A quantitative model to predict pathogenicity of missense variants in the TP53 gene

Germline pathogenic variants in the TP53 gene cause Li‐Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and u...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Human mutation Ročník 40; číslo 6; s. 788 - 800
Hlavní autoři: Fortuno, Cristina, Cipponi, Arcadi, Ballinger, Mandy L., Tavtigian, Sean V., Olivier, Magali, Ruparel, Vatsal, Haupt, Ygal, Haupt, Sue, Study, International Sarcoma Kindred, Tucker, Kathy, Spurdle, Amanda B., Thomas, David M., James, Paul A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States John Wiley & Sons, Inc 01.06.2019
Témata:
ISSN:1059-7794, 1098-1004, 1098-1004
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Germline pathogenic variants in the TP53 gene cause Li‐Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and use of high‐intensity screening programs. The aim of this study was to develop an evidence‐based quantitative model that integrates independent in silico data (Align‐GVGD and BayesDel) and somatic to germline ratio (SGR), to assign pathogenicity to every possible missense variant in the TP53 gene. To do this, a likelihood ratio for pathogenicity (LR) was derived from each component calibrated using reference sets of assumed pathogenic and benign missense variants. A posterior probability of pathogenicity was generated by combining LRs, and algorithm outputs were validated using different approaches. A total of 730 TP53 missense variants could be assigned to a clinically interpretable class. The outputs of the model correlated well with existing clinical information, functional data, and ClinVar classifications. In conclusion, these quantitative outputs provide the basis for individualized assessment of cancer risk useful for clinical interpretation. In addition, we propose the value of the novel SGR approach for use within the ACMG/AMP guidelines for variant classification. Germline pathogenic missense variants in the TP53 gene predispose individuals to a wide range of cancer types but are often difficult to interpret. The output from in silico tools and an analysis of the relationship between reported somatic and germline variants in the IARC TP53 database were used to construct a quantitative model of variant pathogenicity. The model was validated against a range of existing data and used to generate clinically interpretable classifications for 730 unique TP53 missense variants.
AbstractList Germline pathogenic variants in the TP53 gene cause Li-Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and use of high-intensity screening programs. The aim of this study was to develop an evidence-based quantitative model that integrates independent in silico data (Align-GVGD and BayesDel) and somatic to germline ratio (SGR), to assign pathogenicity to every possible missense variant in the TP53 gene. To do this, a likelihood ratio for pathogenicity (LR) was derived from each component calibrated using reference sets of assumed pathogenic and benign missense variants. A posterior probability of pathogenicity was generated by combining LRs, and algorithm outputs were validated using different approaches. A total of 730 TP53 missense variants could be assigned to a clinically interpretable class. The outputs of the model correlated well with existing clinical information, functional data, and ClinVar classifications. In conclusion, these quantitative outputs provide the basis for individualized assessment of cancer risk useful for clinical interpretation. In addition, we propose the value of the novel SGR approach for use within the ACMG/AMP guidelines for variant classification.Germline pathogenic variants in the TP53 gene cause Li-Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and use of high-intensity screening programs. The aim of this study was to develop an evidence-based quantitative model that integrates independent in silico data (Align-GVGD and BayesDel) and somatic to germline ratio (SGR), to assign pathogenicity to every possible missense variant in the TP53 gene. To do this, a likelihood ratio for pathogenicity (LR) was derived from each component calibrated using reference sets of assumed pathogenic and benign missense variants. A posterior probability of pathogenicity was generated by combining LRs, and algorithm outputs were validated using different approaches. A total of 730 TP53 missense variants could be assigned to a clinically interpretable class. The outputs of the model correlated well with existing clinical information, functional data, and ClinVar classifications. In conclusion, these quantitative outputs provide the basis for individualized assessment of cancer risk useful for clinical interpretation. In addition, we propose the value of the novel SGR approach for use within the ACMG/AMP guidelines for variant classification.
Germline pathogenic variants in the TP53 gene cause Li‐Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and use of high‐intensity screening programs. The aim of this study was to develop an evidence‐based quantitative model that integrates independent in silico data (Align‐GVGD and BayesDel) and somatic to germline ratio (SGR), to assign pathogenicity to every possible missense variant in the TP53 gene. To do this, a likelihood ratio for pathogenicity (LR) was derived from each component calibrated using reference sets of assumed pathogenic and benign missense variants. A posterior probability of pathogenicity was generated by combining LRs, and algorithm outputs were validated using different approaches. A total of 730 TP53 missense variants could be assigned to a clinically interpretable class. The outputs of the model correlated well with existing clinical information, functional data, and ClinVar classifications. In conclusion, these quantitative outputs provide the basis for individualized assessment of cancer risk useful for clinical interpretation. In addition, we propose the value of the novel SGR approach for use within the ACMG/AMP guidelines for variant classification. Germline pathogenic missense variants in the TP53 gene predispose individuals to a wide range of cancer types but are often difficult to interpret. The output from in silico tools and an analysis of the relationship between reported somatic and germline variants in the IARC TP53 database were used to construct a quantitative model of variant pathogenicity. The model was validated against a range of existing data and used to generate clinically interpretable classifications for 730 unique TP53 missense variants.
Germline pathogenic variants in the TP53 gene cause Li-Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and use of high-intensity screening programs. The aim of this study was to develop an evidence-based quantitative model that integrates independent in silico data (Align-GVGD and BayesDel) and somatic to germline ratio (SGR), to assign pathogenicity to every possible missense variant in the TP53 gene. To do this, a likelihood ratio for pathogenicity (LR) was derived from each component calibrated using reference sets of assumed pathogenic and benign missense variants. A posterior probability of pathogenicity was generated by combining LRs, and algorithm outputs were validated using different approaches. A total of 730 TP53 missense variants could be assigned to a clinically interpretable class. The outputs of the model correlated well with existing clinical information, functional data, and ClinVar classifications. In conclusion, these quantitative outputs provide the basis for individualized assessment of cancer risk useful for clinical interpretation. In addition, we propose the value of the novel SGR approach for use within the ACMG/AMP guidelines for variant classification.
Author Fortuno, Cristina
Olivier, Magali
Spurdle, Amanda B.
Haupt, Ygal
Haupt, Sue
James, Paul A.
Tavtigian, Sean V.
Thomas, David M.
Ruparel, Vatsal
Tucker, Kathy
Cipponi, Arcadi
Ballinger, Mandy L.
Study, International Sarcoma Kindred
Author_xml – sequence: 1
  givenname: Cristina
  surname: Fortuno
  fullname: Fortuno, Cristina
  organization: QIMR Berghofer Medical Research Institute
– sequence: 2
  givenname: Arcadi
  surname: Cipponi
  fullname: Cipponi, Arcadi
  organization: Garvan Institute of Medical Research
– sequence: 3
  givenname: Mandy L.
  surname: Ballinger
  fullname: Ballinger, Mandy L.
  organization: Garvan Institute of Medical Research
– sequence: 4
  givenname: Sean V.
  orcidid: 0000-0002-7543-8221
  surname: Tavtigian
  fullname: Tavtigian, Sean V.
  organization: Huntsman Cancer Institute, University of Utah School of Medicine
– sequence: 5
  givenname: Magali
  surname: Olivier
  fullname: Olivier, Magali
  organization: Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer
– sequence: 6
  givenname: Vatsal
  surname: Ruparel
  fullname: Ruparel, Vatsal
  organization: University of Melbourne
– sequence: 7
  givenname: Ygal
  surname: Haupt
  fullname: Haupt, Ygal
  organization: University of Melbourne
– sequence: 8
  givenname: Sue
  surname: Haupt
  fullname: Haupt, Sue
  organization: University of Melbourne
– sequence: 9
  givenname: International Sarcoma Kindred
  surname: Study
  fullname: Study, International Sarcoma Kindred
  organization: University of Melbourne
– sequence: 10
  givenname: Kathy
  surname: Tucker
  fullname: Tucker, Kathy
  organization: University of New South Wales
– sequence: 11
  givenname: Amanda B.
  orcidid: 0000-0003-1337-7897
  surname: Spurdle
  fullname: Spurdle, Amanda B.
  organization: QIMR Berghofer Medical Research Institute
– sequence: 12
  givenname: David M.
  surname: Thomas
  fullname: Thomas, David M.
  organization: Garvan Institute of Medical Research
– sequence: 13
  givenname: Paul A.
  orcidid: 0000-0002-4361-4657
  surname: James
  fullname: James, Paul A.
  email: paul.james@petermac.org
  organization: Familial Cancer Centre, Peter MacCallum Cancer Centre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30840781$$D View this record in MEDLINE/PubMed
BookMark eNp90d9LHDEQB_BQlPqjfekfUAJ9KYW1kx_rJo8iVQuKQr3nkNud9CK7yZlkLfffN-fpi5Q-ZQif7zDMHJG9EAMS8onBCQPg31fzNJ9w0Qn9jhwy0Kqp33JvW7e66TotD8hRzg8AoNpWvCcHApSETrFD8uuMPs42FF9s8U9IpzjgSEuk64SD7wtd27KKvzH43pcNjY5OPmcMGemTTb4mM_WBlhXS-7tW0CrxA9l3dsz48eU9JouLH_fnV8317eXP87Prphda6MaCEqeg-1PWCes6qQY1OHCt4sKxpRUoOkS7dBItWA1OQo9M62XF3HGw4ph83fVdp_g4Yy6mztbjONqAcc6GM6W0YoLJSr-8oQ9xTqFOZzjnikupJavq84ualxMOZp38ZNPGvK6rAtiBPsWcEzrTPy8uhpKsHw0Ds72I2V7EPF-kRr69ibx2_SdmO_zHj7j5jzRXi5vFLvMX5QybSA
CitedBy_id crossref_primary_10_1016_j_ajhg_2021_09_003
crossref_primary_10_1097_MPH_0000000000002115
crossref_primary_10_1002_humu_24152
crossref_primary_10_1038_s41598_025_06656_9
crossref_primary_10_1111_cas_14919
crossref_primary_10_1002_humu_24264
crossref_primary_10_1136_jmedgenet_2020_107059
crossref_primary_10_3389_fgene_2023_1248492
crossref_primary_10_1002_humu_24060
crossref_primary_10_1093_hmg_ddae009
crossref_primary_10_1038_s41418_020_00672_0
crossref_primary_10_3390_ijms22126345
crossref_primary_10_1016_j_csbj_2020_11_041
crossref_primary_10_1136_jmg_2023_109645
crossref_primary_10_1007_s10549_020_05985_9
crossref_primary_10_3390_ijms26146869
Cites_doi 10.1038/gim.2015.30
10.1002/humu.20896
10.1001/jamaoncol.2017.1968
10.1101/gad.8.10.1235
10.1136/jmedgenet-2017-104976
10.1186/1748-717X-5-104
10.1002/cncr.30248
10.1101/cshperspect.a001008
10.1200/JCO.2007.13.2779
10.1158/1078-0432.CCR-17-0408
10.1002/humu.23640
10.1038/ng.2854
10.1136/jmg.2008.058958
10.1038/348747a0
10.1002/humu.21628
10.1093/nar/gkj518
10.1016/j.ccr.2014.01.021
10.1038/nature13127
10.1016/S1470-2045(16)30147-4
10.7326/0003-4819-71-4-747
10.1016/S1470-2045(16)30249-2
10.1038/s41588-018-0204-y
10.1002/humu.23673
10.1158/2159-8290.CD-12-0095
10.1002/humu.23158
10.1002/humu.23553
10.1093/nar/gkx1153
10.1016/j.molcel.2018.06.012
10.1038/ng0593-42
10.1073/pnas.1431692100
10.1002/humu.20880
10.1002/humu.23656
10.1158/0008-5472.CAN-16-2346
10.1093/jnci/djy001
10.1158/2159-8290.CD-17-0321
10.1038/gim.2017.210
10.1002/humu.23035
10.1038/gim.2017.196
10.1038/nature19057
10.1126/science.1978757
10.1136/jmg.2005.033878
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1002/humu.23739
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-1004
EndPage 800
ExternalDocumentID 30840781
10_1002_humu_23739
HUMU23739
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australasian Sarcoma Study Group
– fundername: Cancer Institute NSW
  funderid: CDF171109
– fundername: Australian National Health and Medical Research Council
– fundername: National Health and Medical Research Council
  funderid: 1104364; 10004017; 1061778
– fundername: National Cancer Institute
  funderid: CA164944
– fundername: Rainbows for Kate Foundation
– fundername: Johanna Sewell Research Foundation
– fundername: World Health Organization
  grantid: 001
– fundername: NCI NIH HHS
  grantid: CA164944
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29I
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNP
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M66
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
X7M
XG1
XSW
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AFFHD
AIQQE
CITATION
O8X
AAJEY
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3939-a083609c6173af748d8df0f5823f1ba3e37eeabf4ea0a90f40ce199b3af2f20a3
IEDL.DBID DRFUL
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468625200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1059-7794
1098-1004
IngestDate Fri Sep 05 12:48:12 EDT 2025
Mon Oct 06 17:11:02 EDT 2025
Mon Jul 21 05:36:34 EDT 2025
Tue Nov 18 22:38:16 EST 2025
Sat Nov 29 06:45:47 EST 2025
Wed Aug 20 07:25:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords variant classification
TP53
quantitative
Li-Fraumeni syndrome
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3939-a083609c6173af748d8df0f5823f1ba3e37eeabf4ea0a90f40ce199b3af2f20a3
Notes Fortuno, Cipponi, Thomas, and James have contributed equally to this study
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4361-4657
0000-0002-7543-8221
0000-0003-1337-7897
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/humu.23739
PMID 30840781
PQID 2228244941
PQPubID 30498
PageCount 13
ParticipantIDs proquest_miscellaneous_2188981314
proquest_journals_2228244941
pubmed_primary_30840781
crossref_citationtrail_10_1002_humu_23739
crossref_primary_10_1002_humu_23739
wiley_primary_10_1002_humu_23739_HUMU23739
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Human mutation
PublicationTitleAlternate Hum Mutat
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References e_1_2_7_1_10_1
e_1_2_7_1_33_1
e_1_2_7_1_11_1
e_1_2_7_1_32_1
e_1_2_7_1_12_1
e_1_2_7_1_35_1
e_1_2_7_1_13_1
e_1_2_7_1_34_1
Olivier M. (e_1_2_7_1_29_1) 2003; 63
e_1_2_7_1_30_1
e_1_2_7_1_31_1
e_1_2_7_1_5_1
e_1_2_7_1_6_1
e_1_2_7_1_7_1
e_1_2_7_1_8_1
e_1_2_7_1_25_1
e_1_2_7_1_2_1
Mitsudomi T. (e_1_2_7_1_26_1) 1992; 7
e_1_2_7_1_3_1
e_1_2_7_1_27_1
e_1_2_7_1_4_1
e_1_2_7_1_28_1
e_1_2_7_1_21_1
e_1_2_7_1_44_1
e_1_2_7_1_22_1
e_1_2_7_1_43_1
e_1_2_7_1_23_1
e_1_2_7_1_24_1
e_1_2_7_1_9_1
e_1_2_7_1_40_1
e_1_2_7_1_42_1
e_1_2_7_1_20_1
e_1_2_7_1_41_1
e_1_2_7_1_18_1
e_1_2_7_1_19_1
e_1_2_7_1_14_1
e_1_2_7_1_37_1
e_1_2_7_1_15_1
e_1_2_7_1_36_1
e_1_2_7_1_16_1
e_1_2_7_1_39_1
e_1_2_7_1_17_1
e_1_2_7_1_38_1
References_xml – ident: e_1_2_7_1_33_1
  doi: 10.1038/gim.2015.30
– ident: e_1_2_7_1_38_1
  doi: 10.1002/humu.20896
– ident: e_1_2_7_1_4_1
  doi: 10.1001/jamaoncol.2017.1968
– ident: e_1_2_7_1_21_1
  doi: 10.1101/gad.8.10.1235
– ident: e_1_2_7_1_32_1
  doi: 10.1136/jmedgenet-2017-104976
– ident: e_1_2_7_1_14_1
  doi: 10.1186/1748-717X-5-104
– ident: e_1_2_7_1_23_1
  doi: 10.1002/cncr.30248
– ident: e_1_2_7_1_28_1
  doi: 10.1101/cshperspect.a001008
– ident: e_1_2_7_1_35_1
  doi: 10.1200/JCO.2007.13.2779
– ident: e_1_2_7_1_17_1
  doi: 10.1158/1078-0432.CCR-17-0408
– ident: e_1_2_7_1_43_1
  doi: 10.1002/humu.23640
– ident: e_1_2_7_1_41_1
  doi: 10.1038/ng.2854
– ident: e_1_2_7_1_13_1
  doi: 10.1136/jmg.2008.058958
– ident: e_1_2_7_1_37_1
  doi: 10.1038/348747a0
– ident: e_1_2_7_1_36_1
  doi: 10.1002/humu.21628
– ident: e_1_2_7_1_25_1
  doi: 10.1093/nar/gkj518
– ident: e_1_2_7_1_27_1
  doi: 10.1016/j.ccr.2014.01.021
– ident: e_1_2_7_1_22_1
  doi: 10.1038/nature13127
– ident: e_1_2_7_1_3_1
  doi: 10.1016/S1470-2045(16)30147-4
– ident: e_1_2_7_1_19_1
  doi: 10.7326/0003-4819-71-4-747
– volume: 7
  start-page: 171
  issue: 1
  year: 1992
  ident: e_1_2_7_1_26_1
  article-title: p53 gene mutations in non‐small‐cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features
  publication-title: Oncogene
– ident: e_1_2_7_1_42_1
  doi: 10.1016/S1470-2045(16)30249-2
– ident: e_1_2_7_1_12_1
  doi: 10.1038/s41588-018-0204-y
– volume: 63
  start-page: 6643
  issue: 20
  year: 2003
  ident: e_1_2_7_1_29_1
  article-title: Li‐Fraumeni and related syndromes: Correlation between tumor type, family structure, and TP53 genotype
  publication-title: Cancer Research
– ident: e_1_2_7_1_2_1
  doi: 10.1002/humu.23673
– ident: e_1_2_7_1_8_1
  doi: 10.1158/2159-8290.CD-12-0095
– ident: e_1_2_7_1_9_1
  doi: 10.1002/humu.23158
– ident: e_1_2_7_1_11_1
  doi: 10.1002/humu.23553
– ident: e_1_2_7_1_18_1
  doi: 10.1093/nar/gkx1153
– ident: e_1_2_7_1_16_1
  doi: 10.1016/j.molcel.2018.06.012
– ident: e_1_2_7_1_7_1
  doi: 10.1038/ng0593-42
– ident: e_1_2_7_1_15_1
  doi: 10.1073/pnas.1431692100
– ident: e_1_2_7_1_30_1
  doi: 10.1002/humu.20880
– ident: e_1_2_7_1_10_1
  doi: 10.1002/humu.23656
– ident: e_1_2_7_1_34_1
  doi: 10.1158/0008-5472.CAN-16-2346
– ident: e_1_2_7_1_31_1
  doi: 10.1093/jnci/djy001
– ident: e_1_2_7_1_6_1
  doi: 10.1158/2159-8290.CD-17-0321
– ident: e_1_2_7_1_40_1
  doi: 10.1038/gim.2017.210
– ident: e_1_2_7_1_5_1
  doi: 10.1002/humu.23035
– ident: e_1_2_7_1_44_1
  doi: 10.1038/gim.2017.196
– ident: e_1_2_7_1_20_1
  doi: 10.1038/nature19057
– ident: e_1_2_7_1_24_1
  doi: 10.1126/science.1978757
– ident: e_1_2_7_1_39_1
  doi: 10.1136/jmg.2005.033878
SSID ssj0008553
Score 2.393916
Snippet Germline pathogenic variants in the TP53 gene cause Li‐Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types....
Germline pathogenic variants in the TP53 gene cause Li-Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 788
SubjectTerms Algorithms
Computational Biology - methods
Computer Simulation
Genetic Predisposition to Disease
Humans
Li-Fraumeni Syndrome - genetics
Li‐Fraumeni syndrome
Models, Genetic
Mutation, Missense
p53 Protein
Pathogenicity
quantitative
Radiation therapy
TP53
Tumor Suppressor Protein p53 - genetics
variant classification
Title A quantitative model to predict pathogenicity of missense variants in the TP53 gene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.23739
https://www.ncbi.nlm.nih.gov/pubmed/30840781
https://www.proquest.com/docview/2228244941
https://www.proquest.com/docview/2188981314
Volume 40
WOSCitedRecordID wos000468625200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-1004
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008553
  issn: 1059-7794
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50feDF92N9EdGLQt22SbcJeBF18aAi6sLeStpNUNBWd1th_72TplsRRRBvhX4hZTKZfOkk3wAcBHGYeFIqJ3a5dFjItSNxVXJ40pdIsD3OmS02Ed7c8F5P3E7AyfgujNWHqH-4mZlRxmszwWU8bH2Khj4WL8WxT0MqJmHKR8dlDZg6v-t0r-pIzIPAHrAPBLJIwWp5Ur_12frrgvSNZX4lreWq01n43_cuwnzFNsmpdY8lmFDpMszY-pOjZZi9rjLrK3B_St4KmZZXzjAAkrJCDskz8jowmJyY0sUZehvi8xHJNHkxmfx0qMg7brfNaRrylBKkk-ThNqAEkWoVup2Lh7NLpyq44CRUUOFII1XtigRZDZU6ZLzP-9rVAfep9mJJFQ2VkrFmSrpSuJq5ifKEiBHsa9-VdA0aaZaqDSBtnyWC05h6CmMxslBKVR-3gsgWdRsDSxMOx1aPkkqN3BTFeI6sjrIfGXtFpb2asF9jX60Gx4-o7fHgRdU8HEbm_xYSGMG8JuzVr9FAJi0iU5UViEGHFNyjHmvCuh30uhvqcpPoxNZH5dj-0n902b3ulk-bfwFvwRxyMGFPn21DIx8Uagemk_f8aTjYhcmwx3crv_4AjEP5Ow
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-Nlq8XtjEG5WPzBC9MyprEDrEf0aDqtLZC0Eq8RU5qa5XWBNoEif-ecxyCKhAS4i2Sf5aj8_n8s-98B3AUxGHiSamc2OXSYSHXjsRdyeHJWCLB9jhntthEOBjw62txUcXmmLcwNj9EfeFmVkZpr80CNxfS7aesof-KafHLpyEVS9BkqEdBA5pnl51RrzbFPAhshH0gkEYKVucn9dtPvRd3pGc0c5G1lttO5-M7f_gTbFR8k5xaBfkMH1S6CSu2AuX9Jqz2K9_6F7g6JbeFTMtHZ2gCSVkjh-QZuZkZTE5M8eIM9Q3x-T3JNJkaX346V-QOD9wmnoZMUoKEkgwvAkoQqbZg1Dkf_u46VckFJ6GCCkeaZNWuSJDXUKlDxsd8rF0dcJ9qL5ZU0VApGWumpCuFq5mbKE-IGMG-9l1Jv0IjzVK1A-TEZ4ngNKaeQmuMPJRSNcbDIPJFfYKmpQXHj2KPkiofuSmL8T-ymZT9yMgrKuXVgsMae2OzcLyI2n-cvahaifPI3HAhhRHMa8GPuhkFZBwjMlVZgRhUScE96rEWbNtZr4ehLjeuTuz9s5zcV8aPuqP-qPzafQv4O6x1h_1e1Psz-LsH68jIhI1F24dGPivUASwnd_lkPvtWqfcDmjn8Qw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED62Zg19WX9ta7qu1dheOnBrW3IsPZZmoaVpCFsCeTOyLdHCYmeJXeh_35PluoSWwtibwZ-QOd2dPvlOdwDfgzhMPCmVE7tcOizk2pG4Kzk8SSUSbI9zZptNhMMhn07FqM7NMXdhbH2I5oebsYzKXxsDV_NUnz5VDb0pZ-WJT0Mq3kKLBaKLdtnq_epPBo0r5kFgM-wDgTRSsKY-qX_6NHp1R3pGM1dZa7Xt9Df_84O34H3NN8mZVZBteKOyHVi3HSjvd6B9XcfWd-H3Gflbyqy6dIYukFQ9ckiRk_nCYApimhfnqG-IL-5JrsnMxPKzpSJ3eOA2-TTkNiNIKMl4FFCCSPUBJv2f4_MLp2654CRUUOFIU6zaFQnyGip1yHjKU-3qgPtUe7GkioZKyVgzJV0pXM3cRHlCxAj2te9K-hHWsjxTe0C6PksEpzH1FHpj5KGUqhQPg8gXdRddSweOH8UeJXU9ctMW409kKyn7kZFXVMmrA98a7NxW4XgRdfC4elFticvI_OFCCiOY14GvzWsUkAmMyEzlJWJQJQX3qMc68MmuejMNdbkJdeLoH9XivjJ_dDG5nlRP-_8CPoL2qNePBpfDq8-wgYRM2FS0A1grFqX6Au-Su-J2uTistfsBKsP7vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantitative+model+to+predict+pathogenicity+of+missense+variants+in+the+TP53+gene&rft.jtitle=Human+mutation&rft.au=Fortuno%2C+Cristina&rft.au=Cipponi%2C+Arcadi&rft.au=Ballinger%2C+Mandy+L.&rft.au=Tavtigian%2C+Sean+V.&rft.date=2019-06-01&rft.issn=1059-7794&rft.eissn=1098-1004&rft.volume=40&rft.issue=6&rft.spage=788&rft.epage=800&rft_id=info:doi/10.1002%2Fhumu.23739&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_humu_23739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon