Activity classification using accelerometers and machine learning for complex construction worker activities

Automated Construction worker activity classification has the potential to not only benefit the worker performance in terms of productivity and safety, but also the overall project management and control. The activity-level knowledge and indicators that can be extracted from this process may support...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Building Engineering Ročník 35; s. 102001
Hlavní autori: Sanhudo, Luís, Calvetti, Diego, Martins, João Poças, Ramos, Nuno M.M., Mêda, Pedro, Gonçalves, Miguel Chichorro, Sousa, Hipólito
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2021
Predmet:
ISSN:2352-7102, 2352-7102
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Automated Construction worker activity classification has the potential to not only benefit the worker performance in terms of productivity and safety, but also the overall project management and control. The activity-level knowledge and indicators that can be extracted from this process may support project decision making, aiding in project schedule adjustment, resource management, construction site control, among others. Previous works on this topic focused on the collection and classification of worker acceleration data using wearable accelerometers and supervised machine learning algorithms, respectively. However, most of these studies tend to consider small sets of activities performed in an instructed manner, which can lead to higher accuracy results than those expected in a real construction scenario. To this end, this paper builds on the results of these past studies, committing to expand this discussion by covering a larger set of complex Construction activities than the current state-of-the-art, while avoiding the need to instruct test subjects on how and when to perform each activity. As such, a Machine Learning methodology was developed to train and evaluate 13 classifiers using artificial features extracted from raw accelerometer data segments. An experimental study was carried out under the form of a realistic activity-circuit to recognise ten different activities: gearing up; hammering; masonry; painting; roughcasting; sawing; screwing; sitting; standing still; and walking; with most activities being a cluster of simpler tasks (i.e. masonry includes fetching, transporting, and laying bricks). Activities were initially separated and tested in three different activity groups, before assessing all activities together. It was found that a segment length of 6 s, with a 75% overlap, enhanced the classifier performance. Feature selection was carried out to speed the algorithm running time. A nested cross-validation approach was performed for hyperparameter tuning and classifier training and testing. User-dependent and -independent approaches (differing in whether the system must undergo an additional training phase for each new user) were evaluated. Results indicate that accelerometers can be used to create a robust system to recognise large sets of Construction worker activities automatically. The K-Nearest Neighbours and Gradient Boosting algorithms were selected according to their performances, respectively, for the user-dependent and -independent scenarios. In both cases, the classifiers showed balanced accuracies above 84% for their respective approaches and test groups. Results also indicate that a user-dependent approach using task groups provides the highest accuracy. •Acceleration-based classification of ten complex construction worker's activities.•Uninstructed data acquisition with six workers and three wearable accelerometers.•Evaluation of thirteen classifiers for subject-dependent and independent approaches.•Results prove the potential of this method in classifying large sets of activities.•Best algorithm shows an average accuracy of 93.69% in a subject-dependent approach.
AbstractList Automated Construction worker activity classification has the potential to not only benefit the worker performance in terms of productivity and safety, but also the overall project management and control. The activity-level knowledge and indicators that can be extracted from this process may support project decision making, aiding in project schedule adjustment, resource management, construction site control, among others. Previous works on this topic focused on the collection and classification of worker acceleration data using wearable accelerometers and supervised machine learning algorithms, respectively. However, most of these studies tend to consider small sets of activities performed in an instructed manner, which can lead to higher accuracy results than those expected in a real construction scenario. To this end, this paper builds on the results of these past studies, committing to expand this discussion by covering a larger set of complex Construction activities than the current state-of-the-art, while avoiding the need to instruct test subjects on how and when to perform each activity. As such, a Machine Learning methodology was developed to train and evaluate 13 classifiers using artificial features extracted from raw accelerometer data segments. An experimental study was carried out under the form of a realistic activity-circuit to recognise ten different activities: gearing up; hammering; masonry; painting; roughcasting; sawing; screwing; sitting; standing still; and walking; with most activities being a cluster of simpler tasks (i.e. masonry includes fetching, transporting, and laying bricks). Activities were initially separated and tested in three different activity groups, before assessing all activities together. It was found that a segment length of 6 s, with a 75% overlap, enhanced the classifier performance. Feature selection was carried out to speed the algorithm running time. A nested cross-validation approach was performed for hyperparameter tuning and classifier training and testing. User-dependent and -independent approaches (differing in whether the system must undergo an additional training phase for each new user) were evaluated. Results indicate that accelerometers can be used to create a robust system to recognise large sets of Construction worker activities automatically. The K-Nearest Neighbours and Gradient Boosting algorithms were selected according to their performances, respectively, for the user-dependent and -independent scenarios. In both cases, the classifiers showed balanced accuracies above 84% for their respective approaches and test groups. Results also indicate that a user-dependent approach using task groups provides the highest accuracy. •Acceleration-based classification of ten complex construction worker's activities.•Uninstructed data acquisition with six workers and three wearable accelerometers.•Evaluation of thirteen classifiers for subject-dependent and independent approaches.•Results prove the potential of this method in classifying large sets of activities.•Best algorithm shows an average accuracy of 93.69% in a subject-dependent approach.
ArticleNumber 102001
Author Martins, João Poças
Sousa, Hipólito
Ramos, Nuno M.M.
Mêda, Pedro
Gonçalves, Miguel Chichorro
Calvetti, Diego
Sanhudo, Luís
Author_xml – sequence: 1
  givenname: Luís
  surname: Sanhudo
  fullname: Sanhudo, Luís
  email: lpnsanhudo@fe.up.pt
  organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal
– sequence: 2
  givenname: Diego
  surname: Calvetti
  fullname: Calvetti, Diego
  organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal
– sequence: 3
  givenname: João Poças
  surname: Martins
  fullname: Martins, João Poças
  organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal
– sequence: 4
  givenname: Nuno M.M.
  surname: Ramos
  fullname: Ramos, Nuno M.M.
  organization: CONSTRUCT-LFC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal
– sequence: 5
  givenname: Pedro
  surname: Mêda
  fullname: Mêda, Pedro
  organization: Construction Institute, CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal
– sequence: 6
  givenname: Miguel Chichorro
  surname: Gonçalves
  fullname: Gonçalves, Miguel Chichorro
  organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal
– sequence: 7
  givenname: Hipólito
  surname: Sousa
  fullname: Sousa, Hipólito
  organization: CONSTRUCT-GEQUALTEC, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias S/n, 4200-465, Porto, Portugal
BookMark eNp9kMtOwzAQRS0EEqX0B1jlB1L8SNJGYlNVvKRKbGBtueMxOCR2ZbuF_j1JywKxqGYxD825o7lX5Nx5h4TcMDpllFW3zbTxa5xyyocBp5SdkREXJc9nfXv-p74kkxgbSimvSzGvihFpF5DszqZ9Bq2K0RoLKlnvsm207j1TANhi8B0mDDFTTmedgg_rMGtRBTfsGB8y8N2mxe8-u5jCFg4SXz58Yug1DhcsxmtyYVQbcfKbx-Tt4f51-ZSvXh6fl4tVDqIWKRdlqdW6KAxnYqZQ94FiVhVVUaMSoJVAVlS6FqIyMDeU6zVqEKbUnLIChRiT-VEXgo8xoJFg0-GtFJRtJaNyME42cjBODsbJo3E9yv-hm2A7FfanobsjhP1TO4tBRrDoALUNCElqb0_hP6I_jMk
CitedBy_id crossref_primary_10_1186_s13677_024_00649_1
crossref_primary_10_1080_00140139_2022_2039410
crossref_primary_10_3390_s23177635
crossref_primary_10_1007_s10614_021_10110_z
crossref_primary_10_1088_1755_1315_1101_7_072008
crossref_primary_10_3390_s24237436
crossref_primary_10_1061_JCEMD4_COENG_16072
crossref_primary_10_1016_j_autcon_2023_105104
crossref_primary_10_1016_j_autcon_2024_105300
crossref_primary_10_1061_JCEMD4_COENG_14645
crossref_primary_10_3390_s25134028
crossref_primary_10_3390_app14010090
crossref_primary_10_3390_s24144508
crossref_primary_10_1007_s12652_024_04753_7
crossref_primary_10_1061_JCEMD4_COENG_16728
crossref_primary_10_1108_ECAM_08_2024_1036
crossref_primary_10_1016_j_jobe_2022_104007
crossref_primary_10_3390_s21217147
crossref_primary_10_1016_j_jobe_2021_102404
crossref_primary_10_1007_s10462_024_10839_7
crossref_primary_10_1186_s12984_023_01167_y
crossref_primary_10_3390_buildings14010219
crossref_primary_10_3390_life12081103
crossref_primary_10_1016_j_aei_2025_103203
crossref_primary_10_1016_j_autcon_2022_104148
crossref_primary_10_1007_s11831_023_09938_5
crossref_primary_10_3390_buildings12060734
crossref_primary_10_3390_buildings12030344
crossref_primary_10_3390_s24020672
crossref_primary_10_1007_s10462_024_10727_0
crossref_primary_10_3390_s22239451
crossref_primary_10_3390_buildings12081174
crossref_primary_10_1108_IJPPM_10_2022_0507
crossref_primary_10_1016_j_desal_2021_114980
crossref_primary_10_1109_TAI_2021_3105494
crossref_primary_10_1109_ACCESS_2022_3208686
crossref_primary_10_3389_fbuil_2021_721742
crossref_primary_10_3390_buildings12050533
Cites_doi 10.1080/1091367X.2016.1192038
10.1016/j.aei.2011.06.002
10.1109/TITB.2005.856863
10.1016/j.autcon.2017.08.001
10.4108/ICST.PERVASIVEHEALTH2010.8853
10.1016/S0167-9473(01)00065-2
10.1016/j.autcon.2012.12.002
10.1109/IE.2011.11
10.1109/72.991427
10.1016/j.autcon.2013.05.001
10.1061/(ASCE)CO.1943-7862.0001843
10.1061/(ASCE)CO.1943-7862.0000816
10.1061/(ASCE)CP.1943-5487.0000911
10.1061/(ASCE)CO.1943-7862.0000332
10.3390/s18072146
10.1061/(ASCE)CO.1943-7862.0001182
10.1016/j.patrec.2008.08.002
10.1109/SKIMA.2011.6089975
10.1016/j.autcon.2015.04.009
10.1061/(ASCE)CO.1943-7862.0001579
10.3390/s140406474
10.1061/(ASCE)CP.1943-5487.0000863
10.1109/MED.2009.5164574
10.1061/(ASCE)CO.1943-7862.0000827
10.1016/j.autcon.2013.06.012
10.1061/(ASCE)CO.1943-7862.0001049
10.1061/(ASCE)0733-9364(2003)129:6(680)
10.1061/(ASCE)CP.1943-5487.0000027
10.1016/j.gaitpost.2018.12.003
10.1016/j.autcon.2005.06.004
10.1016/j.ssci.2014.01.012
10.1007/s40999-019-00409-2
10.1016/j.procs.2016.09.070
10.1109/IE.2012.39
10.1023/A:1018628609742
10.1016/j.aei.2018.08.020
10.1016/j.promfg.2018.07.152
10.1016/j.autcon.2016.04.007
10.1023/A:1010933404324
10.1016/j.autcon.2011.04.019
10.1109/FGCN.2008.165
10.3390/s130709183
10.1109/BSN.2009.46
10.1016/j.autcon.2020.103361
10.1016/j.autcon.2017.05.005
10.1016/j.autcon.2017.05.002
10.1061/(ASCE)CP.1943-5487.0000097
10.3390/s16010115
10.1016/j.autcon.2017.01.020
10.1109/WSC.2015.7408495
10.1016/j.aei.2015.03.001
10.1061/(ASCE)0733-9364(2003)129:4(437)
10.1016/j.autcon.2014.08.003
10.1016/j.autcon.2016.08.015
10.1108/IJPPM-05-2013-0099
10.1016/j.aei.2009.06.011
10.1016/j.autcon.2011.05.005
10.1007/s10994-006-6226-1
10.1016/S0926-5805(03)00057-8
10.1016/j.aei.2013.09.001
10.1061/(ASCE)CP.1943-5487.0000222
10.1080/01446193.2013.831463
10.1016/j.autcon.2017.04.010
10.1080/01446193.2013.848995
10.3390/s16040426
10.1016/j.aei.2015.02.001
10.1016/j.ssci.2015.12.012
10.1016/j.aei.2010.06.008
10.1109/PERCOM.2016.7456521
10.1016/j.autcon.2017.06.005
10.1061/(ASCE)0733-9364(2005)131:2(230)
10.1007/BF02348434
10.1109/TBCAS.2011.2160540
10.1061/(ASCE)0887-3801(2007)21:4(238)
10.1145/1964897.1964918
10.1016/j.autcon.2012.02.015
10.1016/j.autcon.2011.05.001
10.1061/(ASCE)CP.1943-5487.0000337
10.1088/0967-3334/30/4/R01
10.1061/(ASCE)CO.1943-7862.0001208
10.3390/s151229858
10.1093/bioinformatics/btm344
10.1109/72.159058
10.1016/j.autcon.2012.08.003
10.1080/00031305.1992.10475879
10.1061/(ASCE)0887-3801(2007)21:1(11)
10.1007/s00779-010-0293-9
10.1016/j.ins.2013.01.029
10.1007/978-3-540-24646-6_1
10.1136/oem.2004.018135
10.1016/j.apergo.2015.11.020
10.1109/BSN.2010.23
10.3390/s18082667
10.1109/SAI.2014.6918213
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jobe.2020.102001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-7102
ExternalDocumentID 10_1016_j_jobe_2020_102001
S2352710220336330
GroupedDBID --M
0R~
4.4
457
7-5
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSL
SST
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c393t-355dab44f2137aededee3764649ea3cda3e146d9336fc8f02dbedc3f5d2014e33
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618180400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-7102
IngestDate Sat Nov 29 06:11:54 EST 2025
Tue Nov 18 20:47:34 EST 2025
Sat Feb 22 15:43:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Supervised machine learning
Productivity analysis
Activity classification
Wearable accelerometers
Construction workers
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-355dab44f2137aededee3764649ea3cda3e146d9336fc8f02dbedc3f5d2014e33
OpenAccessLink http://hdl.handle.net/10216/158161
ParticipantIDs crossref_citationtrail_10_1016_j_jobe_2020_102001
crossref_primary_10_1016_j_jobe_2020_102001
elsevier_sciencedirect_doi_10_1016_j_jobe_2020_102001
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Building Engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Haykin (bib129) 2010
Chernbumroong, Atkins, Yu (bib63) 2011 5th
Sztyler, Stuckenschmidt (bib83) 2016
Umer (bib101) 2017; 143
Akhavian, Behzadan (bib23) 2016; 71
Stewart, Meyers (bib15) 2002
Ravi (bib75) 2005
Hassoun (bib128) 1995
Tsai (bib97) 2014; 66
Aft (bib20) 1983
Dietterich (bib140) 2002; vol. 2
Khoury (bib93) 2015; 56
Joshua, Varghese (bib91) 2014
Suykens, Vandewalle (bib131) 1999; 9
Jaselskis, El-Misalami (bib28) 2003; 129
Farrahi (bib111) 2019; 68
Pal, Mitra (bib130) 1992; 3
Zou, Kim (bib51) 2007; 21
Valero (bib100) 2017; 83
Memarzadeh, Golparvar-Fard, Niebles (bib52) 2013; 32
Golparvar-Fard, Heydarian, Niebles (bib13) 2013; 27
Freund, Schapire (bib136) 1996
Hsu, Lin (bib132) 2002; 13
Friedman (bib137) 2001
Han, Lee (bib58) 2013; 35
Sherafat (bib39) 2020; 146
Bao, Intille (bib73) 2004
Yang (bib80) 2015
Nasir (bib2) 2014; 32
Lee, Scarpiniti, Uncini (bib41) 2020; 34
Cheng (bib45) 2017; 81
Kim (bib49) 2009
Weerasinghe, Ruwanpura (bib50) 2009
Alvarez-Alvarez, Alonso, Trivino (bib103) 2013; 233
Rashid, Louis (bib40) 2020; 119
Banos (bib112) 2014; 14
Saeys, Inza, Larrañaga (bib121) 2007; 23
Goodrum, McLaren, Durfee (bib32) 2006; 15
Friedman (bib138) 2002; 38
Ryu (bib6) 2019; 145
Calvetti (bib24) 2019
Dietterich (bib139) 2000
Ordóñez, Roggen (bib82) 2016; 16
Figo (bib118) 2010; 14
Cawley, Talbot (bib142) 2010; 11
Pirttikangas, Fujinami, Nakajima (bib123) 2006
Darren Graham, Smith, Dunlop (bib113) 2005; 131
Oloufa, Ikeda, Oda (bib27) 2003; 12
Carbonari, Giretti, Naticchia (bib34) 2011; 20
Hong (bib67) 2008
Lim (bib98) 2016; 142
Nasrabadi (bib124) 2007; 16
Sink (bib21) 1985
Montoye (bib110) 2016; 20
Jebelli, Ahn, Stentz (bib102) 2016; 84
Gao (bib3) 2014; 140
Akhavian, Behzadan (bib22) 2015
Krassnig (bib68) 2010
Atallah (bib109) 2011; 5
Khosrowpour, Niebles, Golparvar-Fard (bib60) 2014; 48
Attal (bib78) 2015; 15
Niebel, Freivalds (bib16) 2009
Cheng (bib48) 2017
Altman (bib125) 1992; 46
Tao (bib77) 2018; 26
Cleland (bib107) 2013; 13
Chen, Qiu, Ahn (bib79) 2017; 77
Yang (bib92) 2017; 82
Hall (bib120) 1999
Montaser, Moselhi (bib30) 2012
Ahn, Lee, Peña-Mora (bib94) 2013; 29
Akhavian, Behzadan (bib89) 2018; 23
Akhavian, Brito, Behzadan (bib25) 2015
Kwapisz, Weiss, Moore (bib71) 2011; 12
Akhavian, Behzadan (bib5) 2015; 29
Arndt (bib7) 2005; 62
Ahn, Lee, Peña-Mora (bib95) 2013
Yang (bib55) 2010; 24
Parkka (bib74) 2006; 10
Valero (bib99) 2016; 54
Teizer, Vela (bib54) 2009; 23
Gong, Caldas (bib62) 2011; 20
Cheng (bib36) 2013; 27
Li (bib70) 2009
Khan (bib119) 2011
Koskimaki (bib66) 2009
Atallah (bib108) 2010
Yang, Wang, Chen (bib65) 2008; 29
Hamdy Ali, Atia, Sami (bib104) 2014
Gatti (bib10) 2014; 32
Montaser, Moselhi (bib29) 2014; 39
Yu (bib59) 2017; 82
Cho, Lee, Zhang (bib42) 2017
Preece (bib115) 2009; 30
Dernbach (bib76) 2012
Re, Valentini (bib141) 2012
Erdaş (bib85) 2016; 98
Pedregosa (bib105) 2011; 12
Cheng (bib46) 2016
Ergen (bib33) 2007; 21
Adrian (bib19) 1995
Zheng, Wang, Ordieres-Meré (bib87) 2018; 18
Gilbreth (bib18) 1911
Gong, Caldas (bib1) 2010; 24
Peddi (bib56) 2009
Dadi (bib4) 2014; 140
Cheng (bib9) 2013; 29
Taneja (bib14) 2011; 137
Khalid, Khalil, Nasreen (bib117) 2014
Groover (bib17) 2007
Sherafat (bib44) 2019
Orth, Welty, Jenkins (bib12) 2006
Seo, Lee, Seo (bib8) 2016; 142
Seo (bib37) 2015; 29
Gjoreski, Lustrek, Gams (bib106) 2011
Geurts, Ernst, Wehenkel (bib134) 2006; 63
Sabillon (bib43) 2020; 34
Cheng (bib47) 2019; 17
Yang (bib96) 2019
Breiman (bib133) 2001; 45
Zhang (bib38) 2018
Zhang (bib84) 2018; 18
Navon, Goldschmidt (bib26) 2003; 129
Cheng (bib35) 2011; 20
Costin, Pradhananga, Teizer (bib31) 2012; 24
Nath, Chaspari, Behzadan (bib86) 2018; 38
Frank (bib69) 2010
DeVaul, Dunn (bib114) 2001
Guyon, Elisseeff (bib122) 2003; 3
Freund, Schapire, Abe (bib135) 1999; 14
Zhu, Ren, Chen (bib53) 2017; 81
Guyon (bib116) 2008; vol. 207
Brodersen (bib143) 2010
Gong, Caldas, Gordon (bib61) 2011; 25
Friedman, Hastie, Tibshirani (bib127) 2001; vol. 1
Akhavian, Behzadan (bib88) 2016
Shoaib (bib64) 2016; 16
Gonsalves, Teizer (bib57) 2009
Yang (bib81) 2016; 68
Joshua, Varghese (bib11) 2010; 25
Mathie (bib72) 2003; 41
Ryu (bib90) 2016
Sutton (bib126) 2012
Sabillon (10.1016/j.jobe.2020.102001_bib43) 2020; 34
Atallah (10.1016/j.jobe.2020.102001_bib109) 2011; 5
Pal (10.1016/j.jobe.2020.102001_bib130) 1992; 3
DeVaul (10.1016/j.jobe.2020.102001_bib114) 2001
Hong (10.1016/j.jobe.2020.102001_bib67) 2008
Teizer (10.1016/j.jobe.2020.102001_bib54) 2009; 23
Banos (10.1016/j.jobe.2020.102001_bib112) 2014; 14
Dietterich (10.1016/j.jobe.2020.102001_bib139) 2000
Stewart (10.1016/j.jobe.2020.102001_bib15) 2002
Suykens (10.1016/j.jobe.2020.102001_bib131) 1999; 9
Yang (10.1016/j.jobe.2020.102001_bib81) 2016; 68
Nasir (10.1016/j.jobe.2020.102001_bib2) 2014; 32
Hall (10.1016/j.jobe.2020.102001_bib120) 1999
Haykin (10.1016/j.jobe.2020.102001_bib129) 2010
Joshua (10.1016/j.jobe.2020.102001_bib11) 2010; 25
Akhavian (10.1016/j.jobe.2020.102001_bib23) 2016; 71
Cheng (10.1016/j.jobe.2020.102001_bib45) 2017; 81
Chen (10.1016/j.jobe.2020.102001_bib79) 2017; 77
Aft (10.1016/j.jobe.2020.102001_bib20) 1983
Golparvar-Fard (10.1016/j.jobe.2020.102001_bib13) 2013; 27
Taneja (10.1016/j.jobe.2020.102001_bib14) 2011; 137
Zou (10.1016/j.jobe.2020.102001_bib51) 2007; 21
Ryu (10.1016/j.jobe.2020.102001_bib6) 2019; 145
Li (10.1016/j.jobe.2020.102001_bib70) 2009
Valero (10.1016/j.jobe.2020.102001_bib100) 2017; 83
Yu (10.1016/j.jobe.2020.102001_bib59) 2017; 82
Han (10.1016/j.jobe.2020.102001_bib58) 2013; 35
Cheng (10.1016/j.jobe.2020.102001_bib46) 2016
Friedman (10.1016/j.jobe.2020.102001_bib138) 2002; 38
Breiman (10.1016/j.jobe.2020.102001_bib133) 2001; 45
Cho (10.1016/j.jobe.2020.102001_bib42) 2017
Pedregosa (10.1016/j.jobe.2020.102001_bib105) 2011; 12
Gilbreth (10.1016/j.jobe.2020.102001_bib18) 1911
Pirttikangas (10.1016/j.jobe.2020.102001_bib123) 2006
Gong (10.1016/j.jobe.2020.102001_bib1) 2010; 24
Valero (10.1016/j.jobe.2020.102001_bib99) 2016; 54
Krassnig (10.1016/j.jobe.2020.102001_bib68) 2010
Parkka (10.1016/j.jobe.2020.102001_bib74) 2006; 10
Darren Graham (10.1016/j.jobe.2020.102001_bib113) 2005; 131
Gong (10.1016/j.jobe.2020.102001_bib61) 2011; 25
Figo (10.1016/j.jobe.2020.102001_bib118) 2010; 14
Weerasinghe (10.1016/j.jobe.2020.102001_bib50) 2009
Chernbumroong (10.1016/j.jobe.2020.102001_bib63) 2011
Shoaib (10.1016/j.jobe.2020.102001_bib64) 2016; 16
Atallah (10.1016/j.jobe.2020.102001_bib108) 2010
Zheng (10.1016/j.jobe.2020.102001_bib87) 2018; 18
Altman (10.1016/j.jobe.2020.102001_bib125) 1992; 46
Khalid (10.1016/j.jobe.2020.102001_bib117) 2014
Joshua (10.1016/j.jobe.2020.102001_bib91) 2014
Geurts (10.1016/j.jobe.2020.102001_bib134) 2006; 63
Lim (10.1016/j.jobe.2020.102001_bib98) 2016; 142
Ergen (10.1016/j.jobe.2020.102001_bib33) 2007; 21
Calvetti (10.1016/j.jobe.2020.102001_bib24) 2019
Re (10.1016/j.jobe.2020.102001_bib141) 2012
Costin (10.1016/j.jobe.2020.102001_bib31) 2012; 24
Brodersen (10.1016/j.jobe.2020.102001_bib143) 2010
Koskimaki (10.1016/j.jobe.2020.102001_bib66) 2009
Montaser (10.1016/j.jobe.2020.102001_bib29) 2014; 39
Adrian (10.1016/j.jobe.2020.102001_bib19) 1995
Gjoreski (10.1016/j.jobe.2020.102001_bib106) 2011
Ordóñez (10.1016/j.jobe.2020.102001_bib82) 2016; 16
Dadi (10.1016/j.jobe.2020.102001_bib4) 2014; 140
Arndt (10.1016/j.jobe.2020.102001_bib7) 2005; 62
Sherafat (10.1016/j.jobe.2020.102001_bib44) 2019
Zhang (10.1016/j.jobe.2020.102001_bib84) 2018; 18
Saeys (10.1016/j.jobe.2020.102001_bib121) 2007; 23
Cheng (10.1016/j.jobe.2020.102001_bib35) 2011; 20
Hamdy Ali (10.1016/j.jobe.2020.102001_bib104) 2014
Zhu (10.1016/j.jobe.2020.102001_bib53) 2017; 81
Bao (10.1016/j.jobe.2020.102001_bib73) 2004
Rashid (10.1016/j.jobe.2020.102001_bib40) 2020; 119
Oloufa (10.1016/j.jobe.2020.102001_bib27) 2003; 12
Yang (10.1016/j.jobe.2020.102001_bib65) 2008; 29
Cheng (10.1016/j.jobe.2020.102001_bib48) 2017
Akhavian (10.1016/j.jobe.2020.102001_bib25) 2015
Ahn (10.1016/j.jobe.2020.102001_bib95) 2013
Khan (10.1016/j.jobe.2020.102001_bib119) 2011
Freund (10.1016/j.jobe.2020.102001_bib136) 1996
Niebel (10.1016/j.jobe.2020.102001_bib16) 2009
Alvarez-Alvarez (10.1016/j.jobe.2020.102001_bib103) 2013; 233
Akhavian (10.1016/j.jobe.2020.102001_bib22) 2015
Lee (10.1016/j.jobe.2020.102001_bib41) 2020; 34
Friedman (10.1016/j.jobe.2020.102001_bib137) 2001
Dietterich (10.1016/j.jobe.2020.102001_bib140) 2002; vol. 2
Ahn (10.1016/j.jobe.2020.102001_bib94) 2013; 29
Montaser (10.1016/j.jobe.2020.102001_bib30) 2012
Tao (10.1016/j.jobe.2020.102001_bib77) 2018; 26
Hsu (10.1016/j.jobe.2020.102001_bib132) 2002; 13
Jebelli (10.1016/j.jobe.2020.102001_bib102) 2016; 84
Preece (10.1016/j.jobe.2020.102001_bib115) 2009; 30
Yang (10.1016/j.jobe.2020.102001_bib96) 2019
Friedman (10.1016/j.jobe.2020.102001_bib127) 2001; vol. 1
Memarzadeh (10.1016/j.jobe.2020.102001_bib52) 2013; 32
Groover (10.1016/j.jobe.2020.102001_bib17) 2007
Zhang (10.1016/j.jobe.2020.102001_bib38) 2018
Nath (10.1016/j.jobe.2020.102001_bib86) 2018; 38
Cheng (10.1016/j.jobe.2020.102001_bib9) 2013; 29
Dernbach (10.1016/j.jobe.2020.102001_bib76) 2012
Akhavian (10.1016/j.jobe.2020.102001_bib88) 2016
Nasrabadi (10.1016/j.jobe.2020.102001_bib124) 2007; 16
Cheng (10.1016/j.jobe.2020.102001_bib36) 2013; 27
Freund (10.1016/j.jobe.2020.102001_bib135) 1999; 14
Ravi (10.1016/j.jobe.2020.102001_bib75) 2005
Carbonari (10.1016/j.jobe.2020.102001_bib34) 2011; 20
Cheng (10.1016/j.jobe.2020.102001_bib47) 2019; 17
Gonsalves (10.1016/j.jobe.2020.102001_bib57) 2009
Sink (10.1016/j.jobe.2020.102001_bib21) 1985
Yang (10.1016/j.jobe.2020.102001_bib80) 2015
Akhavian (10.1016/j.jobe.2020.102001_bib5) 2015; 29
Montoye (10.1016/j.jobe.2020.102001_bib110) 2016; 20
Peddi (10.1016/j.jobe.2020.102001_bib56) 2009
Gatti (10.1016/j.jobe.2020.102001_bib10) 2014; 32
Cawley (10.1016/j.jobe.2020.102001_bib142) 2010; 11
Seo (10.1016/j.jobe.2020.102001_bib8) 2016; 142
Kim (10.1016/j.jobe.2020.102001_bib49) 2009
Tsai (10.1016/j.jobe.2020.102001_bib97) 2014; 66
Jaselskis (10.1016/j.jobe.2020.102001_bib28) 2003; 129
Attal (10.1016/j.jobe.2020.102001_bib78) 2015; 15
Khoury (10.1016/j.jobe.2020.102001_bib93) 2015; 56
Ryu (10.1016/j.jobe.2020.102001_bib90) 2016
Umer (10.1016/j.jobe.2020.102001_bib101) 2017; 143
Navon (10.1016/j.jobe.2020.102001_bib26) 2003; 129
Mathie (10.1016/j.jobe.2020.102001_bib72) 2003; 41
Orth (10.1016/j.jobe.2020.102001_bib12) 2006
Goodrum (10.1016/j.jobe.2020.102001_bib32) 2006; 15
Yang (10.1016/j.jobe.2020.102001_bib92) 2017; 82
Guyon (10.1016/j.jobe.2020.102001_bib116) 2008; vol. 207
Gong (10.1016/j.jobe.2020.102001_bib62) 2011; 20
Yang (10.1016/j.jobe.2020.102001_bib55) 2010; 24
Guyon (10.1016/j.jobe.2020.102001_bib122) 2003; 3
Sutton (10.1016/j.jobe.2020.102001_bib126) 2012
Cleland (10.1016/j.jobe.2020.102001_bib107) 2013; 13
Gao (10.1016/j.jobe.2020.102001_bib3) 2014; 140
Seo (10.1016/j.jobe.2020.102001_bib37) 2015; 29
Frank (10.1016/j.jobe.2020.102001_bib69) 2010
Farrahi (10.1016/j.jobe.2020.102001_bib111) 2019; 68
Erdaş (10.1016/j.jobe.2020.102001_bib85) 2016; 98
Sherafat (10.1016/j.jobe.2020.102001_bib39) 2020; 146
Kwapisz (10.1016/j.jobe.2020.102001_bib71) 2011; 12
Hassoun (10.1016/j.jobe.2020.102001_bib128) 1995
Khosrowpour (10.1016/j.jobe.2020.102001_bib60) 2014; 48
Akhavian (10.1016/j.jobe.2020.102001_bib89) 2018; 23
Sztyler (10.1016/j.jobe.2020.102001_bib83) 2016
References_xml – year: 2009
  ident: bib49
  article-title: Measuring Construction Productivity Using the Write System. In Construction Research Congress
  publication-title: Building a Sustainable Future
– volume: 137
  start-page: 870
  year: 2011
  end-page: 881
  ident: bib14
  article-title: Sensing and field data capture for construction and facility operations
  publication-title: J. Construct. Eng. Manag.
– volume: 20
  start-page: 686
  year: 2011
  end-page: 698
  ident: bib34
  article-title: A proactive system for real-time safety management in construction sites
  publication-title: Autom. ConStruct.
– volume: 16
  year: 2007
  ident: bib124
  article-title: Pattern recognition and machine learning
  publication-title: J. Electron. Imag.
– volume: 82
  start-page: 193
  year: 2017
  end-page: 206
  ident: bib59
  article-title: An experimental study of real-time identification of construction workers' unsafe behaviors
  publication-title: Autom. ConStruct.
– volume: 20
  start-page: 173
  year: 2016
  end-page: 183
  ident: bib110
  article-title: Comparison of activity type classification accuracy from accelerometers worn on the hip, wrists, and thigh in young, apparently healthy adults
  publication-title: Meas. Phys. Educ. Exerc. Sci.
– start-page: 148
  year: 2015
  end-page: 155
  ident: bib80
  article-title: Threshold-based Approach to Detect Near-Miss Falls of Iron Workers Using Inertial Measurement Units, in Computing in Civil Engineering
– year: 2011
  ident: bib119
  article-title: A Feature Extraction Method for Realtime Human Activity Recognition on Cell Phones. In Proceedings of 3rd International Symposium on Quality of Life Technology (isQoLT 2011)
– year: 2019
  ident: bib44
  article-title: Automated Activity Recognition of Construction Equipment Using a Data Fusion Approach
– year: 2016
  ident: bib46
  article-title: Audio Signal Processing for Activity Recognition of Construction Heavy Equipment. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction
– year: 1996
  ident: bib136
  article-title: Schapire R: Experiments with a new boosting algorithm
  publication-title: Thirteenth International Conference on ML
– volume: 23
  start-page: 452
  year: 2009
  end-page: 462
  ident: bib54
  article-title: Personnel tracking on construction sites using video cameras
  publication-title: Adv. Eng. Inf.
– volume: 81
  start-page: 161
  year: 2017
  end-page: 171
  ident: bib53
  article-title: Integrated detection and tracking of workforce and equipment from construction jobsite videos
  publication-title: Autom. ConStruct.
– year: 2010
  ident: bib143
  article-title: The balanced accuracy and its posterior distribution
  publication-title: 2010 20th International Conference on Pattern Recognition
– volume: 12
  start-page: 74
  year: 2011
  end-page: 82
  ident: bib71
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SigKDD Explor. Newsl.
– volume: 25
  start-page: 771
  year: 2011
  end-page: 782
  ident: bib61
  article-title: Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models
  publication-title: Adv. Eng. Inf.
– volume: 13
  year: 2013
  ident: bib107
  article-title: Optimal placement of accelerometers for the detection of everyday activities
  publication-title: Sensors
– year: 2009
  ident: bib66
  article-title: Activity Recognition Using a Wrist-Worn Inertial Measurement Unit: A Case Study for Industrial Assembly Lines
  publication-title: 17th Mediterranean Conference on Control and Automation
– year: 1999
  ident: bib120
  article-title: Correlation-based Feature Selection for Machine Learning
– volume: 18
  start-page: 2146
  year: 2018
  ident: bib87
  article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0
  publication-title: Sensors
– volume: 77
  start-page: 67
  year: 2017
  end-page: 81
  ident: bib79
  article-title: Construction worker's awkward posture recognition through supervised motion tensor decomposition
  publication-title: Autom. ConStruct.
– volume: 5
  start-page: 320
  year: 2011
  end-page: 329
  ident: bib109
  article-title: Sensor positioning for activity recognition using wearable accelerometers
  publication-title: IEEE Trans. Biomed. Circ. Syst.
– year: 2011
  ident: bib106
  article-title: Accelerometer Placement for Posture Recognition and Fall Detection
  publication-title: Seventh International Conference on Intelligent Environments
– year: 2014
  ident: bib117
  article-title: A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
  publication-title: Science and Information Conference
– start-page: 326
  year: 2017
  end-page: 334
  ident: bib42
  article-title: Sound Recognition Techniques for Multi-Layered Construction Activities and Events, in Computing in Civil Engineering
– year: 2005
  ident: bib75
  article-title: Activity Recognition from Accelerometer Data
– volume: 24
  start-page: 1
  year: 2012
  end-page: 15
  ident: bib31
  article-title: Leveraging passive RFID technology for construction resource field mobility and status monitoring in a high-rise renovation project
  publication-title: Autom. ConStruct.
– year: 2001
  ident: bib114
  article-title: Real-time Motion Classification for Wearable Computing Applications
– year: 1985
  ident: bib21
  article-title: Productivity Management: Planning, Measurement and Evaluation, Control and Improvement
– volume: 27
  start-page: 320
  year: 2013
  end-page: 335
  ident: bib36
  article-title: Data fusion of real-time location sensing and physiological status monitoring for ergonomics analysis of construction workers
  publication-title: J. Comput. Civ. Eng.
– volume: 29
  year: 2013
  ident: bib94
  article-title: Application of low-cost accelerometers for measuring the operational efficiency of a construction equipment fleet
  publication-title: J. Comput. Civ. Eng.
– volume: 54
  start-page: 120
  year: 2016
  end-page: 130
  ident: bib99
  article-title: Musculoskeletal disorders in construction: a review and a novel system for activity tracking with body area network
  publication-title: Appl. Ergon.
– volume: 32
  start-page: 24
  year: 2013
  end-page: 37
  ident: bib52
  article-title: Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors
  publication-title: Autom. ConStruct.
– year: 1983
  ident: bib20
  article-title: Productivity Measurement and Improvement
– year: 2009
  ident: bib50
  article-title: Automated Data Acquisition System to Assess Construction Worker Performance. In Construction Research Congress
  publication-title: Building a Sustainable Future
– volume: 13
  start-page: 415
  year: 2002
  end-page: 425
  ident: bib132
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Network.
– volume: 16
  start-page: 115
  year: 2016
  ident: bib82
  article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
– volume: 15
  start-page: 31314
  year: 2015
  end-page: 31338
  ident: bib78
  article-title: Physical human activity recognition using wearable sensors
  publication-title: Sensors
– year: 2016
  ident: bib88
  article-title: Productivity analysis of construction worker activities using smartphone sensors
  publication-title: Proc., 16th Int. Conf. Comput. Civil Building Eng.
– year: 2010
  ident: bib108
  article-title: Sensor Placement for Activity Detection Using Wearable Accelerometers
  publication-title: International Conference on Body Sensor Networks
– year: 2006
  ident: bib12
  article-title: Analyzing Labor Productivity through Work Sampling. In Proceedings of the 42nd Annual Conference of the Associated Schools of Construction
– volume: 20
  start-page: 1173
  year: 2011
  end-page: 1184
  ident: bib35
  article-title: Performance evaluation of ultra wideband technology for construction resource location tracking in harsh environments
  publication-title: Autom. ConStruct.
– volume: 83
  start-page: 48
  year: 2017
  end-page: 55
  ident: bib100
  article-title: Analysis of construction trade worker body motions using a wearable and wireless motion sensor network
  publication-title: Autom. ConStruct.
– year: 2014
  ident: bib91
  article-title: Automated recognition of construction labour activity using accelerometers in field situations
  publication-title: Int. J. Prod. Perform. Manag.
– volume: 30
  start-page: R1
  year: 2009
  ident: bib115
  article-title: Activity identification using body-mounted sensors—a review of classification techniques
  publication-title: Physiol. Meas.
– volume: 48
  start-page: 74
  year: 2014
  end-page: 87
  ident: bib60
  article-title: Vision-based workface assessment using depth images for activity analysis of interior construction operations
  publication-title: Autom. ConStruct.
– volume: 82
  start-page: 166
  year: 2017
  end-page: 178
  ident: bib92
  article-title: Collective sensing of workers' gait patterns to identify fall hazards in construction
  publication-title: Autom. ConStruct.
– volume: 18
  start-page: 2667
  year: 2018
  ident: bib84
  article-title: Research on construction workers' activity recognition based on smartphone
  publication-title: Sensors
– volume: 84
  start-page: 161
  year: 2016
  end-page: 170
  ident: bib102
  article-title: Fall risk analysis of construction workers using inertial measurement units: validating the usefulness of the postural stability metrics in construction
  publication-title: Saf. Sci.
– year: 2014
  ident: bib104
  article-title: A Comparative Study of User Dependent and Independent Accelerometer-Based Gesture Recognition Algorithms. In Distributed, Ambient, and Pervasive Interactions
– volume: 145
  year: 2019
  ident: bib6
  article-title: Automated action recognition using an accelerometer-embedded wristband-type activity tracker
  publication-title: J. Construct. Eng. Manag.
– volume: 39
  start-page: 167
  year: 2014
  end-page: 179
  ident: bib29
  article-title: RFID indoor location identification for construction projects
  publication-title: Autom. ConStruct.
– year: 2015
  ident: bib25
  article-title: Integrated Mobile Sensor-Based Activity Recognition of Construction Equipment and Human Crews. In Proceedings of the 2015 Conference on Autonomous and Robotic Construction of Infrastructure
– volume: 119
  start-page: 103361
  year: 2020
  ident: bib40
  article-title: Activity identification in modular construction using audio signals and machine learning
  publication-title: Autom. ConStruct.
– start-page: 563
  year: 2012
  end-page: 594
  ident: bib141
  article-title: Ensemble Methods: A Review
– year: 2015
  ident: bib22
  article-title: Wearable Sensor-Based Activity Recognition for Data-Driven Simulation of Construction Workers' Activities
  publication-title: Winter Simulation Conference
– year: 2009
  ident: bib57
  article-title: Human motion analysis using 3D range imaging technology
  publication-title: Int. Symp. on Automation and Robotics in Construction
– volume: 20
  start-page: 1211
  year: 2011
  end-page: 1226
  ident: bib62
  article-title: An object recognition, tracking, and contextual reasoning-based video interpretation method for rapid productivity analysis of construction operations
  publication-title: Autom. ConStruct.
– volume: 143
  year: 2017
  ident: bib101
  article-title: Identification of biomechanical risk factors for the development of lower-back disorders during manual rebar tying
  publication-title: J. Construct. Eng. Manag.
– volume: vol. 207
  year: 2008
  ident: bib116
  publication-title: Feature Extraction: Foundations and Applications
– year: 1995
  ident: bib128
  article-title: Fundamentals of Artificial Neural Networks
– year: 2010
  ident: bib69
  article-title: Reliable Real-Time Recognition of Motion Related Human Activities Using MEMS Inertial Sensors
– volume: 142
  year: 2016
  ident: bib98
  article-title: Artificial neural network–based slip-trip classifier using smart sensor for construction workplace
  publication-title: J. Construct. Eng. Manag.
– year: 2019
  ident: bib24
  article-title: Sensing Technologies Embedding Construction Workers Outcomes/key Performance Indicators
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib134
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
– volume: 32
  start-page: 548
  year: 2014
  end-page: 564
  ident: bib10
  article-title: An exploratory study of the relationship between construction workforce physical strain and task level productivity
  publication-title: Construct. Manag. Econ.
– volume: 34
  year: 2020
  ident: bib41
  article-title: Advanced sound classifiers and performance analyses for accurate audio-based construction project monitoring
  publication-title: J. Comput. Civ. Eng.
– volume: 15
  start-page: 292
  year: 2006
  end-page: 302
  ident: bib32
  article-title: The application of active radio frequency identification technology for tool tracking on construction job sites
  publication-title: Autom. ConStruct.
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: bib125
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Statistician
– year: 2000
  ident: bib139
  article-title: Ensemble Methods in Machine Learning. In International Workshop on Multiple Classifier Systems
– volume: 131
  start-page: 230
  year: 2005
  end-page: 238
  ident: bib113
  article-title: Lognormal distribution provides an optimum representation of the concrete delivery and placement process
  publication-title: J. Construct. Eng. Manag.
– volume: 25
  start-page: 370
  year: 2010
  end-page: 379
  ident: bib11
  article-title: Accelerometer-based activity recognition in construction
  publication-title: J. Comput. Civ. Eng.
– start-page: 1
  year: 2012
  end-page: 10
  ident: bib126
  article-title: Introduction to K Nearest Neighbour Classification and Condensed Nearest Neighbour Data Reduction
– start-page: 358
  year: 2018
  end-page: 366
  ident: bib38
  article-title: A supervised machine learning-based sound identification for construction activity monitoring and performance evaluation
  publication-title: Construct. Res. Congr.
– volume: 29
  start-page: 2213
  year: 2008
  end-page: 2220
  ident: bib65
  article-title: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers
  publication-title: Pattern Recogn. Lett.
– volume: 27
  start-page: 652
  year: 2013
  end-page: 663
  ident: bib13
  article-title: Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers
  publication-title: Adv. Eng. Inf.
– volume: 14
  start-page: 1612
  year: 1999
  ident: bib135
  article-title: A short introduction to boosting
  publication-title: J. Jpn. Soc. Artif. Intell.
– volume: 11
  start-page: 2079
  year: 2010
  end-page: 2107
  ident: bib142
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib133
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2004
  ident: bib73
  article-title: Activity Recognition from User-Annotated Acceleration Data
  publication-title: International Conference on Pervasive Computing
– volume: 81
  start-page: 240
  year: 2017
  end-page: 253
  ident: bib45
  article-title: Activity analysis of construction equipment using audio signals and support vector machines
  publication-title: Autom. ConStruct.
– volume: 32
  start-page: 595
  year: 2014
  end-page: 607
  ident: bib2
  article-title: An analysis of construction productivity differences between Canada and the United States
  publication-title: Construct. Manag. Econ.
– volume: 21
  start-page: 11
  year: 2007
  end-page: 20
  ident: bib33
  article-title: Tracking components and maintenance history within a facility utilizing radio frequency identification technology
  publication-title: J. Comput. Civ. Eng.
– volume: 3
  start-page: 683
  year: 1992
  end-page: 697
  ident: bib130
  article-title: Multilayer perceptron, fuzzy sets, and classification
  publication-title: IEEE Trans. Neural Network.
– volume: 29
  start-page: 239
  year: 2015
  end-page: 251
  ident: bib37
  article-title: Computer vision techniques for construction safety and health monitoring
  publication-title: Adv. Eng. Inf.
– year: 2008
  ident: bib67
  article-title: Activity Recognition Using Wearable Sensors for Elder Care
  publication-title: Second International Conference on Future Generation Communication and Networking
– volume: 38
  start-page: 514
  year: 2018
  end-page: 526
  ident: bib86
  article-title: Automated ergonomic risk monitoring using body-mounted sensors and machine learning
  publication-title: Adv. Eng. Inf.
– volume: 68
  start-page: 285
  year: 2019
  end-page: 299
  ident: bib111
  article-title: Calibration and validation of accelerometer-based activity monitors: a systematic review of machine-learning approaches
  publication-title: Gait Posture
– volume: 66
  start-page: 19
  year: 2014
  end-page: 26
  ident: bib97
  article-title: Automatically determining accidental falls in field surveying: a case study of integrating accelerometer determination and image recognition
  publication-title: Saf. Sci.
– volume: 71
  start-page: 198
  year: 2016
  end-page: 209
  ident: bib23
  article-title: Smartphone-based construction workers' activity recognition and classification
  publication-title: Autom. ConStruct.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib131
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– year: 2010
  ident: bib68
  article-title: User-friendly System for Recognition of Activities with an Accelerometer
  publication-title: 4th International Conference on Pervasive Computing Technologies for Healthcare
– volume: 23
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib89
  article-title: Coupling human activity recognition and wearable sensors for data-driven construction simulation
  publication-title: ITcon
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: bib121
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 12
  start-page: 737
  year: 2003
  end-page: 748
  ident: bib27
  article-title: Situational awareness of construction equipment using GPS, wireless and web technologies
  publication-title: Autom. ConStruct.
– volume: 24
  start-page: 252
  year: 2010
  end-page: 263
  ident: bib1
  article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations
  publication-title: J. Comput. Civ. Eng.
– volume: 129
  start-page: 437
  year: 2003
  end-page: 445
  ident: bib26
  article-title: Can labor inputs be measured and controlled automatically?
  publication-title: J. Construct. Eng. Manag.
– year: 2012
  ident: bib30
  article-title: RFID+ for Tracking Earthmoving Operations. In Construction Research Congress 2012: Construction Challenges in a Flat World
– year: 2016
  ident: bib90
  article-title: Action recognition using a wristband-type activity tracker: case study of masonry work
  publication-title: Construct. Res. Congr.
– volume: vol. 1
  year: 2001
  ident: bib127
  publication-title: The Elements of Statistical Learning
– volume: 14
  start-page: 645
  year: 2010
  end-page: 662
  ident: bib118
  article-title: Preprocessing techniques for context recognition from accelerometer data
  publication-title: Personal Ubiquitous Comput.
– volume: 129
  start-page: 680
  year: 2003
  end-page: 688
  ident: bib28
  article-title: Implementing radio frequency identification in the construction process
  publication-title: J. Construct. Eng. Manag.
– volume: 24
  start-page: 428
  year: 2010
  end-page: 434
  ident: bib55
  article-title: Tracking multiple workers on construction sites using video cameras
  publication-title: Adv. Eng. Inf.
– volume: 146
  year: 2020
  ident: bib39
  article-title: Automated methods for activity recognition of construction workers and equipment: state-of-the-art review
  publication-title: J. Construct. Eng. Manag.
– volume: vol. 2
  start-page: 110
  year: 2002
  end-page: 125
  ident: bib140
  article-title: Ensemble learning
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 34
  year: 2020
  ident: bib43
  article-title: Audio-based Bayesian model for productivity estimation of cyclic construction activities
  publication-title: J. Comput. Civ. Eng.
– volume: 14
  start-page: 6474
  year: 2014
  end-page: 6499
  ident: bib112
  article-title: Window size impact in human activity recognition
  publication-title: Sensors
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib122
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 98
  start-page: 522
  year: 2016
  end-page: 527
  ident: bib85
  article-title: Integrating features for accelerometer-based activity recognition
  publication-title: Procedia Comput. Sci.
– year: 2009
  ident: bib16
  article-title: Niebel's Methods, Standards, and Work Design
– year: 1911
  ident: bib18
  article-title: Motion Study: A Method for Increasing the Efficiency of the Workman
– volume: 17
  start-page: 1469
  year: 2019
  end-page: 1480
  ident: bib47
  article-title: Evaluation of software and hardware settings for audio-based analysis of construction operations
  publication-title: Int. J. Civ. Eng.
– year: 1995
  ident: bib19
  article-title: Construction Productivity: Measurement and Improvement
– year: 2002
  ident: bib15
  article-title: Motion Time Study for Lean Manufacturing
– year: 2016
  ident: bib83
  article-title: On-body Localization of Wearable Devices: an Investigation of Position-Aware Activity Recognition
  publication-title: IEEE International Conference on Pervasive Computing and Communications (PerCom)
– volume: 21
  start-page: 238
  year: 2007
  end-page: 246
  ident: bib51
  article-title: Using hue, saturation, and value color space for hydraulic excavator idle time analysis
  publication-title: J. Comput. Civ. Eng.
– year: 2006
  ident: bib123
  article-title: Feature Selection and Activity Recognition from Wearable Sensors. In International Symposium on Ubiquitious Computing Systems
– year: 2011 5th
  ident: bib63
  article-title: Activity Classification Using a Single Wrist-Worn Accelerometer
  publication-title: International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA) Proceedings
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: bib138
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
– volume: 56
  start-page: 47
  year: 2015
  end-page: 66
  ident: bib93
  article-title: Infrastructureless approach for ubiquitous user location tracking in construction environments
  publication-title: Autom. ConStruct.
– volume: 29
  start-page: 24
  year: 2013
  end-page: 39
  ident: bib9
  article-title: Automated task-level activity analysis through fusion of real time location sensors and worker's thoracic posture data
  publication-title: Autom. ConStruct.
– volume: 16
  start-page: 426
  year: 2016
  ident: bib64
  article-title: Complex human activity recognition using smartphone and wrist-worn motion sensors
  publication-title: Sensors
– volume: 26
  start-page: 1159
  year: 2018
  end-page: 1166
  ident: bib77
  article-title: Worker activity recognition in smart manufacturing using IMU and sEMG signals with convolutional neural networks
  publication-title: Procedia Manuf.
– year: 2007
  ident: bib17
  article-title: Measurement, and Management
– volume: 142
  year: 2016
  ident: bib8
  article-title: Simulation-based assessment of workers' muscle fatigue and its impact on construction operations
  publication-title: J. Construct. Eng. Manag.
– year: 2009
  ident: bib70
  article-title: Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information
  publication-title: Sixth International Workshop on Wearable and Implantable Body Sensor Networks. 2009
– year: 2019
  ident: bib96
  article-title: A Low-Cost and Smart IMU Tool for Tracking Construction Activities. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib105
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 2012
  ident: bib76
  article-title: Simple and Complex Activity Recognition through Smart Phones
  publication-title: Eighth International Conference on Intelligent Environments
– volume: 68
  start-page: 194
  year: 2016
  end-page: 202
  ident: bib81
  article-title: Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit
  publication-title: Autom. ConStruct.
– year: 2010
  ident: bib129
  article-title: Neural Networks and Learning Machines, 3/E
– year: 2009
  ident: bib56
  article-title: Development of Human Pose Analyzing Algorithms for the Determination of Construction Productivity in Real-Time. In Construction Research Congress
  publication-title: Building a Sustainable Future
– volume: 41
  start-page: 296
  year: 2003
  end-page: 301
  ident: bib72
  article-title: Detection of daily physical activities using a triaxial accelerometer
  publication-title: Med. Biol. Eng. Comput.
– start-page: 352
  year: 2017
  end-page: 359
  ident: bib48
  article-title: Acoustical Modeling of Construction Jobsites: Hardware and Software Requirements, in Computing in Civil Engineering
– volume: 10
  start-page: 119
  year: 2006
  end-page: 128
  ident: bib74
  article-title: Activity classification using realistic data from wearable sensors
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 140
  year: 2014
  ident: bib3
  article-title: Proactive productivity management at job sites: understanding characteristics of assumptions made for construction processes during planning based on case studies and interviews
  publication-title: J. Construct. Eng. Manag.
– volume: 62
  start-page: 559
  year: 2005
  ident: bib7
  article-title: Construction work and risk of occupational disability: a ten year follow up of 14 474 male workers
  publication-title: Occup. Environ. Med.
– volume: 29
  start-page: 867
  year: 2015
  end-page: 877
  ident: bib5
  article-title: Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers
  publication-title: Adv. Eng. Inf.
– start-page: 565
  year: 2013
  end-page: 572
  ident: bib95
  article-title: Accelerometer-based Measurement of Construction Equipment Operating Efficiency for Monitoring Environmental Performance
  publication-title: Computing in Civil Engineering
– volume: 140
  year: 2014
  ident: bib4
  article-title: Cognitive workload demands using 2D and 3D spatial engineering information formats
  publication-title: J. Construct. Eng. Manag.
– volume: 35
  start-page: 131
  year: 2013
  end-page: 141
  ident: bib58
  article-title: A vision-based motion capture and recognition framework for behavior-based safety management
  publication-title: Autom. ConStruct.
– volume: 233
  start-page: 162
  year: 2013
  end-page: 182
  ident: bib103
  article-title: Human activity recognition in indoor environments by means of fusing information extracted from intensity of WiFi signal and accelerations
  publication-title: Inf. Sci.
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib137
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: vol. 207
  year: 2008
  ident: 10.1016/j.jobe.2020.102001_bib116
– volume: 20
  start-page: 173
  issue: 3
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib110
  article-title: Comparison of activity type classification accuracy from accelerometers worn on the hip, wrists, and thigh in young, apparently healthy adults
  publication-title: Meas. Phys. Educ. Exerc. Sci.
  doi: 10.1080/1091367X.2016.1192038
– volume: 25
  start-page: 771
  issue: 4
  year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib61
  article-title: Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2011.06.002
– volume: 10
  start-page: 119
  issue: 1
  year: 2006
  ident: 10.1016/j.jobe.2020.102001_bib74
  article-title: Activity classification using realistic data from wearable sensors
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2005.856863
– start-page: 358
  year: 2018
  ident: 10.1016/j.jobe.2020.102001_bib38
  article-title: A supervised machine learning-based sound identification for construction activity monitoring and performance evaluation
  publication-title: Construct. Res. Congr.
– volume: 83
  start-page: 48
  year: 2017
  ident: 10.1016/j.jobe.2020.102001_bib100
  article-title: Analysis of construction trade worker body motions using a wearable and wireless motion sensor network
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2017.08.001
– year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib68
  article-title: User-friendly System for Recognition of Activities with an Accelerometer
  doi: 10.4108/ICST.PERVASIVEHEALTH2010.8853
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.jobe.2020.102001_bib138
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 32
  start-page: 24
  year: 2013
  ident: 10.1016/j.jobe.2020.102001_bib52
  article-title: Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2012.12.002
– year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib106
  article-title: Accelerometer Placement for Posture Recognition and Fall Detection
  doi: 10.1109/IE.2011.11
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  ident: 10.1016/j.jobe.2020.102001_bib132
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.991427
– volume: 35
  start-page: 131
  year: 2013
  ident: 10.1016/j.jobe.2020.102001_bib58
  article-title: A vision-based motion capture and recognition framework for behavior-based safety management
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2013.05.001
– year: 1999
  ident: 10.1016/j.jobe.2020.102001_bib120
– volume: 146
  issue: 6
  year: 2020
  ident: 10.1016/j.jobe.2020.102001_bib39
  article-title: Automated methods for activity recognition of construction workers and equipment: state-of-the-art review
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001843
– volume: 140
  issue: 3
  year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib3
  article-title: Proactive productivity management at job sites: understanding characteristics of assumptions made for construction processes during planning based on case studies and interviews
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0000816
– year: 2012
  ident: 10.1016/j.jobe.2020.102001_bib30
– volume: 34
  issue: 5
  year: 2020
  ident: 10.1016/j.jobe.2020.102001_bib41
  article-title: Advanced sound classifiers and performance analyses for accurate audio-based construction project monitoring
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000911
– volume: 137
  start-page: 870
  issue: 10
  year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib14
  article-title: Sensing and field data capture for construction and facility operations
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0000332
– volume: 18
  start-page: 2146
  issue: 7
  year: 2018
  ident: 10.1016/j.jobe.2020.102001_bib87
  article-title: Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0
  publication-title: Sensors
  doi: 10.3390/s18072146
– volume: 142
  issue: 11
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib8
  article-title: Simulation-based assessment of workers' muscle fatigue and its impact on construction operations
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001182
– volume: 29
  start-page: 2213
  issue: 16
  year: 2008
  ident: 10.1016/j.jobe.2020.102001_bib65
  article-title: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2008.08.002
– year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib63
  article-title: Activity Classification Using a Single Wrist-Worn Accelerometer
  doi: 10.1109/SKIMA.2011.6089975
– volume: 56
  start-page: 47
  year: 2015
  ident: 10.1016/j.jobe.2020.102001_bib93
  article-title: Infrastructureless approach for ubiquitous user location tracking in construction environments
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2015.04.009
– year: 2009
  ident: 10.1016/j.jobe.2020.102001_bib57
  article-title: Human motion analysis using 3D range imaging technology
– volume: 145
  issue: 1
  year: 2019
  ident: 10.1016/j.jobe.2020.102001_bib6
  article-title: Automated action recognition using an accelerometer-embedded wristband-type activity tracker
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001579
– volume: 14
  start-page: 6474
  issue: 4
  year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib112
  article-title: Window size impact in human activity recognition
  publication-title: Sensors
  doi: 10.3390/s140406474
– start-page: 148
  year: 2015
  ident: 10.1016/j.jobe.2020.102001_bib80
– volume: 34
  issue: 1
  year: 2020
  ident: 10.1016/j.jobe.2020.102001_bib43
  article-title: Audio-based Bayesian model for productivity estimation of cyclic construction activities
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000863
– year: 2009
  ident: 10.1016/j.jobe.2020.102001_bib66
  article-title: Activity Recognition Using a Wrist-Worn Inertial Measurement Unit: A Case Study for Industrial Assembly Lines
  doi: 10.1109/MED.2009.5164574
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 10.1016/j.jobe.2020.102001_bib122
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– year: 2009
  ident: 10.1016/j.jobe.2020.102001_bib50
  article-title: Automated Data Acquisition System to Assess Construction Worker Performance. In Construction Research Congress
– year: 2009
  ident: 10.1016/j.jobe.2020.102001_bib56
  article-title: Development of Human Pose Analyzing Algorithms for the Determination of Construction Productivity in Real-Time. In Construction Research Congress
– volume: 140
  issue: 5
  year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib4
  article-title: Cognitive workload demands using 2D and 3D spatial engineering information formats
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0000827
– volume: 39
  start-page: 167
  year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib29
  article-title: RFID indoor location identification for construction projects
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2013.06.012
– year: 2001
  ident: 10.1016/j.jobe.2020.102001_bib114
– start-page: 1189
  year: 2001
  ident: 10.1016/j.jobe.2020.102001_bib137
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 142
  issue: 2
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib98
  article-title: Artificial neural network–based slip-trip classifier using smart sensor for construction workplace
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001049
– year: 1983
  ident: 10.1016/j.jobe.2020.102001_bib20
– volume: 129
  start-page: 680
  issue: 6
  year: 2003
  ident: 10.1016/j.jobe.2020.102001_bib28
  article-title: Implementing radio frequency identification in the construction process
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2003)129:6(680)
– volume: 24
  start-page: 252
  issue: 3
  year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib1
  article-title: Computer vision-based video interpretation model for automated productivity analysis of construction operations
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000027
– volume: 68
  start-page: 285
  year: 2019
  ident: 10.1016/j.jobe.2020.102001_bib111
  article-title: Calibration and validation of accelerometer-based activity monitors: a systematic review of machine-learning approaches
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.12.003
– volume: 15
  start-page: 292
  issue: 3
  year: 2006
  ident: 10.1016/j.jobe.2020.102001_bib32
  article-title: The application of active radio frequency identification technology for tool tracking on construction job sites
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2005.06.004
– year: 1995
  ident: 10.1016/j.jobe.2020.102001_bib128
– year: 2019
  ident: 10.1016/j.jobe.2020.102001_bib24
– year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib129
– volume: 66
  start-page: 19
  year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib97
  article-title: Automatically determining accidental falls in field surveying: a case study of integrating accelerometer determination and image recognition
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2014.01.012
– volume: 17
  start-page: 1469
  issue: 9
  year: 2019
  ident: 10.1016/j.jobe.2020.102001_bib47
  article-title: Evaluation of software and hardware settings for audio-based analysis of construction operations
  publication-title: Int. J. Civ. Eng.
  doi: 10.1007/s40999-019-00409-2
– volume: 98
  start-page: 522
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib85
  article-title: Integrating features for accelerometer-based activity recognition
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.070
– year: 2012
  ident: 10.1016/j.jobe.2020.102001_bib76
  article-title: Simple and Complex Activity Recognition through Smart Phones
  doi: 10.1109/IE.2012.39
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.jobe.2020.102001_bib131
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 38
  start-page: 514
  year: 2018
  ident: 10.1016/j.jobe.2020.102001_bib86
  article-title: Automated ergonomic risk monitoring using body-mounted sensors and machine learning
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2018.08.020
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib105
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 1159
  year: 2018
  ident: 10.1016/j.jobe.2020.102001_bib77
  article-title: Worker activity recognition in smart manufacturing using IMU and sEMG signals with convolutional neural networks
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.07.152
– start-page: 563
  year: 2012
  ident: 10.1016/j.jobe.2020.102001_bib141
– volume: 68
  start-page: 194
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib81
  article-title: Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2016.04.007
– start-page: 326
  year: 2017
  ident: 10.1016/j.jobe.2020.102001_bib42
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.jobe.2020.102001_bib133
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2009
  ident: 10.1016/j.jobe.2020.102001_bib16
– year: 2015
  ident: 10.1016/j.jobe.2020.102001_bib25
– volume: 20
  start-page: 686
  issue: 6
  year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib34
  article-title: A proactive system for real-time safety management in construction sites
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2011.04.019
– year: 2008
  ident: 10.1016/j.jobe.2020.102001_bib67
  article-title: Activity Recognition Using Wearable Sensors for Elder Care
  doi: 10.1109/FGCN.2008.165
– volume: 13
  issue: 7
  year: 2013
  ident: 10.1016/j.jobe.2020.102001_bib107
  article-title: Optimal placement of accelerometers for the detection of everyday activities
  publication-title: Sensors
  doi: 10.3390/s130709183
– year: 2009
  ident: 10.1016/j.jobe.2020.102001_bib70
  article-title: Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information
  doi: 10.1109/BSN.2009.46
– year: 1911
  ident: 10.1016/j.jobe.2020.102001_bib18
– year: 2005
  ident: 10.1016/j.jobe.2020.102001_bib75
– volume: 119
  start-page: 103361
  year: 2020
  ident: 10.1016/j.jobe.2020.102001_bib40
  article-title: Activity identification in modular construction using audio signals and machine learning
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2020.103361
– volume: 81
  start-page: 161
  year: 2017
  ident: 10.1016/j.jobe.2020.102001_bib53
  article-title: Integrated detection and tracking of workforce and equipment from construction jobsite videos
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2017.05.005
– volume: 82
  start-page: 193
  year: 2017
  ident: 10.1016/j.jobe.2020.102001_bib59
  article-title: An experimental study of real-time identification of construction workers' unsafe behaviors
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2017.05.002
– volume: 25
  start-page: 370
  issue: 5
  year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib11
  article-title: Accelerometer-based activity recognition in construction
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000097
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib82
  article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– year: 2002
  ident: 10.1016/j.jobe.2020.102001_bib15
– year: 2007
  ident: 10.1016/j.jobe.2020.102001_bib17
– year: 2019
  ident: 10.1016/j.jobe.2020.102001_bib44
– volume: 77
  start-page: 67
  year: 2017
  ident: 10.1016/j.jobe.2020.102001_bib79
  article-title: Construction worker's awkward posture recognition through supervised motion tensor decomposition
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2017.01.020
– year: 2000
  ident: 10.1016/j.jobe.2020.102001_bib139
– year: 2015
  ident: 10.1016/j.jobe.2020.102001_bib22
  article-title: Wearable Sensor-Based Activity Recognition for Data-Driven Simulation of Construction Workers' Activities
  doi: 10.1109/WSC.2015.7408495
– volume: 16
  issue: 4
  year: 2007
  ident: 10.1016/j.jobe.2020.102001_bib124
  article-title: Pattern recognition and machine learning
  publication-title: J. Electron. Imag.
– year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib104
– year: 2019
  ident: 10.1016/j.jobe.2020.102001_bib96
– volume: 11
  start-page: 2079
  year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib142
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 1
  year: 2018
  ident: 10.1016/j.jobe.2020.102001_bib89
  article-title: Coupling human activity recognition and wearable sensors for data-driven construction simulation
  publication-title: ITcon
– volume: 29
  start-page: 867
  issue: 4
  year: 2015
  ident: 10.1016/j.jobe.2020.102001_bib5
  article-title: Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2015.03.001
– volume: 129
  start-page: 437
  issue: 4
  year: 2003
  ident: 10.1016/j.jobe.2020.102001_bib26
  article-title: Can labor inputs be measured and controlled automatically?
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2003)129:4(437)
– year: 1985
  ident: 10.1016/j.jobe.2020.102001_bib21
– volume: 48
  start-page: 74
  year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib60
  article-title: Vision-based workface assessment using depth images for activity analysis of interior construction operations
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2014.08.003
– year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib69
– volume: 71
  start-page: 198
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib23
  article-title: Smartphone-based construction workers' activity recognition and classification
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2016.08.015
– year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib91
  article-title: Automated recognition of construction labour activity using accelerometers in field situations
  publication-title: Int. J. Prod. Perform. Manag.
  doi: 10.1108/IJPPM-05-2013-0099
– volume: 23
  start-page: 452
  issue: 4
  year: 2009
  ident: 10.1016/j.jobe.2020.102001_bib54
  article-title: Personnel tracking on construction sites using video cameras
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2009.06.011
– volume: 20
  start-page: 1211
  issue: 8
  year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib62
  article-title: An object recognition, tracking, and contextual reasoning-based video interpretation method for rapid productivity analysis of construction operations
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2011.05.005
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.jobe.2020.102001_bib134
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 12
  start-page: 737
  issue: 6
  year: 2003
  ident: 10.1016/j.jobe.2020.102001_bib27
  article-title: Situational awareness of construction equipment using GPS, wireless and web technologies
  publication-title: Autom. ConStruct.
  doi: 10.1016/S0926-5805(03)00057-8
– volume: 27
  start-page: 652
  issue: 4
  year: 2013
  ident: 10.1016/j.jobe.2020.102001_bib13
  article-title: Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2013.09.001
– volume: 27
  start-page: 320
  issue: 3
  year: 2013
  ident: 10.1016/j.jobe.2020.102001_bib36
  article-title: Data fusion of real-time location sensing and physiological status monitoring for ergonomics analysis of construction workers
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000222
– volume: 32
  start-page: 548
  issue: 6
  year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib10
  article-title: An exploratory study of the relationship between construction workforce physical strain and task level productivity
  publication-title: Construct. Manag. Econ.
  doi: 10.1080/01446193.2013.831463
– volume: 82
  start-page: 166
  year: 2017
  ident: 10.1016/j.jobe.2020.102001_bib92
  article-title: Collective sensing of workers' gait patterns to identify fall hazards in construction
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2017.04.010
– volume: 32
  start-page: 595
  issue: 6
  year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib2
  article-title: An analysis of construction productivity differences between Canada and the United States
  publication-title: Construct. Manag. Econ.
  doi: 10.1080/01446193.2013.848995
– volume: 16
  start-page: 426
  issue: 4
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib64
  article-title: Complex human activity recognition using smartphone and wrist-worn motion sensors
  publication-title: Sensors
  doi: 10.3390/s16040426
– volume: 29
  start-page: 239
  issue: 2
  year: 2015
  ident: 10.1016/j.jobe.2020.102001_bib37
  article-title: Computer vision techniques for construction safety and health monitoring
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2015.02.001
– volume: 84
  start-page: 161
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib102
  article-title: Fall risk analysis of construction workers using inertial measurement units: validating the usefulness of the postural stability metrics in construction
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2015.12.012
– volume: 24
  start-page: 428
  issue: 4
  year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib55
  article-title: Tracking multiple workers on construction sites using video cameras
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2010.06.008
– year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib83
  article-title: On-body Localization of Wearable Devices: an Investigation of Position-Aware Activity Recognition
  doi: 10.1109/PERCOM.2016.7456521
– volume: vol. 1
  year: 2001
  ident: 10.1016/j.jobe.2020.102001_bib127
– volume: 81
  start-page: 240
  year: 2017
  ident: 10.1016/j.jobe.2020.102001_bib45
  article-title: Activity analysis of construction equipment using audio signals and support vector machines
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2017.06.005
– volume: 131
  start-page: 230
  issue: 2
  year: 2005
  ident: 10.1016/j.jobe.2020.102001_bib113
  article-title: Lognormal distribution provides an optimum representation of the concrete delivery and placement process
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2005)131:2(230)
– year: 2006
  ident: 10.1016/j.jobe.2020.102001_bib12
– volume: 41
  start-page: 296
  issue: 3
  year: 2003
  ident: 10.1016/j.jobe.2020.102001_bib72
  article-title: Detection of daily physical activities using a triaxial accelerometer
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02348434
– volume: 5
  start-page: 320
  issue: 4
  year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib109
  article-title: Sensor positioning for activity recognition using wearable accelerometers
  publication-title: IEEE Trans. Biomed. Circ. Syst.
  doi: 10.1109/TBCAS.2011.2160540
– volume: vol. 2
  start-page: 110
  year: 2002
  ident: 10.1016/j.jobe.2020.102001_bib140
  article-title: Ensemble learning
– start-page: 352
  year: 2017
  ident: 10.1016/j.jobe.2020.102001_bib48
– volume: 21
  start-page: 238
  issue: 4
  year: 2007
  ident: 10.1016/j.jobe.2020.102001_bib51
  article-title: Using hue, saturation, and value color space for hydraulic excavator idle time analysis
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2007)21:4(238)
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib71
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SigKDD Explor. Newsl.
  doi: 10.1145/1964897.1964918
– year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib143
  article-title: The balanced accuracy and its posterior distribution
– volume: 24
  start-page: 1
  year: 2012
  ident: 10.1016/j.jobe.2020.102001_bib31
  article-title: Leveraging passive RFID technology for construction resource field mobility and status monitoring in a high-rise renovation project
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2012.02.015
– start-page: 1
  year: 2012
  ident: 10.1016/j.jobe.2020.102001_bib126
– volume: 20
  start-page: 1173
  issue: 8
  year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib35
  article-title: Performance evaluation of ultra wideband technology for construction resource location tracking in harsh environments
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2011.05.001
– volume: 29
  issue: 2
  year: 2013
  ident: 10.1016/j.jobe.2020.102001_bib94
  article-title: Application of low-cost accelerometers for measuring the operational efficiency of a construction equipment fleet
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000337
– year: 1995
  ident: 10.1016/j.jobe.2020.102001_bib19
– start-page: 565
  year: 2013
  ident: 10.1016/j.jobe.2020.102001_bib95
  article-title: Accelerometer-based Measurement of Construction Equipment Operating Efficiency for Monitoring Environmental Performance
– volume: 30
  start-page: R1
  issue: 4
  year: 2009
  ident: 10.1016/j.jobe.2020.102001_bib115
  article-title: Activity identification using body-mounted sensors—a review of classification techniques
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/30/4/R01
– volume: 143
  issue: 1
  year: 2017
  ident: 10.1016/j.jobe.2020.102001_bib101
  article-title: Identification of biomechanical risk factors for the development of lower-back disorders during manual rebar tying
  publication-title: J. Construct. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001208
– volume: 15
  start-page: 31314
  issue: 12
  year: 2015
  ident: 10.1016/j.jobe.2020.102001_bib78
  article-title: Physical human activity recognition using wearable sensors
  publication-title: Sensors
  doi: 10.3390/s151229858
– year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib90
  article-title: Action recognition using a wristband-type activity tracker: case study of masonry work
  publication-title: Construct. Res. Congr.
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.jobe.2020.102001_bib121
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– year: 1996
  ident: 10.1016/j.jobe.2020.102001_bib136
  article-title: Schapire R: Experiments with a new boosting algorithm
– volume: 3
  start-page: 683
  issue: 5
  year: 1992
  ident: 10.1016/j.jobe.2020.102001_bib130
  article-title: Multilayer perceptron, fuzzy sets, and classification
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.159058
– volume: 29
  start-page: 24
  year: 2013
  ident: 10.1016/j.jobe.2020.102001_bib9
  article-title: Automated task-level activity analysis through fusion of real time location sensors and worker's thoracic posture data
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2012.08.003
– year: 2009
  ident: 10.1016/j.jobe.2020.102001_bib49
  article-title: Measuring Construction Productivity Using the Write System. In Construction Research Congress
– volume: 14
  start-page: 1612
  issue: 771–780
  year: 1999
  ident: 10.1016/j.jobe.2020.102001_bib135
  article-title: A short introduction to boosting
  publication-title: J. Jpn. Soc. Artif. Intell.
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.jobe.2020.102001_bib125
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Statistician
  doi: 10.1080/00031305.1992.10475879
– volume: 21
  start-page: 11
  issue: 1
  year: 2007
  ident: 10.1016/j.jobe.2020.102001_bib33
  article-title: Tracking components and maintenance history within a facility utilizing radio frequency identification technology
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2007)21:1(11)
– year: 2011
  ident: 10.1016/j.jobe.2020.102001_bib119
– year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib46
– volume: 14
  start-page: 645
  issue: 7
  year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib118
  article-title: Preprocessing techniques for context recognition from accelerometer data
  publication-title: Personal Ubiquitous Comput.
  doi: 10.1007/s00779-010-0293-9
– year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib88
  article-title: Productivity analysis of construction worker activities using smartphone sensors
– volume: 233
  start-page: 162
  year: 2013
  ident: 10.1016/j.jobe.2020.102001_bib103
  article-title: Human activity recognition in indoor environments by means of fusing information extracted from intensity of WiFi signal and accelerations
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.01.029
– year: 2004
  ident: 10.1016/j.jobe.2020.102001_bib73
  article-title: Activity Recognition from User-Annotated Acceleration Data
  doi: 10.1007/978-3-540-24646-6_1
– volume: 62
  start-page: 559
  issue: 8
  year: 2005
  ident: 10.1016/j.jobe.2020.102001_bib7
  article-title: Construction work and risk of occupational disability: a ten year follow up of 14 474 male workers
  publication-title: Occup. Environ. Med.
  doi: 10.1136/oem.2004.018135
– volume: 54
  start-page: 120
  year: 2016
  ident: 10.1016/j.jobe.2020.102001_bib99
  article-title: Musculoskeletal disorders in construction: a review and a novel system for activity tracking with body area network
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2015.11.020
– year: 2010
  ident: 10.1016/j.jobe.2020.102001_bib108
  article-title: Sensor Placement for Activity Detection Using Wearable Accelerometers
  doi: 10.1109/BSN.2010.23
– volume: 18
  start-page: 2667
  issue: 8
  year: 2018
  ident: 10.1016/j.jobe.2020.102001_bib84
  article-title: Research on construction workers' activity recognition based on smartphone
  publication-title: Sensors
  doi: 10.3390/s18082667
– year: 2006
  ident: 10.1016/j.jobe.2020.102001_bib123
– year: 2014
  ident: 10.1016/j.jobe.2020.102001_bib117
  article-title: A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
  doi: 10.1109/SAI.2014.6918213
SSID ssj0002953864
Score 2.4442778
Snippet Automated Construction worker activity classification has the potential to not only benefit the worker performance in terms of productivity and safety, but...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102001
SubjectTerms Activity classification
Construction workers
Productivity analysis
Supervised machine learning
Wearable accelerometers
Title Activity classification using accelerometers and machine learning for complex construction worker activities
URI https://dx.doi.org/10.1016/j.jobe.2020.102001
Volume 35
WOSCitedRecordID wos000618180400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-7102
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002953864
  issn: 2352-7102
  databaseCode: AIEXJ
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgMvCASIjYv8wFuVKrFz82PZhgCxag9D6lvk2Mewqkun0Vb9cfw4ji9J07FN7AFViiIndqKcrz5Hx5-_Q8gHzUqTc84jwH9SlOZgIlkaEcla6TTPmY4T44pNFJNJOZ2Ks8Hgd7sXZj0vmqbcbMTVfzU1tqGx7dbZB5i7GxQb8ByNjkc0Ox7_yfBjFQpCKBsYWyaQt_HKZQWkUuhorEaBldV0SweXjk8JbQEJT6x0VHPYWFZ6JzHr6srAtdPfWDsl1jtC24-h1nZf7bBL5cjm50q7BO23lVumP-7C-iM5X8PSEwyOL-DHYpsvt2IHYcnCdeKL4Zk_K-SWri8vPWtwsmoWw9PR6aif1GA9Vpef-xjGhZYm6idquKUtTN48682-eC32o_zlGHyOYjaa2T1W-ESnWRFu3lXhvuEdO85iS4ebVXaMyo5R-TEekX1WZALn1P3xl5Pp1y7HxwS6E6dg1r172LflKYY3X-b22KgX75w_I0-DNenYA-w5GUDzgsxbcNFdcFEHLroLLorgogFctAUXRXDRAC7aBxf14KJbcL0k3z-dnB99jkK9jkhxwZcRhq5a1mlqWMILCRp_gP4rzVMBkistOaBf1oLz3KjSxEzXoBU3mcYoNAXOX5G9ZtHAa0LLrEhZEhvpCqrVokxUGWd2_ih0bSA9IEn7pSoVxOxtTZV5dbeZDsiw63PlpVzuvTtrDVCFYNQHmRVC6p5-hw96yhvyZAv_t2QPvzm8I4_Vennx6_p9wNMfyFOtXg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activity+classification+using+accelerometers+and+machine+learning+for+complex+construction+worker+activities&rft.jtitle=Journal+of+Building+Engineering&rft.au=Sanhudo%2C+Lu%C3%ADs&rft.au=Calvetti%2C+Diego&rft.au=Martins%2C+Jo%C3%A3o+Po%C3%A7as&rft.au=Ramos%2C+Nuno+M.M.&rft.date=2021-03-01&rft.issn=2352-7102&rft.eissn=2352-7102&rft.volume=35&rft.spage=102001&rft_id=info:doi/10.1016%2Fj.jobe.2020.102001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jobe_2020_102001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-7102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-7102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-7102&client=summon