Limit transition between hypergeometric functions of type BC and type A

Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted half-sum $\rho (k)$ of positive roots. We prove that ${F}_{BC} (\lambda + \rho (k), k; t)$ converges as ${k}_{1} + {k}_{2} \rightarrow \infty $...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Compositio mathematica Ročník 149; číslo 8; s. 1381 - 1400
Hlavní autori: Rösler, Margit, Koornwinder, Tom, Voit, Michael
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London, UK London Mathematical Society 01.08.2013
Cambridge University Press
Predmet:
ISSN:0010-437X, 1570-5846
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted half-sum $\rho (k)$ of positive roots. We prove that ${F}_{BC} (\lambda + \rho (k), k; t)$ converges as ${k}_{1} + {k}_{2} \rightarrow \infty $ and ${k}_{1} / {k}_{2} \rightarrow \infty $ to a function of type A for $t\in { \mathbb{R} }^{n} $ and $\lambda \in { \mathbb{C} }^{n} $. This limit is obtained from a corresponding result for Jacobi polynomials of type BC, which is proven for a slightly more general limit behavior of the multiplicities, using an explicit representation of Jacobi polynomials in terms of Jack polynomials. Our limits include limit transitions for the spherical functions of non-compact Grassmann manifolds over one of the fields $ \mathbb{F} = \mathbb{R} , \mathbb{C} , \mathbb{H} $ when the rank is fixed and the dimension tends to infinity. The limit functions turn out to be exactly the spherical functions of the corresponding infinite-dimensional Grassmann manifold in the sense of Olshanski.
AbstractList Abstract Let [formula omitted, refer to PDF] be the Heckman-Opdam hypergeometric function of type BC with multiplicities [formula omitted, refer to PDF] and weighted half-sum [formula omitted, refer to PDF] of positive roots. We prove that [formula omitted, refer to PDF] converges as [formula omitted, refer to PDF] and [formula omitted, refer to PDF] to a function of type A for [formula omitted, refer to PDF] and [formula omitted, refer to PDF]. This limit is obtained from a corresponding result for Jacobi polynomials of type BC, which is proven for a slightly more general limit behavior of the multiplicities, using an explicit representation of Jacobi polynomials in terms of Jack polynomials. Our limits include limit transitions for the spherical functions of non-compact Grassmann manifolds over one of the fields [formula omitted, refer to PDF] when the rank is fixed and the dimension tends to infinity. The limit functions turn out to be exactly the spherical functions of the corresponding infinite-dimensional Grassmann manifold in the sense of Olshanski. [PUBLICATION ABSTRACT]
Let be the Heckman-Opdam hypergeometric function of type BC with multiplicities and weighted half-sum of positive roots. We prove that converges as and to a function of type A for and . This limit is obtained from a corresponding result for Jacobi polynomials of type BC, which is proven for a slightly more general limit behavior of the multiplicities, using an explicit representation of Jacobi polynomials in terms of Jack polynomials. Our limits include limit transitions for the spherical functions of non-compact Grassmann manifolds over one of the fields when the rank is fixed and the dimension tends to infinity. The limit functions turn out to be exactly the spherical functions of the corresponding infinite-dimensional Grassmann manifold in the sense of Olshanski.
Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted half-sum $\rho (k)$ of positive roots. We prove that ${F}_{BC} (\lambda + \rho (k), k; t)$ converges as ${k}_{1} + {k}_{2} \rightarrow \infty $ and ${k}_{1} / {k}_{2} \rightarrow \infty $ to a function of type A for $t\in { \mathbb{R} }^{n} $ and $\lambda \in { \mathbb{C} }^{n} $. This limit is obtained from a corresponding result for Jacobi polynomials of type BC, which is proven for a slightly more general limit behavior of the multiplicities, using an explicit representation of Jacobi polynomials in terms of Jack polynomials. Our limits include limit transitions for the spherical functions of non-compact Grassmann manifolds over one of the fields $ \mathbb{F} = \mathbb{R} , \mathbb{C} , \mathbb{H} $ when the rank is fixed and the dimension tends to infinity. The limit functions turn out to be exactly the spherical functions of the corresponding infinite-dimensional Grassmann manifold in the sense of Olshanski.
Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted half-sum $\rho (k)$ of positive roots. We prove that ${F}_{BC} (\lambda + \rho (k), k; t)$ converges as ${k}_{1} + {k}_{2} \rightarrow \infty $ and ${k}_{1} / {k}_{2} \rightarrow \infty $ to a function of type A for $t\in { \mathbb{R} }^{n} $ and $\lambda \in { \mathbb{C} }^{n} $ . This limit is obtained from a corresponding result for Jacobi polynomials of type BC, which is proven for a slightly more general limit behavior of the multiplicities, using an explicit representation of Jacobi polynomials in terms of Jack polynomials. Our limits include limit transitions for the spherical functions of non-compact Grassmann manifolds over one of the fields $ \mathbb{F} = \mathbb{R} , \mathbb{C} , \mathbb{H} $ when the rank is fixed and the dimension tends to infinity. The limit functions turn out to be exactly the spherical functions of the corresponding infinite-dimensional Grassmann manifold in the sense of Olshanski.
Author Rösler, Margit
Koornwinder, Tom
Voit, Michael
Author_xml – sequence: 1
  givenname: Margit
  surname: Rösler
  fullname: Rösler, Margit
  email: roesler@math.upb.de
  organization: Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany email roesler@math.upb.de
– sequence: 2
  givenname: Tom
  surname: Koornwinder
  fullname: Koornwinder, Tom
  email: T.H.Koornwinder@uva.nl
  organization: Korteweg de Vries Institute, University of Amsterdam, P.O. Box 94248, 1090 CE Amsterdam, The Netherlands email T.H.Koornwinder@uva.nl
– sequence: 3
  givenname: Michael
  surname: Voit
  fullname: Voit, Michael
  email: michael.voit@math.tu-dortmund.de
  organization: Fakultät Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany email michael.voit@math.tu-dortmund.de
BookMark eNp9kE1LAzEURYNUsK3-AHcDbtyMvpekTWZZi1ah4EIFd8N8vKkpnUxNMkj_vTO0C6noKoF7Tri5IzawjSXGLhFuEJHfvgAgSKHeUQAokJMTNsSJgnii5XTAhn0c9_kZG3m_BgCuuR6yxdLUJkTBZdabYBob5RS-iGz0sduSW1FTU3CmiKrWFn3uo6aKQpdFd_Mos-X-Pjtnp1W28XRxOMfs7eH-df4YL58XT_PZMi5EIkLM82pKIKVOpCq1SioAzaVWILqyeUK6KtU0QZXkQgGfkspzkoRUJgXykjIxZtf7d7eu-WzJh7Q2vqDNJrPUtD5FKRIlUU9Eh14doeumdbZr11EcEKVG3lFqTxWu8d5RlRYmZP1Pu03MJkVI-4HTXwN3Jh6ZW2fqzO3-dcTByercmXJFP0r9aX0Dd1iMMw
CitedBy_id crossref_primary_10_1111_sapm_12628
crossref_primary_10_1093_imrn_rnz313
crossref_primary_10_1093_imrn_rnab146
crossref_primary_10_1007_s00440_024_01282_4
crossref_primary_10_1016_j_indag_2025_04_004
crossref_primary_10_1016_j_aim_2015_08_018
crossref_primary_10_1016_j_jde_2019_10_033
crossref_primary_10_1007_s10959_016_0669_5
Cites_doi 10.4153/CJM-1997-019-9
10.1016/0001-8708(89)90015-7
10.1090/conm/190/2310
10.1016/j.jfa.2009.12.007
10.1007/s002200050161
10.1007/s00039-008-0658-7
10.1007/BF01076358
10.1007/BF01239517
10.1007/BF02392487
ContentType Journal Article
Copyright The Author(s) 2013
Copyright_xml – notice: The Author(s) 2013
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1112/S0010437X13007045
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
Computer and Information Systems Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate M. Rösler, T. Koornwinder and M. Voit
Limit transition between hypergeometric functions of type BC and type A
EISSN 1570-5846
EndPage 1400
ExternalDocumentID 3043766661
10_1112_S0010437X13007045
Genre Feature
GroupedDBID --Z
-E.
-~X
.86
.FH
09C
09E
0E1
0R~
0U7
29F
2WC
3V.
4.4
5GY
5VS
6J9
6NX
6TJ
74X
74Y
7~V
88I
8FE
8FG
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAFWJ
AAGFV
AAIAL
AAKTX
AANRG
AASVR
AAUKB
ABBXD
ABEFU
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABLJU
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIPV
ACIWK
ACNCT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADINQ
ADKIL
ADOCW
ADOVH
ADQRH
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AETEA
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHACP
AHBYD
AHQXX
AHRGI
AHSBF
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMKLP
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BGNMA
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D0L
DC4
DL5
DOHLZ
DWQXO
D~-
E3Z
EBS
EJD
F20
FAM
GNUQQ
GUQSH
HCIFZ
HG-
HG6
HST
HZ~
H~9
I.6
I09
IH6
IHE
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KCGVB
KDC
KFECR
L6V
L98
LAK
LW7
M-V
M0N
M2O
M2P
M4Y
M7S
NIKVX
NU0
O9-
OAV
OK1
OVD
OYBOY
P2P
P62
PADUT
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
QOS
RAMDC
RCA
RNI
ROL
RPX
RR0
RSV
RZC
RZE
S6-
S6U
SAAAG
SDH
SMT
T9M
TEORI
TN5
TR2
TSK
U2A
UPT
UT1
VC2
VH1
WFFJZ
WH7
WK8
WQ3
WXU
WXY
WYP
ZYDXJ
AAYXX
ABVKB
ABVZP
ABXHF
ACDLN
AFFHD
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
SOJ
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c393t-2bf6e0448947d879f008248703157b9e8fd769179b37026e7bbe4e1ed9c12dea3
IEDL.DBID M2P
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000323162600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-437X
IngestDate Sun Nov 09 11:23:42 EST 2025
Sat Aug 23 12:34:11 EDT 2025
Tue Nov 18 22:20:13 EST 2025
Sat Nov 29 02:59:47 EST 2025
Wed Mar 13 05:47:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 53C35 (secondary)
hypergeometric functions associated with root systems
spherical functions
Grassmann manifolds
33C52
Heckman–Opdam theory
Olshanski spherical pairs
33C67 (primary)
43A90
33C80
limit transitions
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-2bf6e0448947d879f008248703157b9e8fd769179b37026e7bbe4e1ed9c12dea3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0B38EC816865A1E5672FC217F8389AE2/S0010437X13007045a.pdf/div-class-title-limit-transition-between-hypergeometric-functions-of-type-bc-and-type-a-div.pdf
PQID 1420114812
PQPubID 3428
PageCount 20
ParticipantIDs proquest_miscellaneous_1439741853
proquest_journals_1420114812
crossref_citationtrail_10_1112_S0010437X13007045
crossref_primary_10_1112_S0010437X13007045
cambridge_journals_10_1112_S0010437X13007045
PublicationCentury 2000
PublicationDate 20130800
2013-08-00
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 20130800
PublicationDecade 2010
PublicationPlace London, UK
PublicationPlace_xml – name: London, UK
– name: London
PublicationTitle Compositio mathematica
PublicationTitleAlternate Compositio Math
PublicationYear 2013
Publisher London Mathematical Society
Cambridge University Press
Publisher_xml – name: London Mathematical Society
– name: Cambridge University Press
References Rösler (S0010437X13007045_r22) 2013
Dawson (S0010437X13007045_r3) 2013; 23
Heckman (S0010437X13007045_r10) 1994
Gunning (S0010437X13007045_r5) 1990
Olshanskii (S0010437X13007045_r17) 1990
van Diejen (S0010437X13007045_r27) 1995; 95
S0010437X13007045_r8
S0010437X13007045_r1
Titchmarsh (S0010437X13007045_r26) 1939
Opdam (S0010437X13007045_r19) 2000
S0010437X13007045_r24
S0010437X13007045_r23
S0010437X13007045_r25
Heckman (S0010437X13007045_r7) 1987; 64
Faraut (S0010437X13007045_r4) 2008
Hallnäs (S0010437X13007045_r6) 2009; 9
S0010437X13007045_r20
Lassalle (S0010437X13007045_r13) 1991; 312
Macdonald (S0010437X13007045_r15) 2000; 45
Heckman (S0010437X13007045_r9) 1997; 245
S0010437X13007045_r18
Rösler (S0010437X13007045_r21) 2008; 4
S0010437X13007045_r12
Beerends (S0010437X13007045_r2) 1993; 339
Koornwinder (S0010437X13007045_r11) 1984
S0010437X13007045_r14
S0010437X13007045_r16
References_xml – ident: S0010437X13007045_r25
  doi: 10.4153/CJM-1997-019-9
– start-page: 899
  year: 2013
  ident: S0010437X13007045_r22
  article-title: Olshanski spherical functions for infinite-dimensional motion groups of fixed rank
  publication-title: J. Lie Theory
– ident: S0010437X13007045_r24
  doi: 10.1016/0001-8708(89)90015-7
– volume: 312
  start-page: 425
  year: 1991
  ident: S0010437X13007045_r13
  article-title: Polynômes de Jacobi généralisés
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– volume: 4
  year: 2008
  ident: S0010437X13007045_r21
  article-title: A limit relation for Dunkl–Bessel functions of type A and B
  publication-title: Symmetry Integrability Geom. Methods Appl. (SIGMA)
– volume: 95
  start-page: 183
  year: 1995
  ident: S0010437X13007045_r27
  article-title: Commuting difference operators with polynomial eigenfunctions
  publication-title: Compositio Math.
– start-page: 1
  volume-title: Special functions: group theoretical aspects and applications
  year: 1984
  ident: S0010437X13007045_r11
– ident: S0010437X13007045_r12
  doi: 10.1090/conm/190/2310
– volume-title: Introduction to holomorphic functions of several variables. Volume 1: Function theory
  year: 1990
  ident: S0010437X13007045_r5
– volume: 23
  start-page: 711
  year: 2013
  ident: S0010437X13007045_r3
  article-title: Direct systems of spherical functions and representations
  publication-title: J. Lie Theory
– volume-title: The theory of functions
  year: 1939
  ident: S0010437X13007045_r26
– ident: S0010437X13007045_r20
  doi: 10.1016/j.jfa.2009.12.007
– volume-title: Representations of Lie groups and related topics
  year: 1990
  ident: S0010437X13007045_r17
– ident: S0010437X13007045_r1
  doi: 10.1007/s002200050161
– ident: S0010437X13007045_r23
  doi: 10.1007/s00039-008-0658-7
– volume: 339
  start-page: 581
  year: 1993
  ident: S0010437X13007045_r2
  article-title: Certain hypergeometric series related to the root system BC
  publication-title: Trans. Amer. Math. Soc.
– ident: S0010437X13007045_r14
– volume: 245
  start-page: 223
  year: 1997
  ident: S0010437X13007045_r9
  article-title: Dunkl operators
  publication-title: Astérisque
– volume: 45
  year: 2000
  ident: S0010437X13007045_r15
  article-title: Orthogonal polynomials associated with root systems
  publication-title: Sém. Lothar. Combin.
– ident: S0010437X13007045_r16
  doi: 10.1007/BF01076358
– year: 2000
  ident: S0010437X13007045_r19
– ident: S0010437X13007045_r8
  doi: 10.1007/BF01239517
– volume: 64
  start-page: 353
  year: 1987
  ident: S0010437X13007045_r7
  article-title: Root systems and hypergeometric functions II
  publication-title: Compositio Math.
– ident: S0010437X13007045_r18
  doi: 10.1007/BF02392487
– volume: 9
  start-page: 1573
  year: 2009
  ident: S0010437X13007045_r6
  article-title: Multivariable Bessel polynomials related to the hyperbolic Sutherland model with external Morse potential
  publication-title: Int. Math. Res. Not.
– volume-title: Infinite dimensional spherical analysis
  year: 2008
  ident: S0010437X13007045_r4
– volume-title: Harmonic analysis and special functions on symmetric spaces
  year: 1994
  ident: S0010437X13007045_r10
SSID ssj0002828
Score 2.0826342
Snippet Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted...
Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted...
Abstract Let [formula omitted, refer to PDF] be the Heckman-Opdam hypergeometric function of type BC with multiplicities [formula omitted, refer to PDF] and...
Let be the Heckman-Opdam hypergeometric function of type BC with multiplicities and weighted half-sum of positive roots. We prove that converges as and to a...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1381
SubjectTerms Functions (mathematics)
Geometry
Hypergeometric functions
Infinity
Manifolds
Mathematical analysis
Polynomials
Representations
Roots
Title Limit transition between hypergeometric functions of type BC and type A
URI https://www.cambridge.org/core/product/identifier/S0010437X13007045/type/journal_article
https://www.proquest.com/docview/1420114812
https://www.proquest.com/docview/1439741853
Volume 149
WOSCitedRecordID wos000323162600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1570-5846
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002828
  issn: 0010-437X
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1570-5846
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002828
  issn: 0010-437X
  databaseCode: K7-
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1570-5846
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002828
  issn: 0010-437X
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1570-5846
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002828
  issn: 0010-437X
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1570-5846
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002828
  issn: 0010-437X
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1570-5846
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002828
  issn: 0010-437X
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-iZQd2GB8DraOrjMQJzaJ23Dg5TRTxIQElYh-qdqkS24FJW9K1YX8_fo6bUSH1wuUpUuzIyrPft38P4DAPGdNCaIxrBFSINKRZmMc00znir3GlXFXlj2s5GkXjcZz4gNvcl1UuZKIT1LpUGCM_ZoI7253xL9O_FLtGYXbVt9Bowbq1bBiWdN3wpJHE6E7UkrhPRSDHPqtpTQy8IcwQ1meM6RzZx9tM_7EVlnXUsoh2eud887Ur3oJ33uIkJ_UW2YY1U-zA25sGrnX-Hi7cNSdSod5yJVzEl2-RB-umzu5N-QcbbymCWtBtVFLmBKO3ZHhK0kLXzye78P387NvpJfUdFqiyjKgoz_LQ9K2HFgupIxnnaBFYFwZbP8gsNlGuZWgdujgLpHXWjMwyIwwzOlaMa5MGe9AuysJ8AMKlVGGghB5IS9QgzgZMIrygNVGiiKUd-Nz834k_J_NJ7YLwyQt2dKC_YMFEebRybJrxe9WUo2bKtIbqWDW4u2Das9U0HOvAQfPanjdMoqSFKR9xjLXgEPEn-Lj6E_uwwV3rDCwW7EK7mj2aT_BG_at-zWc9WB-ejZK7HrSuJO3htr11NEEqv1qaDH4-AS7w7oM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6FhwQcCpRWhPJYpPZSYZFdb7z2oULhjUiiHNIqN2PvrgEJbEgCqH-qv7E76wdFlXLLgYtlybt-zew8dma-AfiaeJQqzhXua7gO55HnxF4SOLFKEH-NSWmzKn-1RbfrDwZBrwZ_yloYTKssZaIV1CqTuEe-TzmztjtlBw-PDnaNwuhq2UIjZ4tL_fvFuGyjHxfHhr7fGDs96R-dO0VXAUeah48dFieebhivJOBC-SJIUAsasx3bHYg40H6ihGecmCB2hXFQtIhjzTXVKpCUKR255r4zMMcRWQxTBVmvkvzovuSSv-FwVwyKKKoxabAimSKM0ADDR6KB1VOvWA5vdeJblWD13Onye_tDK_ChsKhJK18Cq1DT6UdY6lRwtKM1OLNlXGSMetmmqJEiPY3cGDd8eK2ze2wsJglqebsQSZYQ3J0mh0ckSlV-3voEP6fyJZ9hNs1SvQ6ECSE9V3LVFOYgm0HcpALhE40J5vs0qsNeRc-wkAOjMHexWPgf-evQKEkeygKNHZuC3E2a8r2a8pBDkUwavFkyyT9vU3FIHXary0aeYJAoSnX2hGOMhYqIRu7G5FvswMJ5v9MO2xfdyy-wyGybEEyM3ITZ8fBJb8G8fB7fjobbdpEQuJo2z_0FmlBElw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limit+transition+between+hypergeometric+functions+of+type+BC+and+type+A&rft.jtitle=Compositio+mathematica&rft.au=R%C3%B6sler%2C+Margit&rft.au=Koornwinder%2C+Tom&rft.au=Voit%2C+Michael&rft.date=2013-08-01&rft.pub=London+Mathematical+Society&rft.issn=0010-437X&rft.eissn=1570-5846&rft.volume=149&rft.issue=8&rft.spage=1381&rft.epage=1400&rft_id=info:doi/10.1112%2FS0010437X13007045&rft.externalDocID=10_1112_S0010437X13007045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-437X&client=summon