Multi-agent deep deterministic policy gradient algorithm for peer-to-peer energy trading considering distribution network constraints

In this paper, we investigate an energy cost minimization problem for prosumers participating in peer-to-peer energy trading. Due to (i) uncertainties caused by renewable energy generation and consumption, (ii) difficulties in developing an accurate and efficient energy trading model, and (iii) the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 317; s. 119123
Hlavní autori: Samende, Cephas, Cao, Jun, Fan, Zhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2022
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we investigate an energy cost minimization problem for prosumers participating in peer-to-peer energy trading. Due to (i) uncertainties caused by renewable energy generation and consumption, (ii) difficulties in developing an accurate and efficient energy trading model, and (iii) the need to satisfy distribution network constraints, it is challenging for prosumers to obtain optimal energy trading decisions that minimize their individual energy costs. To address the challenge, we first formulate the above problem as a Markov decision process and propose a multi-agent deep deterministic policy gradient algorithm to learn optimal energy trading decisions. To satisfy the distribution network constraints, we propose distribution network tariffs which we incorporate in the algorithm as incentives to incentivize energy trading decisions that help to satisfy the constraints and penalize the decisions that violate them. The proposed algorithm is model-free and allows the agents to learn the optimal energy trading decisions without having prior information about other agents in the network. Simulation results based on real-world datasets show the effectiveness and robustness of the proposed algorithm. •Deep reinforcement learning-based algorithm for P2P energy trading considering network constraints is proposed.•The resulting trading strategy minimizes the total energy cost of prosumers.•Distribution Network Tariffs (DNT) are proposed to manage the network constraints.•Results show the effectiveness of the proposed algorithm and that DNTs improves voltage regulation, reduces network losses and peak congestion.
AbstractList In this paper, we investigate an energy cost minimization problem for prosumers participating in peer-to-peer energy trading. Due to (i) uncertainties caused by renewable energy generation and consumption, (ii) difficulties in developing an accurate and efficient energy trading model, and (iii) the need to satisfy distribution network constraints, it is challenging for prosumers to obtain optimal energy trading decisions that minimize their individual energy costs. To address the challenge, we first formulate the above problem as a Markov decision process and propose a multi-agent deep deterministic policy gradient algorithm to learn optimal energy trading decisions. To satisfy the distribution network constraints, we propose distribution network tariffs which we incorporate in the algorithm as incentives to incentivize energy trading decisions that help to satisfy the constraints and penalize the decisions that violate them. The proposed algorithm is model-free and allows the agents to learn the optimal energy trading decisions without having prior information about other agents in the network. Simulation results based on real-world datasets show the effectiveness and robustness of the proposed algorithm. •Deep reinforcement learning-based algorithm for P2P energy trading considering network constraints is proposed.•The resulting trading strategy minimizes the total energy cost of prosumers.•Distribution Network Tariffs (DNT) are proposed to manage the network constraints.•Results show the effectiveness of the proposed algorithm and that DNTs improves voltage regulation, reduces network losses and peak congestion.
In this paper, we investigate an energy cost minimization problem for prosumers participating in peer-to-peer energy trading. Due to (i) uncertainties caused by renewable energy generation and consumption, (ii) difficulties in developing an accurate and efficient energy trading model, and (iii) the need to satisfy distribution network constraints, it is challenging for prosumers to obtain optimal energy trading decisions that minimize their individual energy costs. To address the challenge, we first formulate the above problem as a Markov decision process and propose a multi-agent deep deterministic policy gradient algorithm to learn optimal energy trading decisions. To satisfy the distribution network constraints, we propose distribution network tariffs which we incorporate in the algorithm as incentives to incentivize energy trading decisions that help to satisfy the constraints and penalize the decisions that violate them. The proposed algorithm is model-free and allows the agents to learn the optimal energy trading decisions without having prior information about other agents in the network. Simulation results based on real-world datasets show the effectiveness and robustness of the proposed algorithm.
ArticleNumber 119123
Author Samende, Cephas
Fan, Zhong
Cao, Jun
Author_xml – sequence: 1
  givenname: Cephas
  surname: Samende
  fullname: Samende, Cephas
  email: c.samende@keele.ac.uk
  organization: School of Computing and Mathematics, Keele University, UK
– sequence: 2
  givenname: Jun
  surname: Cao
  fullname: Cao, Jun
  organization: Environmental Research and Innovation Department, LIST, Luxembourg
– sequence: 3
  givenname: Zhong
  surname: Fan
  fullname: Fan, Zhong
  organization: School of Computing and Mathematics, Keele University, UK
BookMark eNqFkLFuFDEQhi0UJC4Jr4Bc0uzhsS97Z4kCFBESKYgGastrzy5z7NmL7QPdA_DeWWdJQ5PG4-L7f8185-wsxICMvQGxBgHtu_3aThgwDae1FFKuATRI9YKtYLeVjQbYnbGVUKJtZAv6FTvPeS-EkCDFiv39chwLNXbAULhHnOanYDpQoFzI8SmO5E58SNZTRew4xETlx4H3MfEJMTUlNnXyZQdeKhoG7mLI5DHVv5_LEnXHQjHwgOVPTD8fgRmmUPIle9nbMePrf_OCfb_59O36trn_-vnu-uN945RWpVEKYOO61vuu3alO-Cu86qCzGqHvvEZrpXYopEeNWloA7HyvncSttRutNuqCvV16pxR_HTEXc6DscBxtwHjMRrbtrFRudxV9v6AuxZwT9sZRsfWAuvNoQJhq3-zNk31T7ZvF_hxv_4tPiQ42nZ4PfliCOHv4TZhMdrN5h54SumJ8pOcqHgDXvKsf
CitedBy_id crossref_primary_10_1016_j_egyr_2022_09_046
crossref_primary_10_1109_TSG_2023_3277330
crossref_primary_10_1016_j_engappai_2023_106388
crossref_primary_10_1016_j_rcim_2025_103015
crossref_primary_10_1016_j_autcon_2024_105702
crossref_primary_10_1007_s00202_024_02732_x
crossref_primary_10_1016_j_rser_2023_113435
crossref_primary_10_1016_j_jmsy_2024_08_021
crossref_primary_10_3390_app13137838
crossref_primary_10_1016_j_apenergy_2024_124641
crossref_primary_10_3390_electronics13071281
crossref_primary_10_1155_2023_4295384
crossref_primary_10_1016_j_apenergy_2024_123518
crossref_primary_10_1016_j_eswa_2023_120663
crossref_primary_10_1016_j_segan_2024_101570
crossref_primary_10_1109_ACCESS_2022_3224460
crossref_primary_10_1109_ACCESS_2023_3287323
crossref_primary_10_1016_j_jclepro_2023_136511
crossref_primary_10_3390_en17061423
crossref_primary_10_1016_j_asej_2023_102466
crossref_primary_10_1109_ACCESS_2025_3609317
crossref_primary_10_3390_buildings13123096
crossref_primary_10_1109_JIOT_2025_3541350
crossref_primary_10_1186_s42162_022_00235_2
crossref_primary_10_1016_j_apenergy_2023_120827
crossref_primary_10_1109_JIOT_2024_3377600
crossref_primary_10_1109_JPROC_2023_3303358
crossref_primary_10_1109_TII_2023_3348823
crossref_primary_10_1016_j_apenergy_2025_125485
crossref_primary_10_1016_j_engappai_2024_107847
crossref_primary_10_3390_en16196770
crossref_primary_10_1016_j_apenergy_2023_122396
crossref_primary_10_1016_j_apenergy_2023_121144
crossref_primary_10_1109_JIOT_2025_3535767
crossref_primary_10_1016_j_adhoc_2025_103996
crossref_primary_10_3390_jmse11061201
crossref_primary_10_1016_j_segan_2024_101344
crossref_primary_10_1016_j_ijepes_2023_109753
crossref_primary_10_1109_TSMC_2023_3250620
crossref_primary_10_1016_j_energy_2025_136178
crossref_primary_10_1177_14727978251361392
crossref_primary_10_1109_TSG_2022_3222323
crossref_primary_10_1016_j_energy_2025_136075
crossref_primary_10_1080_15567036_2025_2548357
Cites_doi 10.1016/j.apenergy.2021.116940
10.1109/JIOT.2019.2941498
10.1109/TSG.2015.2495145
10.1109/TPWRS.2017.2715983
10.1186/s41601-021-00209-8
10.1016/j.apenergy.2017.08.136
10.3390/en13205359
10.1016/j.apenergy.2013.08.062
10.1016/j.apenergy.2018.05.097
10.24963/ijcai.2021/401
10.1109/TSG.2018.2878445
10.1109/TSG.2019.2963238
10.1103/PhysRev.36.823
10.1109/TSG.2020.2969657
10.1038/s41560-017-0075-y
10.1038/nature14236
10.1109/TSG.2020.2986333
10.1109/TPWRS.2017.2649558
10.1109/TPWRS.2017.2767632
10.1016/j.eng.2020.06.002
10.3390/en11061560
10.1109/TEC.2006.874230
10.1109/TPWRS.2018.2834472
10.1016/j.esr.2019.100418
10.1109/TPWRS.2019.2961330
10.1109/TPWRS.2013.2255317
10.1109/TSG.2016.2614988
10.1109/TSG.2021.3103917
10.1109/ACCESS.2018.2876652
10.1109/TII.2020.2980160
10.1109/TSG.2017.2673860
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2022.119123
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2022_119123
S0306261922005025
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c393t-33114cb6ddb683b0d5e5b1ba9e1fbd9eaa29ce02de9e92a11ebdf9c2e7aa49343
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799979200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Nov 09 09:32:02 EST 2025
Sat Nov 29 07:22:23 EST 2025
Tue Nov 18 21:19:31 EST 2025
Fri Feb 23 02:39:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-agent
Deep deterministic policy gradient
Markov decision process
Renewable generation
Peer-to-peer energy trading
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-33114cb6ddb683b0d5e5b1ba9e1fbd9eaa29ce02de9e92a11ebdf9c2e7aa49343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.apenergy.2022.119123
PQID 2661012784
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2661012784
crossref_citationtrail_10_1016_j_apenergy_2022_119123
crossref_primary_10_1016_j_apenergy_2022_119123
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_119123
PublicationCentury 2000
PublicationDate 2022-07-01
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Bu, Liu, Kang, Yu, Han (b29) 2021
Farivar, Low (b38) 2013; 28
Kim, Dvorkin (b19) 2019; 35
Qiu, Ye, Papadaskalopoulos, Strbac (b28) 2021; 292
Dzobo, Malila, Sithole (b6) 2021; 6
Chen, Su (b13) 2018; 6
Morstyn, McCulloch (b20) 2018; 34
Tushar, Saha, Yuen, Smith, Poor (b5) 2020; 11
Ye, Tang, Wang, Zhang, Strbac (b31) 2021; 12
Qiu, Zhao, Yang, Dong (b3) 2018; 33
Qiu D, Wang J, Wang J, Strbac G. Multi-agent reinforcement learning for automated peer-to-peer energy trading in double-side auction market. In: Proceedings of the thirtieth international joint conference on artificial intelligence. 2021, p. 2913–20.
Long, Wu, Zhou, Jenkins (b8) 2018; 226
Bai, Wang, Wang, Chen, Li (b39) 2017; 33
Uhlenbeck, Ornstein (b44) 1930; 36
Morstyn, Teytelboym, Hepburn, McCulloch (b18) 2019; 11
Brockman, Cheung, Pettersson, Schneider, Schulman, Tang (b46) 2016
Morstyn, Farrell, Darby, McCulloch (b4) 2018; 3
Abdella, Shuaib (b10) 2018; 11
Lowe, Wu, Tamar, Harb, Abbeel, Mordatch (b32) 2017
Han, Han, Aki (b36) 2014; 113
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare (b22) 2015; 518
Paszke, Gross, Massa, Lerer, Bradbury, Chanan (b45) 2019
Kim, Lee (b25) 2020; 13
Silver, Lever, Heess, Degris, Wierstra, Riedmiller (b42) 2014
Lu, Xiao, Xiao, Dai, Peng, Poor (b12) 2019; 6
Abrishambaf, Lezama, Faria, Vale (b7) 2019; 26
Olivella-Rosell, Bullich-Massagué, Aragüés-Peñalba, Sumper, Ottesen, Vidal-Clos (b34) 2018; 210
Chen, Bu (b24) 2019
Farivar, Neal, Clarke, Low (b40) 2012
Wood, Wollenberg, Sheblé (b2) 2013
Gao, Wen, Wu, Wang (b15) 2020
Sutton, Barto (b23) 2018
Cao, Harrold, Fan, Morstyn, Healey, Li (b26) 2020; 11
Guerrero, Chapman, Verbič (b17) 2018; 10
Papavasiliou (b33) 2017; 9
Wang, Huang (b9) 2016; 9
Wang, Liu, Jia, Zhang, Chen, Huang (b11) 2020
Bi, Shu, Dong, Yang (b14) 2020
Paudel, Khorasany, Gooi (b21) 2020; 17
Kim, Zhang, Van Der Schaar, Lee (b16) 2015; 7
Yu, Qin, Zhang, Shen, Jiang, Guan (b27) 2020
Esram, Chapman (b35) 2007; 22
Liu, Yu, Wang, Li, Ma, Lei (b37) 2017; 32
Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa (b43) 2015
Littman (b41) 1994
Zhou, Wu, Long, Ming (b1) 2020; 6
Wang (10.1016/j.apenergy.2022.119123_b11) 2020
Farivar (10.1016/j.apenergy.2022.119123_b40) 2012
Kim (10.1016/j.apenergy.2022.119123_b16) 2015; 7
Bi (10.1016/j.apenergy.2022.119123_b14) 2020
Silver (10.1016/j.apenergy.2022.119123_b42) 2014
Qiu (10.1016/j.apenergy.2022.119123_b3) 2018; 33
Abdella (10.1016/j.apenergy.2022.119123_b10) 2018; 11
Bai (10.1016/j.apenergy.2022.119123_b39) 2017; 33
Tushar (10.1016/j.apenergy.2022.119123_b5) 2020; 11
Farivar (10.1016/j.apenergy.2022.119123_b38) 2013; 28
Littman (10.1016/j.apenergy.2022.119123_b41) 1994
Cao (10.1016/j.apenergy.2022.119123_b26) 2020; 11
Esram (10.1016/j.apenergy.2022.119123_b35) 2007; 22
Kim (10.1016/j.apenergy.2022.119123_b19) 2019; 35
Mnih (10.1016/j.apenergy.2022.119123_b22) 2015; 518
Morstyn (10.1016/j.apenergy.2022.119123_b4) 2018; 3
Long (10.1016/j.apenergy.2022.119123_b8) 2018; 226
Abrishambaf (10.1016/j.apenergy.2022.119123_b7) 2019; 26
Chen (10.1016/j.apenergy.2022.119123_b24) 2019
Chen (10.1016/j.apenergy.2022.119123_b13) 2018; 6
Morstyn (10.1016/j.apenergy.2022.119123_b18) 2019; 11
Olivella-Rosell (10.1016/j.apenergy.2022.119123_b34) 2018; 210
Uhlenbeck (10.1016/j.apenergy.2022.119123_b44) 1930; 36
Lu (10.1016/j.apenergy.2022.119123_b12) 2019; 6
Lillicrap (10.1016/j.apenergy.2022.119123_b43) 2015
Paszke (10.1016/j.apenergy.2022.119123_b45) 2019
Guerrero (10.1016/j.apenergy.2022.119123_b17) 2018; 10
Ye (10.1016/j.apenergy.2022.119123_b31) 2021; 12
Chen (10.1016/j.apenergy.2022.119123_b29) 2021
Dzobo (10.1016/j.apenergy.2022.119123_b6) 2021; 6
Gao (10.1016/j.apenergy.2022.119123_b15) 2020
Paudel (10.1016/j.apenergy.2022.119123_b21) 2020; 17
Kim (10.1016/j.apenergy.2022.119123_b25) 2020; 13
Sutton (10.1016/j.apenergy.2022.119123_b23) 2018
Papavasiliou (10.1016/j.apenergy.2022.119123_b33) 2017; 9
Zhou (10.1016/j.apenergy.2022.119123_b1) 2020; 6
Yu (10.1016/j.apenergy.2022.119123_b27) 2020
10.1016/j.apenergy.2022.119123_b30
Morstyn (10.1016/j.apenergy.2022.119123_b20) 2018; 34
Wang (10.1016/j.apenergy.2022.119123_b9) 2016; 9
Brockman (10.1016/j.apenergy.2022.119123_b46) 2016
Lowe (10.1016/j.apenergy.2022.119123_b32) 2017
Han (10.1016/j.apenergy.2022.119123_b36) 2014; 113
Wood (10.1016/j.apenergy.2022.119123_b2) 2013
Qiu (10.1016/j.apenergy.2022.119123_b28) 2021; 292
Liu (10.1016/j.apenergy.2022.119123_b37) 2017; 32
References_xml – volume: 10
  start-page: 5163
  year: 2018
  end-page: 5173
  ident: b17
  article-title: Decentralized P2P energy trading under network constraints in a low-voltage network
  publication-title: IEEE Trans Smart Grid
– volume: 11
  start-page: 1560
  year: 2018
  ident: b10
  article-title: Peer to peer distributed energy trading in smart grids: A survey
  publication-title: Energies
– volume: 226
  start-page: 261
  year: 2018
  end-page: 276
  ident: b8
  article-title: Peer-to-peer energy sharing through a two-stage aggregated battery control in a community microgrid
  publication-title: Appl Energy
– start-page: 1
  year: 2019
  end-page: 5
  ident: b24
  article-title: Realistic peer-to-peer energy trading model for microgrids using deep reinforcement learning
  publication-title: 2019 IEEE PES innovative smart grid technologies Europe
– volume: 35
  start-page: 2716
  year: 2019
  end-page: 2725
  ident: b19
  article-title: A P2P-dominant distribution system architecture
  publication-title: IEEE Trans Power Syst
– volume: 28
  start-page: 2554
  year: 2013
  end-page: 2564
  ident: b38
  article-title: Branch flow model: Relaxations and convexification—Part I
  publication-title: IEEE Trans Power Syst
– volume: 113
  start-page: 1100
  year: 2014
  end-page: 1108
  ident: b36
  article-title: A practical battery wear model for electric vehicle charging applications
  publication-title: Appl Energy
– volume: 32
  start-page: 3569
  year: 2017
  end-page: 3583
  ident: b37
  article-title: Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 3185
  year: 2020
  end-page: 3200
  ident: b5
  article-title: Peer-to-peer trading in electricity networks: An overview
  publication-title: IEEE Trans Smart Grid
– volume: 26
  year: 2019
  ident: b7
  article-title: Towards transactive energy systems: An analysis on current trends
  publication-title: Energy Strategy Rev
– start-page: 38
  year: 2020
  end-page: 41
  ident: b14
  article-title: Real-time energy management of microgrid using reinforcement learning
  publication-title: 2020 19th International symposium on distributed computing and applications for business engineering and science
– year: 2020
  ident: b27
  article-title: Deep reinforcement learning for smart building energy management: A survey
– volume: 33
  start-page: 4061
  year: 2017
  end-page: 4073
  ident: b39
  article-title: Distribution locational marginal pricing (DLMP) for congestion management and voltage support
  publication-title: IEEE Trans Power Syst
– year: 2021
  ident: b29
  article-title: Peer-to-peer energy trading and energy conversion in interconnected multi-energy microgrids using multi-agent deep reinforcement learning
  publication-title: IEEE Trans Smart Grid
– year: 2019
  ident: b45
  article-title: Pytorch: An imperative style, high-performance deep learning library
– volume: 7
  start-page: 2187
  year: 2015
  end-page: 2198
  ident: b16
  article-title: Dynamic pricing and energy consumption scheduling with reinforcement learning
  publication-title: IEEE Trans Smart Grid
– volume: 36
  start-page: 823
  year: 1930
  ident: b44
  article-title: On the theory of the Brownian motion
  publication-title: Phys Rev
– year: 2018
  ident: b23
  article-title: Reinforcement learning: An introduction
– reference: Qiu D, Wang J, Wang J, Strbac G. Multi-agent reinforcement learning for automated peer-to-peer energy trading in double-side auction market. In: Proceedings of the thirtieth international joint conference on artificial intelligence. 2021, p. 2913–20.
– start-page: 157
  year: 1994
  end-page: 163
  ident: b41
  article-title: Markov games as a framework for multi-agent reinforcement learning
  publication-title: Machine learning proceedings 1994
– year: 2017
  ident: b32
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
– volume: 33
  start-page: 1970
  year: 2018
  end-page: 1980
  ident: b3
  article-title: Optimal scheduling for prosumers in coupled transactive power and gas systems
  publication-title: IEEE Trans Power Syst
– start-page: 1
  year: 2012
  end-page: 7
  ident: b40
  article-title: Optimal inverter VAR control in distribution systems with high PV penetration
  publication-title: 2012 IEEE power and energy society general meeting
– volume: 9
  start-page: 2647
  year: 2016
  end-page: 2657
  ident: b9
  article-title: Incentivizing energy trading for interconnected microgrids
  publication-title: IEEE Trans Smart Grid
– volume: 6
  start-page: 1
  year: 2021
  end-page: 11
  ident: b6
  article-title: Proposed framework for blockchain technology in a decentralised energy network
  publication-title: Protection and Control of Modern Power Systems
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b22
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– start-page: 387
  year: 2014
  end-page: 395
  ident: b42
  article-title: Deterministic policy gradient algorithms
  publication-title: International conference on machine learning
– year: 2013
  ident: b2
  article-title: Power generation, operation, and control
– volume: 9
  start-page: 4872
  year: 2017
  end-page: 4882
  ident: b33
  article-title: Analysis of distribution locational marginal prices
  publication-title: IEEE Trans Smart Grid
– volume: 11
  start-page: 4513
  year: 2020
  end-page: 4521
  ident: b26
  article-title: Deep reinforcement learning-based energy storage arbitrage with accurate lithium-ion battery degradation model
  publication-title: IEEE Trans Smart Grid
– volume: 292
  year: 2021
  ident: b28
  article-title: Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach
  publication-title: Appl Energy
– volume: 210
  start-page: 881
  year: 2018
  end-page: 895
  ident: b34
  article-title: Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources
  publication-title: Appl Energy
– volume: 6
  start-page: 62806
  year: 2018
  end-page: 62814
  ident: b13
  article-title: Local energy trading behavior modeling with deep reinforcement learning
  publication-title: IEEE Access
– volume: 34
  start-page: 4005
  year: 2018
  end-page: 4014
  ident: b20
  article-title: Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences
  publication-title: IEEE Trans Power Syst
– year: 2015
  ident: b43
  article-title: Continuous control with deep reinforcement learning
– volume: 13
  start-page: 5359
  year: 2020
  ident: b25
  article-title: Automatic P2P energy trading model based on reinforcement learning using long short-term delayed reward
  publication-title: Energies
– volume: 12
  start-page: 5185
  year: 2021
  end-page: 5200
  ident: b31
  article-title: A scalable privacy-preserving multi-agent deep reinforcement learning approach for large-scale peer-to-peer transactive energy trading
  publication-title: IEEE Trans Smart Grid
– year: 2016
  ident: b46
  article-title: Openai gym
– volume: 22
  start-page: 439
  year: 2007
  end-page: 449
  ident: b35
  article-title: Comparison of photovoltaic array maximum power point tracking techniques
  publication-title: IEEE Trans Energy Convers
– volume: 6
  start-page: 739
  year: 2020
  end-page: 753
  ident: b1
  article-title: State-of-the-art analysis and perspectives for peer-to-peer energy trading
  publication-title: Engineering
– year: 2020
  ident: b11
  article-title: Peer-to-peer electricity transaction decision of user-side smart energy system based on SARSA reinforcement learning method
  publication-title: CSEE J Power Energy Syst
– volume: 6
  start-page: 10728
  year: 2019
  end-page: 10737
  ident: b12
  article-title: Reinforcement learning-based microgrid energy trading with a reduced power plant schedule
  publication-title: IEEE Internet Things J
– volume: 11
  start-page: 3095
  year: 2019
  end-page: 3106
  ident: b18
  article-title: Integrating P2P energy trading with probabilistic distribution locational marginal pricing
  publication-title: IEEE Trans Smart Grid
– year: 2020
  ident: b15
  article-title: Distributed energy trading and scheduling among microgrids via multiagent reinforcement learning
– volume: 17
  start-page: 1111
  year: 2020
  end-page: 1121
  ident: b21
  article-title: Decentralized local energy trading in microgrids with voltage management
  publication-title: IEEE Trans Ind Inf
– volume: 3
  start-page: 94
  year: 2018
  end-page: 101
  ident: b4
  article-title: Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants
  publication-title: Nat Energy
– volume: 292
  year: 2021
  ident: 10.1016/j.apenergy.2022.119123_b28
  article-title: Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116940
– volume: 6
  start-page: 10728
  issue: 6
  year: 2019
  ident: 10.1016/j.apenergy.2022.119123_b12
  article-title: Reinforcement learning-based microgrid energy trading with a reduced power plant schedule
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2941498
– volume: 7
  start-page: 2187
  issue: 5
  year: 2015
  ident: 10.1016/j.apenergy.2022.119123_b16
  article-title: Dynamic pricing and energy consumption scheduling with reinforcement learning
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2495145
– volume: 33
  start-page: 1970
  issue: 2
  year: 2018
  ident: 10.1016/j.apenergy.2022.119123_b3
  article-title: Optimal scheduling for prosumers in coupled transactive power and gas systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2715983
– volume: 6
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.apenergy.2022.119123_b6
  article-title: Proposed framework for blockchain technology in a decentralised energy network
  publication-title: Protection and Control of Modern Power Systems
  doi: 10.1186/s41601-021-00209-8
– year: 2018
  ident: 10.1016/j.apenergy.2022.119123_b23
– volume: 210
  start-page: 881
  year: 2018
  ident: 10.1016/j.apenergy.2022.119123_b34
  article-title: Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.136
– volume: 13
  start-page: 5359
  issue: 20
  year: 2020
  ident: 10.1016/j.apenergy.2022.119123_b25
  article-title: Automatic P2P energy trading model based on reinforcement learning using long short-term delayed reward
  publication-title: Energies
  doi: 10.3390/en13205359
– year: 2017
  ident: 10.1016/j.apenergy.2022.119123_b32
– volume: 113
  start-page: 1100
  year: 2014
  ident: 10.1016/j.apenergy.2022.119123_b36
  article-title: A practical battery wear model for electric vehicle charging applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.08.062
– year: 2013
  ident: 10.1016/j.apenergy.2022.119123_b2
– volume: 226
  start-page: 261
  year: 2018
  ident: 10.1016/j.apenergy.2022.119123_b8
  article-title: Peer-to-peer energy sharing through a two-stage aggregated battery control in a community microgrid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.097
– ident: 10.1016/j.apenergy.2022.119123_b30
  doi: 10.24963/ijcai.2021/401
– start-page: 1
  year: 2012
  ident: 10.1016/j.apenergy.2022.119123_b40
  article-title: Optimal inverter VAR control in distribution systems with high PV penetration
– volume: 10
  start-page: 5163
  issue: 5
  year: 2018
  ident: 10.1016/j.apenergy.2022.119123_b17
  article-title: Decentralized P2P energy trading under network constraints in a low-voltage network
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2878445
– volume: 11
  start-page: 3095
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2022.119123_b18
  article-title: Integrating P2P energy trading with probabilistic distribution locational marginal pricing
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2963238
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2022.119123_b24
  article-title: Realistic peer-to-peer energy trading model for microgrids using deep reinforcement learning
– volume: 36
  start-page: 823
  issue: 5
  year: 1930
  ident: 10.1016/j.apenergy.2022.119123_b44
  article-title: On the theory of the Brownian motion
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.36.823
– volume: 11
  start-page: 3185
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2022.119123_b5
  article-title: Peer-to-peer trading in electricity networks: An overview
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2969657
– volume: 3
  start-page: 94
  issue: 2
  year: 2018
  ident: 10.1016/j.apenergy.2022.119123_b4
  article-title: Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants
  publication-title: Nat Energy
  doi: 10.1038/s41560-017-0075-y
– year: 2021
  ident: 10.1016/j.apenergy.2022.119123_b29
  article-title: Peer-to-peer energy trading and energy conversion in interconnected multi-energy microgrids using multi-agent deep reinforcement learning
  publication-title: IEEE Trans Smart Grid
– year: 2020
  ident: 10.1016/j.apenergy.2022.119123_b11
  article-title: Peer-to-peer electricity transaction decision of user-side smart energy system based on SARSA reinforcement learning method
  publication-title: CSEE J Power Energy Syst
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.apenergy.2022.119123_b22
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 11
  start-page: 4513
  issue: 5
  year: 2020
  ident: 10.1016/j.apenergy.2022.119123_b26
  article-title: Deep reinforcement learning-based energy storage arbitrage with accurate lithium-ion battery degradation model
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2986333
– volume: 32
  start-page: 3569
  issue: 5
  year: 2017
  ident: 10.1016/j.apenergy.2022.119123_b37
  article-title: Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2649558
– volume: 33
  start-page: 4061
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2022.119123_b39
  article-title: Distribution locational marginal pricing (DLMP) for congestion management and voltage support
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2767632
– year: 2020
  ident: 10.1016/j.apenergy.2022.119123_b27
– year: 2019
  ident: 10.1016/j.apenergy.2022.119123_b45
– year: 2016
  ident: 10.1016/j.apenergy.2022.119123_b46
– start-page: 38
  year: 2020
  ident: 10.1016/j.apenergy.2022.119123_b14
  article-title: Real-time energy management of microgrid using reinforcement learning
– start-page: 387
  year: 2014
  ident: 10.1016/j.apenergy.2022.119123_b42
  article-title: Deterministic policy gradient algorithms
– volume: 6
  start-page: 739
  issue: 7
  year: 2020
  ident: 10.1016/j.apenergy.2022.119123_b1
  article-title: State-of-the-art analysis and perspectives for peer-to-peer energy trading
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.06.002
– year: 2020
  ident: 10.1016/j.apenergy.2022.119123_b15
– volume: 11
  start-page: 1560
  issue: 6
  year: 2018
  ident: 10.1016/j.apenergy.2022.119123_b10
  article-title: Peer to peer distributed energy trading in smart grids: A survey
  publication-title: Energies
  doi: 10.3390/en11061560
– volume: 22
  start-page: 439
  issue: 2
  year: 2007
  ident: 10.1016/j.apenergy.2022.119123_b35
  article-title: Comparison of photovoltaic array maximum power point tracking techniques
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2006.874230
– volume: 34
  start-page: 4005
  issue: 5
  year: 2018
  ident: 10.1016/j.apenergy.2022.119123_b20
  article-title: Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2834472
– year: 2015
  ident: 10.1016/j.apenergy.2022.119123_b43
– volume: 26
  year: 2019
  ident: 10.1016/j.apenergy.2022.119123_b7
  article-title: Towards transactive energy systems: An analysis on current trends
  publication-title: Energy Strategy Rev
  doi: 10.1016/j.esr.2019.100418
– volume: 35
  start-page: 2716
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2022.119123_b19
  article-title: A P2P-dominant distribution system architecture
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2961330
– volume: 28
  start-page: 2554
  issue: 3
  year: 2013
  ident: 10.1016/j.apenergy.2022.119123_b38
  article-title: Branch flow model: Relaxations and convexification—Part I
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2255317
– volume: 9
  start-page: 2647
  issue: 4
  year: 2016
  ident: 10.1016/j.apenergy.2022.119123_b9
  article-title: Incentivizing energy trading for interconnected microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2614988
– volume: 12
  start-page: 5185
  issue: 6
  year: 2021
  ident: 10.1016/j.apenergy.2022.119123_b31
  article-title: A scalable privacy-preserving multi-agent deep reinforcement learning approach for large-scale peer-to-peer transactive energy trading
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2021.3103917
– start-page: 157
  year: 1994
  ident: 10.1016/j.apenergy.2022.119123_b41
  article-title: Markov games as a framework for multi-agent reinforcement learning
– volume: 6
  start-page: 62806
  year: 2018
  ident: 10.1016/j.apenergy.2022.119123_b13
  article-title: Local energy trading behavior modeling with deep reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2876652
– volume: 17
  start-page: 1111
  issue: 2
  year: 2020
  ident: 10.1016/j.apenergy.2022.119123_b21
  article-title: Decentralized local energy trading in microgrids with voltage management
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.2980160
– volume: 9
  start-page: 4872
  issue: 5
  year: 2017
  ident: 10.1016/j.apenergy.2022.119123_b33
  article-title: Analysis of distribution locational marginal prices
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2673860
SSID ssj0002120
Score 2.6017318
Snippet In this paper, we investigate an energy cost minimization problem for prosumers participating in peer-to-peer energy trading. Due to (i) uncertainties caused...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119123
SubjectTerms algorithms
data collection
Deep deterministic policy gradient
energy
energy costs
issues and policy
Markov decision process
Multi-agent
Peer-to-peer energy trading
renewable energy sources
Renewable generation
Title Multi-agent deep deterministic policy gradient algorithm for peer-to-peer energy trading considering distribution network constraints
URI https://dx.doi.org/10.1016/j.apenergy.2022.119123
https://www.proquest.com/docview/2661012784
Volume 317
WOSCitedRecordID wos000799979200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZg4wAHBIOJ8SUjIS6Vi-MkTXycplaApsKhkyoulu3Y66YtCWmKxg_gf-OvpAENbRy4pFFkO26fp69fv34_AHibp1hqhROUUk1QkhGJOIkEElLjQmqNicSu2EQ2n-fLJf0S3MbWrpxAVpb51RWt_yvU5pkB24bO_gPc_aDmgbk3oJurgd1cbwW8C6lF3IZMjQqlanPxHi8uJbOryiB_jE4b5-tlDb6nVXPWri6dw2GtVIPaCtnPkfJxgW3j_Oytg7qr7WnvC5tvN5TKGpXeldw1cCUnfHaoPrltUHT9cL1Jh19a67sz1Kp6xXvd_oj7w6BNT9uZN9J-XVVhmQ1WCrL1aO2js_AE2d3aUPIa3WVUj22KORKja-W5Ny2cj3nt5zi2Y4ce2xWsO7Wff2azk-NjtpguF-_qb8jWFrNn8KHQyl2wS7KUGtm3e_hxuvzUr9gkpO_s5jiIJL_-1X9TYv5Yzp2OsngEHobNBTz0pHgM7qhyDzwYpJzcA_vTbWSjaRpE-_oJ-DngDbS8gb_xBnrewI43sOcNNLyBQ95A_01g4A0c8AYOeQMDb-CAN0_ByWy6OPqAQo0OJGMatyiOzYZaiklRiEkeC1ykKhWR4FRFWhRUcU6oVJgUiipKeBQpUWgqico4T2icxPtgp6xK9QxAHWNlkzelWGsjNCZc4oznIk6FTqlQ0QFIux-dyZDA3k7ugnWeiuesA4tZsJgH6wC87_vVPoXLjT1ohykLiqhXMJnh5Y1933QkYEZS2-M3Xqpqs2ZWFbaOHnny_BZtXoD72__RS7DTNhv1CtyT39uzdfM6MPgXKZXAog
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-agent+deep+deterministic+policy+gradient+algorithm+for+peer-to-peer+energy+trading+considering+distribution+network+constraints&rft.jtitle=Applied+energy&rft.au=Samende%2C+Cephas&rft.au=Cao%2C+Jun&rft.au=Fan%2C+Zhong&rft.date=2022-07-01&rft.issn=0306-2619&rft.volume=317+p.119123-&rft_id=info:doi/10.1016%2Fj.apenergy.2022.119123&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon