.1016/j.jobe.2020.102001_bib79 article-title: Construction worker's awkward posture recognition through supervised motion tensor decomposition publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2017.01.020 – year: 2000 ident: 10.1016/j.jobe.2020.102001_bib139 – year: 2015 ident: 10.1016/j.jobe.2020.102001_bib22 article-title: Wearable Sensor-Based Activity Recognition for Data-Driven Simulation of Construction Workers' Activities doi: 10.1109/WSC.2015.7408495 – volume: 16 issue: 4 year: 2007 ident: 10.1016/j.jobe.2020.102001_bib124 article-title: Pattern recognition and machine learning publication-title: J. Electron. Imag. – year: 2014 ident: 10.1016/j.jobe.2020.102001_bib104 – year: 2019 ident: 10.1016/j.jobe.2020.102001_bib96 – volume: 11 start-page: 2079 year: 2010 ident: 10.1016/j.jobe.2020.102001_bib142 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 1 year: 2018 ident: 10.1016/j.jobe.2020.102001_bib89 article-title: Coupling human activity recognition and wearable sensors for data-driven construction simulation publication-title: ITcon – volume: 29 start-page: 867 issue: 4 year: 2015 ident: 10.1016/j.jobe.2020.102001_bib5 article-title: Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2015.03.001 – volume: 129 start-page: 437 issue: 4 year: 2003 ident: 10.1016/j.jobe.2020.102001_bib26 article-title: Can labor inputs be measured and controlled automatically? publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)0733-9364(2003)129:4(437) – year: 1985 ident: 10.1016/j.jobe.2020.102001_bib21 – volume: 48 start-page: 74 year: 2014 ident: 10.1016/j.jobe.2020.102001_bib60 article-title: Vision-based workface assessment using depth images for activity analysis of interior construction operations publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2014.08.003 – year: 2010 ident: 10.1016/j.jobe.2020.102001_bib69 – volume: 71 start-page: 198 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib23 article-title: Smartphone-based construction workers' activity recognition and classification publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2016.08.015 – year: 2014 ident: 10.1016/j.jobe.2020.102001_bib91 article-title: Automated recognition of construction labour activity using accelerometers in field situations publication-title: Int. J. Prod. Perform. Manag. doi: 10.1108/IJPPM-05-2013-0099 – volume: 23 start-page: 452 issue: 4 year: 2009 ident: 10.1016/j.jobe.2020.102001_bib54 article-title: Personnel tracking on construction sites using video cameras publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2009.06.011 – volume: 20 start-page: 1211 issue: 8 year: 2011 ident: 10.1016/j.jobe.2020.102001_bib62 article-title: An object recognition, tracking, and contextual reasoning-based video interpretation method for rapid productivity analysis of construction operations publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2011.05.005 – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.jobe.2020.102001_bib134 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 12 start-page: 737 issue: 6 year: 2003 ident: 10.1016/j.jobe.2020.102001_bib27 article-title: Situational awareness of construction equipment using GPS, wireless and web technologies publication-title: Autom. ConStruct. doi: 10.1016/S0926-5805(03)00057-8 – volume: 27 start-page: 652 issue: 4 year: 2013 ident: 10.1016/j.jobe.2020.102001_bib13 article-title: Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2013.09.001 – volume: 27 start-page: 320 issue: 3 year: 2013 ident: 10.1016/j.jobe.2020.102001_bib36 article-title: Data fusion of real-time location sensing and physiological status monitoring for ergonomics analysis of construction workers publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000222 – volume: 32 start-page: 548 issue: 6 year: 2014 ident: 10.1016/j.jobe.2020.102001_bib10 article-title: An exploratory study of the relationship between construction workforce physical strain and task level productivity publication-title: Construct. Manag. Econ. doi: 10.1080/01446193.2013.831463 – volume: 82 start-page: 166 year: 2017 ident: 10.1016/j.jobe.2020.102001_bib92 article-title: Collective sensing of workers' gait patterns to identify fall hazards in construction publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2017.04.010 – volume: 32 start-page: 595 issue: 6 year: 2014 ident: 10.1016/j.jobe.2020.102001_bib2 article-title: An analysis of construction productivity differences between Canada and the United States publication-title: Construct. Manag. Econ. doi: 10.1080/01446193.2013.848995 – volume: 16 start-page: 426 issue: 4 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib64 article-title: Complex human activity recognition using smartphone and wrist-worn motion sensors publication-title: Sensors doi: 10.3390/s16040426 – volume: 29 start-page: 239 issue: 2 year: 2015 ident: 10.1016/j.jobe.2020.102001_bib37 article-title: Computer vision techniques for construction safety and health monitoring publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2015.02.001 – volume: 84 start-page: 161 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib102 article-title: Fall risk analysis of construction workers using inertial measurement units: validating the usefulness of the postural stability metrics in construction publication-title: Saf. Sci. doi: 10.1016/j.ssci.2015.12.012 – volume: 24 start-page: 428 issue: 4 year: 2010 ident: 10.1016/j.jobe.2020.102001_bib55 article-title: Tracking multiple workers on construction sites using video cameras publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2010.06.008 – year: 2016 ident: 10.1016/j.jobe.2020.102001_bib83 article-title: On-body Localization of Wearable Devices: an Investigation of Position-Aware Activity Recognition doi: 10.1109/PERCOM.2016.7456521 – volume: vol. 1 year: 2001 ident: 10.1016/j.jobe.2020.102001_bib127 – volume: 81 start-page: 240 year: 2017 ident: 10.1016/j.jobe.2020.102001_bib45 article-title: Activity analysis of construction equipment using audio signals and support vector machines publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2017.06.005 – volume: 131 start-page: 230 issue: 2 year: 2005 ident: 10.1016/j.jobe.2020.102001_bib113 article-title: Lognormal distribution provides an optimum representation of the concrete delivery and placement process publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)0733-9364(2005)131:2(230) – year: 2006 ident: 10.1016/j.jobe.2020.102001_bib12 – volume: 41 start-page: 296 issue: 3 year: 2003 ident: 10.1016/j.jobe.2020.102001_bib72 article-title: Detection of daily physical activities using a triaxial accelerometer publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02348434 – volume: 5 start-page: 320 issue: 4 year: 2011 ident: 10.1016/j.jobe.2020.102001_bib109 article-title: Sensor positioning for activity recognition using wearable accelerometers publication-title: IEEE Trans. Biomed. Circ. Syst. doi: 10.1109/TBCAS.2011.2160540 – volume: vol. 2 start-page: 110 year: 2002 ident: 10.1016/j.jobe.2020.102001_bib140 article-title: Ensemble learning – start-page: 352 year: 2017 ident: 10.1016/j.jobe.2020.102001_bib48 – volume: 21 start-page: 238 issue: 4 year: 2007 ident: 10.1016/j.jobe.2020.102001_bib51 article-title: Using hue, saturation, and value color space for hydraulic excavator idle time analysis publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2007)21:4(238) – volume: 12 start-page: 74 issue: 2 year: 2011 ident: 10.1016/j.jobe.2020.102001_bib71 article-title: Activity recognition using cell phone accelerometers publication-title: ACM SigKDD Explor. Newsl. doi: 10.1145/1964897.1964918 – year: 2010 ident: 10.1016/j.jobe.2020.102001_bib143 article-title: The balanced accuracy and its posterior distribution – volume: 24 start-page: 1 year: 2012 ident: 10.1016/j.jobe.2020.102001_bib31 article-title: Leveraging passive RFID technology for construction resource field mobility and status monitoring in a high-rise renovation project publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2012.02.015 – start-page: 1 year: 2012 ident: 10.1016/j.jobe.2020.102001_bib126 – volume: 20 start-page: 1173 issue: 8 year: 2011 ident: 10.1016/j.jobe.2020.102001_bib35 article-title: Performance evaluation of ultra wideband technology for construction resource location tracking in harsh environments publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2011.05.001 – volume: 29 issue: 2 year: 2013 ident: 10.1016/j.jobe.2020.102001_bib94 article-title: Application of low-cost accelerometers for measuring the operational efficiency of a construction equipment fleet publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000337 – year: 1995 ident: 10.1016/j.jobe.2020.102001_bib19 – start-page: 565 year: 2013 ident: 10.1016/j.jobe.2020.102001_bib95 article-title: Accelerometer-based Measurement of Construction Equipment Operating Efficiency for Monitoring Environmental Performance – volume: 30 start-page: R1 issue: 4 year: 2009 ident: 10.1016/j.jobe.2020.102001_bib115 article-title: Activity identification using body-mounted sensors—a review of classification techniques publication-title: Physiol. Meas. doi: 10.1088/0967-3334/30/4/R01 – volume: 143 issue: 1 year: 2017 ident: 10.1016/j.jobe.2020.102001_bib101 article-title: Identification of biomechanical risk factors for the development of lower-back disorders during manual rebar tying publication-title: J. Construct. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001208 – volume: 15 start-page: 31314 issue: 12 year: 2015 ident: 10.1016/j.jobe.2020.102001_bib78 article-title: Physical human activity recognition using wearable sensors publication-title: Sensors doi: 10.3390/s151229858 – year: 2016 ident: 10.1016/j.jobe.2020.102001_bib90 article-title: Action recognition using a wristband-type activity tracker: case study of masonry work publication-title: Construct. Res. Congr. – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 10.1016/j.jobe.2020.102001_bib121 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – year: 1996 ident: 10.1016/j.jobe.2020.102001_bib136 article-title: Schapire R: Experiments with a new boosting algorithm – volume: 3 start-page: 683 issue: 5 year: 1992 ident: 10.1016/j.jobe.2020.102001_bib130 article-title: Multilayer perceptron, fuzzy sets, and classification publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.159058 – volume: 29 start-page: 24 year: 2013 ident: 10.1016/j.jobe.2020.102001_bib9 article-title: Automated task-level activity analysis through fusion of real time location sensors and worker's thoracic posture data publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2012.08.003 – year: 2009 ident: 10.1016/j.jobe.2020.102001_bib49 article-title: Measuring Construction Productivity Using the Write System. In Construction Research Congress – volume: 14 start-page: 1612 issue: 771–780 year: 1999 ident: 10.1016/j.jobe.2020.102001_bib135 article-title: A short introduction to boosting publication-title: J. Jpn. Soc. Artif. Intell. – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 10.1016/j.jobe.2020.102001_bib125 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Statistician doi: 10.1080/00031305.1992.10475879 – volume: 21 start-page: 11 issue: 1 year: 2007 ident: 10.1016/j.jobe.2020.102001_bib33 article-title: Tracking components and maintenance history within a facility utilizing radio frequency identification technology publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2007)21:1(11) – year: 2011 ident: 10.1016/j.jobe.2020.102001_bib119 – year: 2016 ident: 10.1016/j.jobe.2020.102001_bib46 – volume: 14 start-page: 645 issue: 7 year: 2010 ident: 10.1016/j.jobe.2020.102001_bib118 article-title: Preprocessing techniques for context recognition from accelerometer data publication-title: Personal Ubiquitous Comput. doi: 10.1007/s00779-010-0293-9 – year: 2016 ident: 10.1016/j.jobe.2020.102001_bib88 article-title: Productivity analysis of construction worker activities using smartphone sensors – volume: 233 start-page: 162 year: 2013 ident: 10.1016/j.jobe.2020.102001_bib103 article-title: Human activity recognition in indoor environments by means of fusing information extracted from intensity of WiFi signal and accelerations publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.01.029 – year: 2004 ident: 10.1016/j.jobe.2020.102001_bib73 article-title: Activity Recognition from User-Annotated Acceleration Data doi: 10.1007/978-3-540-24646-6_1 – volume: 62 start-page: 559 issue: 8 year: 2005 ident: 10.1016/j.jobe.2020.102001_bib7 article-title: Construction work and risk of occupational disability: a ten year follow up of 14 474 male workers publication-title: Occup. Environ. Med. doi: 10.1136/oem.2004.018135 – volume: 54 start-page: 120 year: 2016 ident: 10.1016/j.jobe.2020.102001_bib99 article-title: Musculoskeletal disorders in construction: a review and a novel system for activity tracking with body area network publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2015.11.020 – year: 2010 ident: 10.1016/j.jobe.2020.102001_bib108 article-title: Sensor Placement for Activity Detection Using Wearable Accelerometers doi: 10.1109/BSN.2010.23 – volume: 18 start-page: 2667 issue: 8 year: 2018 ident: 10.1016/j.jobe.2020.102001_bib84 article-title: Research on construction workers' activity recognition based on smartphone publication-title: Sensors doi: 10.3390/s18082667 – year: 2006 ident: 10.1016/j.jobe.2020.102001_bib123 – year: 2014 ident: 10.1016/j.jobe.2020.102001_bib117 article-title: A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning doi: 10.1109/SAI.2014.6918213 |
| SSID | ssj0002953864 |
| Score | 2.4442778 |
| Snippet | Automated Construction worker activity classification has the potential to not only benefit the worker performance in terms of productivity and safety, but... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 102001 |
| SubjectTerms | Activity classification Construction workers Productivity analysis Supervised machine learning Wearable accelerometers |
| Title | Activity classification using accelerometers and machine learning for complex construction worker activities |
| URI | https://dx.doi.org/10.1016/j.jobe.2020.102001 |
| Volume | 35 |
| WOSCitedRecordID | wos000618180400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2352-7102 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002953864 issn: 2352-7102 databaseCode: AIEXJ dateStart: 20150301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMvCASIjYv8wFuVKrFz82PZhgCxag9D6lvk2Mewqkun0Vb9cfw4ji9J07FN7AFViiIndqKcrz5Hx5-_Q8gHzUqTc84jwH9SlOZgIlkaEcla6TTPmY4T44pNFJNJOZ2Ks8Hgd7sXZj0vmqbcbMTVfzU1tqGx7dbZB5i7GxQb8ByNjkc0Ox7_yfBjFQpCKBsYWyaQt_HKZQWkUuhorEaBldV0SweXjk8JbQEJT6x0VHPYWFZ6JzHr6srAtdPfWDsl1jtC24-h1nZf7bBL5cjm50q7BO23lVumP-7C-iM5X8PSEwyOL-DHYpsvt2IHYcnCdeKL4Zk_K-SWri8vPWtwsmoWw9PR6aif1GA9Vpef-xjGhZYm6idquKUtTN48682-eC32o_zlGHyOYjaa2T1W-ESnWRFu3lXhvuEdO85iS4ebVXaMyo5R-TEekX1WZALn1P3xl5Pp1y7HxwS6E6dg1r172LflKYY3X-b22KgX75w_I0-DNenYA-w5GUDzgsxbcNFdcFEHLroLLorgogFctAUXRXDRAC7aBxf14KJbcL0k3z-dnB99jkK9jkhxwZcRhq5a1mlqWMILCRp_gP4rzVMBkistOaBf1oLz3KjSxEzXoBU3mcYoNAXOX5G9ZtHAa0LLrEhZEhvpCqrVokxUGWd2_ih0bSA9IEn7pSoVxOxtTZV5dbeZDsiw63PlpVzuvTtrDVCFYNQHmRVC6p5-hw96yhvyZAv_t2QPvzm8I4_Vennx6_p9wNMfyFOtXg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity+classification+using+accelerometers+and+machine+learning+for+complex+construction+worker+activities&rft.jtitle=Journal+of+Building+Engineering&rft.au=Sanhudo%2C+Lu%C3%ADs&rft.au=Calvetti%2C+Diego&rft.au=Martins%2C+Jo%C3%A3o+Po%C3%A7as&rft.au=Ramos%2C+Nuno+M.M.&rft.date=2021-03-01&rft.issn=2352-7102&rft.eissn=2352-7102&rft.volume=35&rft.spage=102001&rft_id=info:doi/10.1016%2Fj.jobe.2020.102001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jobe_2020_102001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon |