Pixel-level crack segmentation of tunnel lining segments based on an encoder-decoder network
Regular detection and repair for lining cracks are necessary to guarantee the safety and stability of tunnels. The development of computer vision has greatly promoted structural health monitoring. This study proposes a novel encoder-decoder structure, CrackRecNet, for semantic segmentation of lining...
Uloženo v:
| Vydáno v: | Frontiers of Structural and Civil Engineering Ročník 18; číslo 5; s. 681 - 698 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Beijing
Higher Education Press
01.05.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 2095-2430, 2095-2449 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Regular detection and repair for lining cracks are necessary to guarantee the safety and stability of tunnels. The development of computer vision has greatly promoted structural health monitoring. This study proposes a novel encoder-decoder structure, CrackRecNet, for semantic segmentation of lining segment cracks by integrating improved VGG-19 into the U-Net architecture. An image acquisition equipment is designed based on a camera, 3-dimensional printing (3DP) bracket and two laser rangefinders. A tunnel concrete structure crack (TCSC) image data set, containing images collected from a double-shield tunnel boring machines (TBM) tunnel in China, was established. Through data preprocessing operations, such as brightness adjustment, pixel resolution adjustment, flipping, splitting and annotation, 2880 image samples with pixel resolution of 448 × 448 were prepared. The model was implemented by Pytorch in PyCharm processed with 4 NVIDIA TITAN V GPUs. In the experiments, the proposed CrackRecNet showed better prediction performance than U-Net, TernausNet, and ResU-Net. This paper also discusses GPU parallel acceleration effect and the crack maximum width quantification. |
|---|---|
| AbstractList | Regular detection and repair for lining cracks are necessary to guarantee the safety and stability of tunnels. The development of computer vision has greatly promoted structural health monitoring. This study proposes a novel encoder–decoder structure, CrackRecNet, for semantic segmentation of lining segment cracks by integrating improved VGG-19 into the U-Net architecture. An image acquisition equipment is designed based on a camera, 3-dimensional printing (3DP) bracket and two laser rangefinders. A tunnel concrete structure crack (TCSC) image data set, containing images collected from a double-shield tunnel boring machines (TBM) tunnel in China, was established. Through data preprocessing operations, such as brightness adjustment, pixel resolution adjustment, flipping, splitting and annotation, 2880 image samples with pixel resolution of 448 × 448 were prepared. The model was implemented by Pytorch in PyCharm processed with 4 NVIDIA TITAN V GPUs. In the experiments, the proposed CrackRecNet showed better prediction performance than U-Net, TernausNet, and ResU-Net. This paper also discusses GPU parallel acceleration effect and the crack maximum width quantification. |
| Author | LIU, Yaoru HOU, Shaokang OU, Zhigang HUANG, Yuequn |
| Author_xml | – sequence: 1 givenname: Shaokang surname: HOU fullname: HOU, Shaokang organization: State Key Laboratory of Stimulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China – sequence: 2 givenname: Zhigang surname: OU fullname: OU, Zhigang organization: State Key Laboratory of Stimulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China – sequence: 3 givenname: Yuequn surname: HUANG fullname: HUANG, Yuequn organization: Hunan Provincial Water Resources Development & Investment Co., Ltd., Changsha 410007, China – sequence: 4 givenname: Yaoru surname: LIU fullname: LIU, Yaoru email: liuyaoru@tsinghua.edu.cn organization: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China |
| BookMark | eNp9kMFO3DAQhq1qK0HpPgC3SJxdZmwnto_VqqWVVoID3JAsbzLZNQRnsbNA354soUXqYU8z0vzfzOj7wmaxj8TYKcI3BNDnGVGD5SAUR1CGq0_sWIAtuVDKzv71Eo7YPOc7AEDQEow8ZrdX4YU63tETdUWdfH1fZFo_UBz8EPpY9G0x7GIch12IIa7_TnOx8pmaYoz4WFCs-4YSb-itFpGG5z7df2WfW99lmr_XE3bz88f14hdfXl78Xnxf8lpaOXBcSbVCpSq0JFD4qtGqMuhb0kaI2hA1NeiyqiQaVXpbtpXF0qDypkRohTxhZ9Pebeofd5QHd9fvUhxPOil0iQZLPJwCrbSx1tgxpadUnfqcE7WuDpOLIfnQOQS3d-4m52507vbOnRpJ_I_cpvDg05-DjJiYPGbjmtLHT4cgM0GbsN5QomabKGfXpvHHQOkQ-goVuqWj |
| CitedBy_id | crossref_primary_10_1155_2024_6087901 |
| Cites_doi | 10.1038/nature14539 10.1016/j.tust.2019.103156 10.1016/j.tust.2020.103724 10.1007/s13349-018-0309-0 10.1109/TIP.2018.2878966 10.1111/mice.13003 10.1198/tech.2006.s353 10.1111/mice.12731 10.1080/15732479.2015.1076855 10.1016/j.asoc.2017.05.047 10.1016/j.engappai.2021.104353 10.3390/s20072069 10.1111/mice.12412 10.1007/s11263-015-0816-y 10.1016/j.ipm.2009.03.002 10.1186/s40537-019-0197-0 10.3390/app9142867 10.1061/(ASCE)CP.1943-5487.0000736 10.1177/14759217231168212 10.1061/(ASCE)0887-3801(2003)17:4(255) 10.1007/s10462-021-09975-1 10.1016/j.tust.2022.104668 10.1002/stc.2732 10.3390/s19194278 10.1016/j.tust.2019.103212 10.1002/stc.2551 10.1016/j.measurement.2021.109316 10.1016/j.isprsjprs.2018.07.010 10.1109/ACCESS.2020.2981561 10.1177/14759217231173305 10.1016/j.conbuildmat.2019.117367 10.1016/j.tust.2018.04.002 10.1111/mice.12440 10.1111/j.1467-8667.2010.00674.x 10.1016/j.engstruct.2022.115291 10.1109/TITS.2016.2552248 10.1016/j.engstruct.2022.115406 10.1016/j.procs.2019.06.096 10.1016/j.aei.2015.01.008 10.1016/j.parco.2020.102701 10.1016/j.neucom.2019.08.107 10.1111/mice.12334 10.3390/s21175725 10.1016/j.autcon.2021.103786 10.1038/s41598-020-71420-0 10.1109/TKDE.2017.2682249 10.1002/stc.1655 10.1016/j.jweia.2020.104436 10.1016/j.tust.2020.103513 10.1016/j.tust.2022.104472 10.1061/(ASCE)CP.1943-5487.0000831 10.1111/mice.12826 10.1016/j.tust.2023.105107 10.1111/mice.12622 10.1016/j.autcon.2017.01.019 |
| ContentType | Journal Article |
| Copyright | Copyright reserved, 2024, Higher Education Press Higher Education Press 2024 Higher Education Press 2024. |
| Copyright_xml | – notice: Copyright reserved, 2024, Higher Education Press – notice: Higher Education Press 2024 – notice: Higher Education Press 2024. |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7X2 7XB 87Z 88I 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AEUYN AFKRA ATCPS AVQMV AZQEC BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ K50 K60 K6~ L.- L6V M0C M0K M1D M2O M2P M7S MBDVC PADUT PEJEM PHGZM PHGZT PKEHL PMKZF PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1007/s11709-024-1048-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection Arts Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection Art, Design & Architecture Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Agricultural Science Database Arts & Humanities Database Research Library Science Database Engineering Database Research Library (Corporate) Research Library China ProQuest One Visual Arts & Design ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest Digital Collections ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest One Sustainability Arts Premium Collection Natural Science Collection ProQuest Central (New) Research Library China Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Arts & Humanities Full Text ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Art, Design and Architecture Collection ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ABI/INFORM China ProQuest SciTech Collection ProQuest Digital Collections Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Visual Arts & Design ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2095-2449 |
| EndPage | 698 |
| ExternalDocumentID | 10_1007_s11709_024_1048_4 10.1007/s11709-024-1048-4 |
| GroupedDBID | .VR 06D 0R~ 0VY 1-T 29~ 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 5VS 7WY 7X2 88I 8FE 8FG 8FH 8FL 8G5 95- 95. 96X AABHQ AACDK AAHTB AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABNWP ABPEJ ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACSTC ACZOJ ADHIR ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ATCPS ATHPR AVQMV AXYYD AYFIA AZQEC B-. BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ CCPQU CHBEP CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GUQSH HCIFZ HF~ HMJXF HRMNR HZ~ IKXTQ ITM IWAJR I~Z J-C JBSCW JZLTJ K50 K60 K6~ KOV L6V LLZTM M0C M0K M1D M2O M2P M4Y M7S MA- NPVJJ NQJWS NU0 O9- O9J P4S PADUT PEJEM PF0 PHGZM PHGZT PMKZF PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PTHSS Q-- Q2X R89 ROL RSV S16 SAP SCL SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 YLTOR ZMTXR -5B -5G -BR -EM -~C 3V. AAAVM ADINQ GQ6 GROUPED_ABI_INFORM_COMPLETE Z7Y Z7Z ~IF AAYXX AFFHD CITATION 7XB 8FK L.- MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c393t-1b34b144619e212a6d74681afe7822c8eedc0756631845a95f6915814a8510f23 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246499800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2095-2430 |
| IngestDate | Thu Nov 27 13:51:44 EST 2025 Thu Nov 27 15:43:27 EST 2025 Sat Nov 29 02:11:12 EST 2025 Tue Nov 18 22:18:02 EST 2025 Fri Feb 21 02:40:21 EST 2025 Sat Oct 04 01:47:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | encoder–decoder structure semantic segmentation tunnel lining segment crack detection convolutional neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c393t-1b34b144619e212a6d74681afe7822c8eedc0756631845a95f6915814a8510f23 |
| Notes | Document received on :2023-02-09 Document accepted on :2023-07-25 encoder-decoder structure tunnel lining segment convolutional neural network semantic segmentation crack detection ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3275181512 |
| PQPubID | 105416 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3275181512 proquest_journals_3074789989 crossref_citationtrail_10_1007_s11709_024_1048_4 crossref_primary_10_1007_s11709_024_1048_4 springer_journals_10_1007_s11709_024_1048_4 higheredpress_frontiers_10_1007_s11709_024_1048_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing – name: Shanghai |
| PublicationTitle | Frontiers of Structural and Civil Engineering |
| PublicationTitleAbbrev | Front. Struct. Civ. Eng |
| PublicationYear | 2024 |
| Publisher | Higher Education Press Springer Nature B.V |
| Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
| References | Ai, Yuan (CR45) 2019; 19 O’Brien, Osborne, Perez-Duenas, Cunningham, Li (CR31) 2023; 131 Sokolova, Lapalme (CR66) 2009; 45 Ioffe, Szegedy (CR53) 2015 Noh, Koo, Kang, Park, Lee (CR16) 2017 Wang, Su (CR59) 2021; 128 Huyan, Li, Tighe, Xu, Zhai (CR39) 2020; 27 Shorten, Khoshgoftaar (CR61) 2019; 6 Jogin, Madhulika, Divya, Meghana, Apoorva (CR49) 2018 CR35 Ren, Huang, Hong, Lu, Yin, Zou, Shen (CR65) 2020; 234 Liu, Wang, Hua, Zhu, Zhu (CR67) 2021; 208 Abdel-Qader, Abudayyeh, Kelly (CR11) 2003; 17 Ohsaki, Wang, Matsuda, Katagiri, Watanabe, Ralescu (CR64) 2017; 29 Rong (CR70) 2007 CR72 Cha, Choi, Suh, Mahmoudkhani, Büyüköztürk (CR21) 2018; 33 Guo, Li, Jiang, Shen (CR37) 2020; 397 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Li (CR18) 2015; 115 Feng, Zhang, Wang, Wang, Li (CR14) 2020; 20 Zou, Zhang, Li, Qi, Wang, Wang (CR29) 2018; 28 Koch, Georgieva, Kasireddy, Akinci, Fieguth (CR6) 2015; 29 Shi, Cui, Qi, Meng, Chen (CR15) 2016; 17 Zhao, Zhang, Huang (CR44) 2020; 95 Zhao, Shadabfar, Zhang, Chen, Huang (CR3) 2021; 28 Dang, Wang, Li, Park, Oh, Nguyen, Moon (CR32) 2022; 124 CR47 Chen, Yao, Fu, Ng (CR27) 2023; 275 Que, Dai, Ji, Leung, Chen, Jiang, Tang (CR36) 2023; 277 Yang, Chen, Zhang, Zhang, Fan, Ye, Fu (CR62) 2021; 104 Zhou, Zhang, Gong (CR24) 2023; 38 Benz, Debus, Ha, Rodehorst (CR48) 2019 Yang, Li, Yu, Luo, Huang, Yang (CR71) 2018; 33 Yao, Tung, Glisic (CR4) 2014; 21 Li, Hou, Liu, Qin, Yang (CR58) 2020; 103 Liu, Hou, Li, Zhou, Jin, Qin, Yang (CR5) 2020; 96 Bejani, Ghatee (CR60) 2021; 54 Oliveira, Correia (CR12) 2009 Xu, Li, Xie, Wu, Wang (CR13) 2021; 178 Qu, Mei, Liu, Zhou (CR57) 2020; 8 Valença, Julio (CR8) 2018; 8 Zhang, Yang, Zhang, Zhu (CR28) 2016 Xue, Jia, Cai, Shadabfar, Huang (CR34) 2022; 37 Nair, Hinton (CR51) 2010 Coelho, Neto (CR63) 2017; 59 Attard, Debono, Valentino, Di Castro (CR42) 2018; 144 CR50 Chen, He (CR23) 2022; 37 Wang, Liu, Nie, Mo (CR69) 2022; 29 Zhang, Cheng, Zhang (CR40) 2018; 32 Ai, Yuan, Bi (CR43) 2016; 12 Dong, Zhao, Lin, Kaeli (CR68) 2020; 100 Hou, Ou, Qin, Wang, Liu (CR41) 2021 Li, Zhao, Du, Ru, Zhang (CR17) 2017; 78 LeCun, Bengio, Hinton (CR22) 2015; 521 Ronneberger, Fischer, Brox (CR55) 2015 Zhou, Cheng, Huang, Chen (CR46) 2021; 21 Lei, Liu, Shi, Tan, Lin, Wang (CR1) 2021; 108 Park, Bang, Kim, Kim (CR19) 2019; 33 Liu, Yang, Lau, Wang, Luo, Lee, Ding (CR7) 2020; 35 Xu, Fan, Li (CR25) 2023; 22 Feng, Feng, Zhang, Chen (CR33) 2023; 136 Deng (CR56) 2006; 48 Huang, Li, Zhang (CR73) 2018; 77 CR26 Xu, Su, Wang, Cai, Cui, Chen (CR38) 2019; 9 Wu, He (CR54) 2018 Ying, Salari (CR10) 2010; 25 Yang, Wang, Zhang, Han (CR2) 2021; 41 Zhang, Chang, Jamshidi (CR20) 2021; 20 Swiderska-Chadaj, de Bel, Blanchet, Baidoshvili, Vossen, van der Laak, Litjens (CR52) 2020; 10 Bang, Park, Kim, Kim (CR30) 2019; 34 Wang, Zhang, Liu, Zhang, Chen, Li, Yan (CR9) 2019; 154 S K Hou (1048_CR41) 2021 X B Yang (1048_CR62) 2021; 104 Y Yang (1048_CR2) 2021; 41 L Attard (1048_CR42) 2018; 144 M L Zhou (1048_CR46) 2021; 21 Y Ren (1048_CR65) 2020; 234 Y R Liu (1048_CR5) 2020; 96 Y Shi (1048_CR15) 2016; 17 M M Bejani (1048_CR60) 2021; 54 J J Wang (1048_CR69) 2022; 29 H W Huang (1048_CR73) 2018; 77 C Y Li (1048_CR58) 2020; 103 C Feng (1048_CR14) 2020; 20 Z Q Liu (1048_CR67) 2021; 208 1048_CR35 J Valença (1048_CR8) 2018; 8 M F Lei (1048_CR1) 2021; 108 Y Que (1048_CR36) 2023; 277 C Shorten (1048_CR61) 2019; 6 1048_CR72 L Y Deng (1048_CR56) 2006; 48 Y Xu (1048_CR13) 2021; 178 L Guo (1048_CR37) 2020; 397 C Benz (1048_CR48) 2019 D O’Brien (1048_CR31) 2023; 131 M Sokolova (1048_CR66) 2009; 45 Y Wang (1048_CR9) 2019; 154 H Xu (1048_CR38) 2019; 9 C Koch (1048_CR6) 2015; 29 1048_CR26 L Chen (1048_CR27) 2023; 275 S Bang (1048_CR30) 2019; 34 Y Yao (1048_CR4) 2014; 21 S Dong (1048_CR68) 2020; 100 J Chen (1048_CR23) 2022; 37 Z Swiderska-Chadaj (1048_CR52) 2020; 10 W J Wang (1048_CR59) 2021; 128 Y J Cha (1048_CR21) 2018; 33 X C Yang (1048_CR71) 2018; 33 L Zhang (1048_CR28) 2016 I Abdel-Qader (1048_CR11) 2003; 17 Y Xu (1048_CR25) 2023; 22 M Ohsaki (1048_CR64) 2017; 29 Y D Xue (1048_CR34) 2022; 37 K Zhang (1048_CR40) 2018; 32 G Li (1048_CR17) 2017; 78 L M Dang (1048_CR32) 2022; 124 S Zhao (1048_CR44) 2020; 95 S Zhao (1048_CR3) 2021; 28 S J Feng (1048_CR33) 2023; 136 Z Qu (1048_CR57) 2020; 8 H Oliveira (1048_CR12) 2009 O Russakovsky (1048_CR18) 2015; 115 Q Zou (1048_CR29) 2018; 28 1048_CR50 O Ronneberger (1048_CR55) 2015 Y Wu (1048_CR54) 2018 Y Noh (1048_CR16) 2017 Y LeCun (1048_CR22) 2015; 521 S Park (1048_CR19) 2019; 33 Y Rong (1048_CR70) 2007 M Jogin (1048_CR49) 2018 F Coelho (1048_CR63) 2017; 59 Z Zhou (1048_CR24) 2023; 38 Q Ai (1048_CR45) 2019; 19 1048_CR47 S Ioffe (1048_CR53) 2015 J Huyan (1048_CR39) 2020; 27 V Nair (1048_CR51) 2010 L Ying (1048_CR10) 2010; 25 Q Ai (1048_CR43) 2016; 12 J Liu (1048_CR7) 2020; 35 C Zhang (1048_CR20) 2021; 20 |
| References_xml | – volume: 124 start-page: 104472 year: 2022 ident: CR32 article-title: Automatic tunnel lining crack evaluation and measurement using deep learning publication-title: Tunnelling and Underground Space Technology – volume: 38 start-page: 2491 issue: 17 year: 2023 end-page: 2510 ident: CR24 article-title: Hybrid semantic segmentation for tunnel lining cracks based on Swin Transformer and convolutional neural network publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 208 start-page: 104436 year: 2021 ident: CR67 article-title: Optimization of wind turbine TMD under real wind distribution countering wake effects using GPU acceleration and machine learning technologies publication-title: Journal of Wind Engineering and Industrial Aerodynamics – volume: 20 start-page: 2069 issue: 7 year: 2020 ident: CR14 article-title: Automatic pixel-level crack detection on dam surface using deep convolutional network publication-title: Sensors – start-page: 1 year: 2019 end-page: 6 ident: CR48 article-title: Crack segmentation on UAS-based imagery using transfer learning publication-title: Proceedings of the 2019 International Conference on Image and Vision Computing New Zealand (IVCNZ) – volume: 234 start-page: 117367 year: 2020 ident: CR65 article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks publication-title: Construction & Building Materials – start-page: 234 year: 2015 end-page: 241 ident: CR55 article-title: U-Net: convolutional Networks for biomedical image segmentation publication-title: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 20 start-page: 147592172098543 issue: 4 year: 2021 ident: CR20 article-title: Simultaneous pixel-level concrete defect detection and grouping using a fully convolutional model publication-title: Structural Health Monitoring – volume: 275 start-page: 115291 year: 2023 ident: CR27 article-title: The classification and localization of crack using lightweight convolutional neural network with CBAM publication-title: Engineering Structures – volume: 22 start-page: 14759217221147015 issue: 5 year: 2023 ident: CR25 article-title: Lightweight semantic segmentation of complex structural damage recognition for actual bridges publication-title: Structural Health Monitoring – ident: CR35 – volume: 9 start-page: 2867 issue: 14 year: 2019 ident: CR38 article-title: Automatic bridge crack detection using a convolutional neural network publication-title: Applied Sciences – volume: 33 start-page: 1090 issue: 12 year: 2018 end-page: 1109 ident: CR71 article-title: Automatic pixel-level crack detection and measurement using fully convolutional network publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 17 start-page: 3434 issue: 12 year: 2016 end-page: 3445 ident: CR15 article-title: Automatic road crack detection using random structured forests publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 154 start-page: 610 year: 2019 end-page: 616 ident: CR9 article-title: Research on crack detection algorithm of the concrete bridge based on image processing publication-title: Procedia Computer Science – volume: 19 start-page: 4278 issue: 19 year: 2019 ident: CR45 article-title: Rapid acquisition and identification of structural defects of metro tunnel publication-title: Sensors – volume: 29 start-page: e2850 issue: 1 year: 2022 ident: CR69 article-title: Deep convolutional neural networks for semantic segmentation of cracks publication-title: Structural Control and Health Monitoring – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 14 ident: CR52 article-title: Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer publication-title: Scientific Reports – start-page: 877 year: 2017 end-page: 880 ident: CR16 article-title: Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering publication-title: Proceedings of the International conference on applied system innovation (ICASI) – volume: 95 start-page: 103156 year: 2020 ident: CR44 article-title: Deep learning-based image instance segmentation for moisture marks of shield tunnel lining publication-title: Tunnelling and Underground Space Technology – volume: 8 start-page: 54564 year: 2020 end-page: 54573 ident: CR57 article-title: Crack detection of concrete pavement with cross-entropy loss function and improved VGG16 network model publication-title: IEEE Access: Practical Innovations, Open Solutions – start-page: 072001 year: 2021 ident: CR41 article-title: Image-based crack recognition of tunnel lining using residual U-Net convolutional neural network publication-title: Proceedings of the IOP Conference Series: Earth and Environmental Science – volume: 12 start-page: 1065 issue: 9 year: 2016 end-page: 1075 ident: CR43 article-title: Acquiring sectional profile of metro tunnels using charge-coupled device cameras publication-title: Structure and Infrastructure Engineering – volume: 37 start-page: 1721 issue: 13 year: 2022 end-page: 1736 ident: CR23 article-title: A novel U-shaped encoder–decoder network with attention mechanism for detection and evaluation of road cracks at pixel level publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 21 start-page: 5725 issue: 17 year: 2021 ident: CR46 article-title: A novel approach to automated 3D spalling defects inspection in railway tunnel linings using laser intensity and depth information publication-title: Sensors – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 48 ident: CR61 article-title: A survey on image data augmentation for deep learning publication-title: Journal of Big Data – volume: 29 start-page: 196 issue: 2 year: 2015 end-page: 210 ident: CR6 article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure publication-title: Advanced Engineering Informatics – ident: CR50 – volume: 35 start-page: 1291 issue: 11 year: 2020 end-page: 1305 ident: CR7 article-title: Automated pavement crack detection and segmentation based on two-step convolutional neural network publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 108 start-page: 103724 year: 2021 ident: CR1 article-title: A novel tunnel-lining crack recognition system based on digital image technology publication-title: Tunnelling and Underground Space Technology – volume: 77 start-page: 166 year: 2018 end-page: 176 ident: CR73 article-title: Deep learning based image recognition for crack and leakage defects of metro shield tunnel publication-title: Tunnelling and Underground Space Technology – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR22 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 3 year: 2018 end-page: 19 ident: CR54 article-title: Group normalization publication-title: Proceedings of the European conference on computer vision (ECCV) – volume: 103 start-page: 103513 year: 2020 ident: CR58 article-title: Analysis on the crown convergence deformation of surrounding rock for double-shield TBM tunnel based on advance borehole monitoring and inversion analysis publication-title: Tunnelling and Underground Space Technology – volume: 96 start-page: 103212 year: 2020 ident: CR5 article-title: Study on support time in double-shield TBM tunnel based on self-compacting concrete backfilling material publication-title: Tunnelling and Underground Space Technology – volume: 29 start-page: 1806 issue: 9 year: 2017 end-page: 1819 ident: CR64 article-title: Confusion-matrix-based kernel logistic regression for imbalanced data classification publication-title: IEEE Transactions on Knowledge and Data Engineering – ident: CR26 – volume: 28 start-page: 1498 issue: 3 year: 2018 end-page: 1512 ident: CR29 article-title: Deepcrack: Learning hierarchical convolutional features for crack detection publication-title: IEEE Transactions on Image Processing – volume: 100 start-page: 102701 year: 2020 ident: CR68 article-title: Exploring GPU acceleration of Deep Neural Networks using Block Circulant Matrices publication-title: Parallel Computing – volume: 78 start-page: 51 year: 2017 end-page: 61 ident: CR17 article-title: Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine publication-title: Automation in Construction – volume: 104 start-page: 104353 year: 2021 ident: CR62 article-title: Pixel-level automatic annotation for forest fire image publication-title: Engineering Applications of Artificial Intelligence – ident: CR47 – ident: CR72 – volume: 34 start-page: 713 issue: 8 year: 2019 end-page: 727 ident: CR30 article-title: Encoder-decoder network for pixel-level road crack detection in black-box images publication-title: Computer-Aided Civil and Infrastructure Engineering – start-page: 3708 year: 2016 end-page: 3712 ident: CR28 article-title: Road crack detection using deep convolutional neural network publication-title: Proceedings of the 2016 IEEE international conference on image processing (ICIP) – volume: 178 start-page: 109316 year: 2021 ident: CR13 article-title: Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN publication-title: Measurement – start-page: 622 year: 2009 end-page: 626 ident: CR12 article-title: Automatic road crack segmentation using entropy and image dynamic thresholding publication-title: Proceedings of the 17th European Signal Processing Conference – volume: 37 start-page: 386 issue: 3 year: 2022 end-page: 402 ident: CR34 article-title: An optimization strategy to improve the deep learning-based recognition model of leakage in shield tunnels publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 59 start-page: 223 year: 2017 end-page: 228 ident: CR63 article-title: A method for regularization of evolutionary polynomial regression publication-title: Applied Soft Computing – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 ident: CR18 article-title: ImageNet large scale visual recognition challenge publication-title: International Journal of Computer Vision – volume: 33 start-page: 731 issue: 9 year: 2018 end-page: 747 ident: CR21 article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 45 start-page: 427 issue: 4 year: 2009 end-page: 437 ident: CR66 article-title: A systematic analysis of performance measures for classification tasks publication-title: Information Processing & Management – volume: 397 start-page: 383 year: 2020 end-page: 392 ident: CR37 article-title: Automatic crack distress classification from concrete surface images using a novel deep-width network architecture publication-title: Neurocomputing – volume: 28 start-page: e2732 issue: 6 year: 2021 ident: CR3 article-title: Deep learning-based classification and instance segmentation of leakage-area and scaling images of shield tunnel linings publication-title: Structural Control and Health Monitoring – volume: 33 start-page: 04019017 issue: 3 year: 2019 ident: CR19 article-title: Patch-based crack detection in black box images using convolutional neural networks publication-title: Journal of Computing in Civil Engineering – volume: 136 start-page: 105107 year: 2023 ident: CR33 article-title: Deep learning with visual explanations for leakage defect segmentation of metro shield tunnel publication-title: Tunnelling and Underground Space Technology – volume: 128 start-page: 103786 year: 2021 ident: CR59 article-title: Semi-supervised semantic segmentation network for surface crack detection publication-title: Automation in Construction – volume: 25 start-page: 572 issue: 8 year: 2010 end-page: 580 ident: CR10 article-title: Beamlet transform-based technique for pavement crack detection and classification publication-title: Computer-Aided Civil and Infrastructure Engineering – start-page: 2319 year: 2018 end-page: 2323 ident: CR49 article-title: Feature extraction using convolution neural networks (CNN) and deep learning publication-title: Proceedings of the 2018 3rd IEEE international conference on recent trends in electronics, information & communication technology (RTEICT) – year: 2007 ident: CR70 publication-title: The research on the key technology of the crack controlling of reinforced concrete lining of undersea tunnel – volume: 8 start-page: 857 issue: 5 year: 2018 end-page: 866 ident: CR8 article-title: MCrack-Dam: the scale-up of a method to assess cracks on concrete dams by image processing. The case study of Itaipu Dam, at the Brazil–Paraguay border publication-title: Journal of Civil Structural Health Monitoring – volume: 131 start-page: 104668 year: 2023 ident: CR31 article-title: Automated crack classification for the CERN underground tunnel infrastructure using deep learning publication-title: Tunnelling and Underground Space Technology – volume: 27 start-page: e2551 issue: 8 year: 2020 ident: CR39 article-title: CrackU-net: A novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Structural Control and Health Monitoring – volume: 48 start-page: 147 issue: 1 year: 2006 end-page: 148 ident: CR56 article-title: The Cross-Entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning publication-title: Technometrics – volume: 32 start-page: 04018001 issue: 2 year: 2018 ident: CR40 article-title: Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning publication-title: Journal of Computing in Civil Engineering – start-page: 807 year: 2010 end-page: 814 ident: CR51 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) – volume: 144 start-page: 180 year: 2018 end-page: 188 ident: CR42 article-title: Tunnel inspection using photogrammetric techniques and image processing: A review publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 277 start-page: 115406 year: 2023 ident: CR36 article-title: Automatic classification of asphalt pavement cracks using a novel integrated generative adversarial networks and improved VGG model publication-title: Engineering Structures – volume: 17 start-page: 255 issue: 4 year: 2003 end-page: 263 ident: CR11 article-title: Analysis of edge-detection techniques for crack identification in bridges publication-title: Journal of Computing in Civil Engineering – start-page: 448 year: 2015 end-page: 456 ident: CR53 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International conference on machine learning – volume: 54 start-page: 1 issue: 8 year: 2021 end-page: 48 ident: CR60 article-title: A systematic review on overfitting control in shallow and deep neural networks publication-title: Artificial Intelligence Review – volume: 41 start-page: 64 issue: 3 year: 2021 end-page: 74 ident: CR2 article-title: Multi-feature fusion based classification algorithm of surface disease image of concrete structure publication-title: Journal of Chang’an University: Natural Science Edition – volume: 21 start-page: 1387 issue: 12 year: 2014 end-page: 1413 ident: CR4 article-title: Crack detection and characterization techniques—An overview publication-title: Structural Control and Health Monitoring – volume: 95 start-page: 103156 year: 2020 ident: 1048_CR44 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2019.103156 – volume: 108 start-page: 103724 year: 2021 ident: 1048_CR1 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2020.103724 – ident: 1048_CR50 – volume: 8 start-page: 857 issue: 5 year: 2018 ident: 1048_CR8 publication-title: Journal of Civil Structural Health Monitoring doi: 10.1007/s13349-018-0309-0 – volume: 28 start-page: 1498 issue: 3 year: 2018 ident: 1048_CR29 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2878966 – start-page: 234 volume-title: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2015 ident: 1048_CR55 – volume: 38 start-page: 2491 issue: 17 year: 2023 ident: 1048_CR24 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.13003 – volume: 48 start-page: 147 issue: 1 year: 2006 ident: 1048_CR56 publication-title: Technometrics doi: 10.1198/tech.2006.s353 – start-page: 622 volume-title: Proceedings of the 17th European Signal Processing Conference year: 2009 ident: 1048_CR12 – start-page: 3708 volume-title: Proceedings of the 2016 IEEE international conference on image processing (ICIP) year: 2016 ident: 1048_CR28 – volume: 37 start-page: 386 issue: 3 year: 2022 ident: 1048_CR34 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12731 – volume: 12 start-page: 1065 issue: 9 year: 2016 ident: 1048_CR43 publication-title: Structure and Infrastructure Engineering doi: 10.1080/15732479.2015.1076855 – volume: 59 start-page: 223 year: 2017 ident: 1048_CR63 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.05.047 – volume: 104 start-page: 104353 year: 2021 ident: 1048_CR62 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2021.104353 – volume: 20 start-page: 2069 issue: 7 year: 2020 ident: 1048_CR14 publication-title: Sensors doi: 10.3390/s20072069 – volume: 33 start-page: 1090 issue: 12 year: 2018 ident: 1048_CR71 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12412 – start-page: 448 volume-title: International conference on machine learning year: 2015 ident: 1048_CR53 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 1048_CR18 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 1048_CR66 publication-title: Information Processing & Management doi: 10.1016/j.ipm.2009.03.002 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 1048_CR61 publication-title: Journal of Big Data doi: 10.1186/s40537-019-0197-0 – volume: 9 start-page: 2867 issue: 14 year: 2019 ident: 1048_CR38 publication-title: Applied Sciences doi: 10.3390/app9142867 – volume: 32 start-page: 04018001 issue: 2 year: 2018 ident: 1048_CR40 publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000736 – ident: 1048_CR26 doi: 10.1177/14759217231168212 – volume: 17 start-page: 255 issue: 4 year: 2003 ident: 1048_CR11 publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)0887-3801(2003)17:4(255) – volume: 54 start-page: 1 issue: 8 year: 2021 ident: 1048_CR60 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-021-09975-1 – volume: 131 start-page: 104668 year: 2023 ident: 1048_CR31 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2022.104668 – volume: 28 start-page: e2732 issue: 6 year: 2021 ident: 1048_CR3 publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2732 – volume: 19 start-page: 4278 issue: 19 year: 2019 ident: 1048_CR45 publication-title: Sensors doi: 10.3390/s19194278 – start-page: 1 volume-title: Proceedings of the 2019 International Conference on Image and Vision Computing New Zealand (IVCNZ) year: 2019 ident: 1048_CR48 – volume: 96 start-page: 103212 year: 2020 ident: 1048_CR5 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2019.103212 – volume: 27 start-page: e2551 issue: 8 year: 2020 ident: 1048_CR39 publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.2551 – volume: 178 start-page: 109316 year: 2021 ident: 1048_CR13 publication-title: Measurement doi: 10.1016/j.measurement.2021.109316 – volume: 144 start-page: 180 year: 2018 ident: 1048_CR42 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2018.07.010 – volume: 8 start-page: 54564 year: 2020 ident: 1048_CR57 publication-title: IEEE Access: Practical Innovations, Open Solutions doi: 10.1109/ACCESS.2020.2981561 – volume: 22 start-page: 147592172211470 issue: 5 year: 2023 ident: 1048_CR25 publication-title: Structural Health Monitoring – start-page: 807 volume-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) year: 2010 ident: 1048_CR51 – ident: 1048_CR35 doi: 10.1177/14759217231173305 – volume: 29 start-page: e2850 issue: 1 year: 2022 ident: 1048_CR69 publication-title: Structural Control and Health Monitoring – volume-title: The research on the key technology of the crack controlling of reinforced concrete lining of undersea tunnel year: 2007 ident: 1048_CR70 – volume: 234 start-page: 117367 year: 2020 ident: 1048_CR65 publication-title: Construction & Building Materials doi: 10.1016/j.conbuildmat.2019.117367 – volume: 77 start-page: 166 year: 2018 ident: 1048_CR73 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2018.04.002 – volume: 34 start-page: 713 issue: 8 year: 2019 ident: 1048_CR30 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12440 – start-page: 072001 volume-title: Proceedings of the IOP Conference Series: Earth and Environmental Science year: 2021 ident: 1048_CR41 – volume: 25 start-page: 572 issue: 8 year: 2010 ident: 1048_CR10 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2010.00674.x – volume: 275 start-page: 115291 year: 2023 ident: 1048_CR27 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2022.115291 – volume: 17 start-page: 3434 issue: 12 year: 2016 ident: 1048_CR15 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2016.2552248 – volume: 277 start-page: 115406 year: 2023 ident: 1048_CR36 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2022.115406 – volume: 154 start-page: 610 year: 2019 ident: 1048_CR9 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.06.096 – volume: 29 start-page: 196 issue: 2 year: 2015 ident: 1048_CR6 publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2015.01.008 – volume: 100 start-page: 102701 year: 2020 ident: 1048_CR68 publication-title: Parallel Computing doi: 10.1016/j.parco.2020.102701 – volume: 397 start-page: 383 year: 2020 ident: 1048_CR37 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.107 – volume: 33 start-page: 731 issue: 9 year: 2018 ident: 1048_CR21 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12334 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 1048_CR22 publication-title: Nature doi: 10.1038/nature14539 – ident: 1048_CR47 – volume: 21 start-page: 5725 issue: 17 year: 2021 ident: 1048_CR46 publication-title: Sensors doi: 10.3390/s21175725 – volume: 128 start-page: 103786 year: 2021 ident: 1048_CR59 publication-title: Automation in Construction doi: 10.1016/j.autcon.2021.103786 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 1048_CR52 publication-title: Scientific Reports doi: 10.1038/s41598-020-71420-0 – volume: 29 start-page: 1806 issue: 9 year: 2017 ident: 1048_CR64 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2682249 – volume: 21 start-page: 1387 issue: 12 year: 2014 ident: 1048_CR4 publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.1655 – volume: 208 start-page: 104436 year: 2021 ident: 1048_CR67 publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/j.jweia.2020.104436 – start-page: 877 volume-title: Proceedings of the International conference on applied system innovation (ICASI) year: 2017 ident: 1048_CR16 – ident: 1048_CR72 – volume: 103 start-page: 103513 year: 2020 ident: 1048_CR58 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2020.103513 – volume: 124 start-page: 104472 year: 2022 ident: 1048_CR32 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2022.104472 – volume: 33 start-page: 04019017 issue: 3 year: 2019 ident: 1048_CR19 publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000831 – volume: 37 start-page: 1721 issue: 13 year: 2022 ident: 1048_CR23 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12826 – volume: 136 start-page: 105107 year: 2023 ident: 1048_CR33 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2023.105107 – volume: 20 start-page: 147592172098543 issue: 4 year: 2021 ident: 1048_CR20 publication-title: Structural Health Monitoring – start-page: 2319 volume-title: Proceedings of the 2018 3rd IEEE international conference on recent trends in electronics, information & communication technology (RTEICT) year: 2018 ident: 1048_CR49 – start-page: 3 volume-title: Proceedings of the European conference on computer vision (ECCV) year: 2018 ident: 1048_CR54 – volume: 35 start-page: 1291 issue: 11 year: 2020 ident: 1048_CR7 publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12622 – volume: 41 start-page: 64 issue: 3 year: 2021 ident: 1048_CR2 publication-title: Journal of Chang’an University: Natural Science Edition – volume: 78 start-page: 51 year: 2017 ident: 1048_CR17 publication-title: Automation in Construction doi: 10.1016/j.autcon.2017.01.019 |
| SSID | ssj0001073083 |
| Score | 2.2970173 |
| Snippet | Regular detection and repair for lining cracks are necessary to guarantee the safety and stability of tunnels. The development of computer vision has greatly... |
| SourceID | proquest crossref springer higheredpress |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 681 |
| SubjectTerms | Boring machines Cities Civil Engineering Coders Computer vision Concrete structures convolutional neural network Countries crack detection Cracks Drilling & boring machinery encoder-decoder structure Engineering Flaw detection Image acquisition Image processing Image segmentation Laser range finders Pixels Regions Research Article Semantic segmentation Structural health monitoring Tunnel construction tunnel lining segment Tunnel linings Tunneling shields |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66elDEt7i-yMGTUtg06SNHERcPsiy-2JMlTVMVa5Xtrnj0P_gP_SXOZFvXlXVBLyWQpC2TSeZLMvMNIfuBKwwSlzmykXBHCFdDKYCHrxsxqFDscRsofBa0WmGnI9tlHHdRebtXV5J2pR4Gu7EAD_JdAUsHnoJNkxmwdiHOxvOL6-HBCiqtpd90AT44ruBft5nj3jJijxburHOFSawT6gjo_HFPas1Pc-lfP75MFku0SY8G6rFCpky-Sua_cRCukZv2_avJnAydh6juKv1AC3P7WIYk5fQppb0-OsPQzOaSqGoLigYwodBE5RTpMBPT_Xh7T4wt0XzgX75Orponl8enTpl0wdFc8p7DYi5i3CQyacCsKT8JhB8ylRrEEjoEm6oBZgBQgb2hp6SX-pJ5IRMKsFsjdfkGqeVPudkk1PelSiSMRcxSEXIWs1h5gOhVnIgQcGSdNCrRR7pkJMfEGFk05FJG0UUgughFF4k6Ofjq8jyg45jUmI2MZ5QiJwRmGJ_UZ6ca86iczUXEbZYB2JjK8dUu3l0hdKqTw0oFhtW_fmvrT623yZyLOmSdLXdIrdftm10yq19690V3z86BTyLs_Us priority: 102 providerName: Springer Nature |
| Title | Pixel-level crack segmentation of tunnel lining segments based on an encoder-decoder network |
| URI | http://123.57.226.157/fsce/EN/10.1007/s11709-024-1048-4 https://link.springer.com/article/10.1007/s11709-024-1048-4 https://www.proquest.com/docview/3074789989 https://www.proquest.com/docview/3275181512 |
| Volume | 18 |
| WOSCitedRecordID | wos001246499800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2095-2449 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: 7WY dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2095-2449 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: M0C dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 2095-2449 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: M0K dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Arts & Humanities Database customDbUrl: eissn: 2095-2449 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: M1D dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/artshumanities providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2095-2449 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2095-2449 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2095-2449 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: M2O dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2095-2449 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2095-2449 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001073083 issn: 2095-2430 databaseCode: RSV dateStart: 20120101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMV4l2xpax84ASKiB95-FRBaYUELKuWR7kQObZDqy7ZstkijvwH_iG_hBlvsssi2AuXUSLHiaIZez57xt8APMiE8kRcFunYyUgpYfEqQ5HauEQTKhMZDgq_zAaD_PhYD9sNt6ZNq-zmxDBRu7GlPfLHUlCAgPzT7vmXiKpGUXS1LaGxBhvEkiBC6t7RYo-F7DcwcQpEEpFQch7YDKfneEaRAaFwLqJttSXXdPUk5Fl4F_JRl_DnHyHT4IkOrv_vP9yAay0GZU9mRnMTLvn6Fmz-xkx4Gz4OT7_5UTSilCJmJ8aescZ_-tweVKrZuGLTC0qRYaNQYaJrbRi5RcfwEVMzIsl0fvLz-w_nwxWrZ1nnd-Dtwf6bvedRW4ohslLLacRLqUpaOnLt0dmZ1GUqzbmpPCEMm6OntQg-EL7gijExOqlSzZOcK4OILq6E3IL1elz7u8DSVBunUS0lr1QueclLkyDON6VTOaLLHsSdFgrb8pRTuYxRsWBYJsUVqLiCFFeoHjycdzmfkXSsepgvqbaoiCmC6o6v6rPTKbRox3hTyFB7AJer-u_Nc2X34FFnMYvmf35re_XL7sEVQSYbci53YH06ufD34bL9Oj1tJn1Yy95_6MPG0_3B8BDvXsV7Qb4gyZ-RFK-DHPbDWEF5ePTuF-zBEDU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLRIgxBuxpYAPcAFFjR95-IAQKlStuqx6KFJPBMd2oGLJls22hRv_gf_Bj-KXMONNdlkEe-uBS2TJeSjJNy_P-BuAR5lQnojLIh07GSklLI4yPKQ2LhFCZSLDRuF-Nhjkh4d6fwV-dHthqKyy04lBUbuRpTXyTSkoQUD26fnx54i6RlF2tWuhMYXFnv96hiFb82z3Jf7fx0JsvzrY2onargKRlVpOIl5KVVIUxLVHvW1Sl6k056byZCxtjkbDoh1FS4zBT2J0UqWaJzlXBp2TuCKiA1T5a0qhOFCpYLw1X9MheQnMnwI9l0goOUukht16PKNMhFCo-2gZb8EUXvkQ6jq8C_WvC_7uHynaYPm2r_1v3-w6XG19bPZiKhQ3YMXXN-Hyb8yLt-Dt_tEXP4yGVDLF7NjYj6zx7z-1G7FqNqrY5IRKgNgwdNDoZhtGZt8xPMXUjEhAnR___Pbd-TBi9bSq_ja8OZcXvAOr9aj2d4GlqTZOIwxKXqlc8pKXJsE4xpRO5eg99yDu_nphWx52agcyLOYM0gSUAoFSEFAK1YMns0uOpyQky07mC1AqKmLCoL7qy67Z6ABUtDqsKWTorYDhuP779AxcPXjaIXQ-_c9nrS-_2UO4uHPwul_0dwd79-CSIHEJ9aUbsDoZn_j7cMGeTo6a8YMgewzenTdwfwHqaWB_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61tKqKUOlTLFDwoadWEevYefiIoKtWoNVKPMSplmM7BbENaBOqHvsf-g_5Jcx4E7ZbUaSql8iS7UTxTDLfeMbfALzLYumJuCxSfSciKWOLrQwvqe0XqEJFIsJB4f1sOMxPTtSorXNad9nuXUhyeqaBWJqqZuvSlVuzg288o039WOJvhHbEHsIjSTWDyF0_OJ5tspACByrOGKFEFEtxG9m86y5ztmnpNCRaeBcSUucA6B8x02CKBsv__RLP4VmLQtn2VG1ewANfvYTF37gJX8GX0dkPP47GlFTE7MTYc1b7r9_ao0oVuyhZc0VJMmwcakx0vTUjw-gYDjEVI5pM5yfXP385H1qsmuadv4ajwcfDnU9RW4whskKJJuKFkAU5j1x5NHcmdZlMc25KTxjD5mhrLcIPBDDoMyZGJWWqeJJzaRDT9ctYvIGF6qLyK8DSVBmnUC4FL2UueMELkyDSN4WTOeLLHvQ7MWjbMpVTwYyxnnEs09JpXDpNS6dlD97fTrmc0nTcN5jPyVaXxBVBlcfvm7PeyV-3X3mtRag-gA6rurs7ppgWQaoefOjUYdb912et_tPoTXgy2h3o_c_DvTV4GpM6hXzMdVhoJlf-LTy235uzerIRPo0b96MJIg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pixel-level+crack+segmentation+of+tunnel+lining+segments+based+on+an+encoder-decoder+network&rft.jtitle=Frontiers+of+Structural+and+Civil+Engineering&rft.au=HOU%2C+Shaokang&rft.au=OU%2C+Zhigang&rft.au=HUANG%2C+Yuequn&rft.au=LIU%2C+Yaoru&rft.date=2024-05-01&rft.pub=Higher+Education+Press&rft.issn=2095-2430&rft.eissn=2095-2449&rft.volume=18&rft.issue=5&rft.spage=681&rft.epage=698&rft_id=info:doi/10.1007%2Fs11709-024-1048-4&rft.externalDBID=n%2Fa&rft.externalDocID=10.1007%2Fs11709-024-1048-4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2430&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2430&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2430&client=summon |