Why do humans have unique auditory event‐related fields? Evidence from computational modeling and MEG experiments
Auditory event‐related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject‐specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identif...
Saved in:
| Published in: | Psychophysiology Vol. 58; no. 4; pp. e13769 - n/a |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Blackwell Publishing Ltd
01.04.2021
|
| Subjects: | |
| ISSN: | 0048-5772, 1469-8986, 1469-8986, 1540-5958 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Auditory event‐related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject‐specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject‐specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject‐specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core‐belt‐parabelt structure of the auditory cortex, and with the dynamics based on the leaky‐integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand‐averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject‐specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand‐averaged ERF is critically evaluated.
This study addresses the fundamental but overlooked question of why auditory event‐related fields (ERFs) are highly specific to each subject. Using magnetoencephalography measurements and computational modeling of auditory cortex, we conclude that ERF subject‐specificity arises from both the cortical gross anatomy and the neural dynamics being specific to each subject. |
|---|---|
| AbstractList | Auditory event‐related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject‐specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject‐specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject‐specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core‐belt‐parabelt structure of the auditory cortex, and with the dynamics based on the leaky‐integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand‐averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject‐specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand‐averaged ERF is critically evaluated.
This study addresses the fundamental but overlooked question of why auditory event‐related fields (ERFs) are highly specific to each subject. Using magnetoencephalography measurements and computational modeling of auditory cortex, we conclude that ERF subject‐specificity arises from both the cortical gross anatomy and the neural dynamics being specific to each subject. Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject-specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject-specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject-specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core-belt-parabelt structure of the auditory cortex, and with the dynamics based on the leaky-integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand-averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject-specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand-averaged ERF is critically evaluated. Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject-specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject-specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject-specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core-belt-parabelt structure of the auditory cortex, and with the dynamics based on the leaky-integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand-averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject-specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand-averaged ERF is critically evaluated.Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject-specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject-specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject-specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core-belt-parabelt structure of the auditory cortex, and with the dynamics based on the leaky-integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand-averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject-specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand-averaged ERF is critically evaluated. |
| Author | May, Patrick J. C. König, Reinhard Brechmann, André Hajizadeh, Aida Matysiak, Artur |
| Author_xml | – sequence: 1 givenname: Aida surname: Hajizadeh fullname: Hajizadeh, Aida organization: Research Group Comparative Neuroscience – sequence: 2 givenname: Artur orcidid: 0000-0002-1395-8520 surname: Matysiak fullname: Matysiak, Artur email: Artur.Matysiak@lin-magdeburg.de organization: Research Group Comparative Neuroscience – sequence: 3 givenname: André surname: Brechmann fullname: Brechmann, André organization: Combinatorial NeuroImaging Core Facility – sequence: 4 givenname: Reinhard surname: König fullname: König, Reinhard organization: Research Group Comparative Neuroscience – sequence: 5 givenname: Patrick J. C. surname: May fullname: May, Patrick J. C. organization: Lancaster University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33475173$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcGK1TAUhoOMOHdGNz6ABNyI0DFp0iZZiQzXURhxQEVclbQ59WZIk5q0V7vzEXxGn8RcO7oYxLMJh3z_D__5T9CRDx4QekjJGc3zbEzLeEaZqNUdtKG8VoVUsj5CG0K4LCohymN0ktI1IUTRsryHjhnjoqKCbVD6uFuwCXg3D9onvNN7wLO3X2bAejZ2CnHBsAc__fz-I4LTExjcW3AmPcfbvTXgO8B9DAPuwjDOk55s8NrhIRhw1n_G2hv8ZnuB4dsI0Q7ZKd1Hd3vtEjy4eU_Rh5fb9-evisu3F6_PX1wWHVNMFUxrJaAVUHalqaVSbck54bSuqaFGG04Ov3Vbtbzlsi8rmVfSEUFr1YIm7BQ9WX3HGHKgNDWDTR04pz2EOTUlF0owWYkD-vgWeh3mmINkqiJUSs5UlalHN9TcDmCaMQfScWn-nDMDT1egiyGlCP1fhJLm0FVz6Kr53VWGyS24s-v9pqit-7eErpKv1sHyH_Pm6t2nq1XzC5lqqJM |
| CitedBy_id | crossref_primary_10_1111_psyp_14570 crossref_primary_10_1007_s00422_022_00936_7 crossref_primary_10_1016_j_heares_2023_108879 crossref_primary_10_3389_fnhum_2021_721574 crossref_primary_10_1016_j_neuroimage_2023_120364 crossref_primary_10_1016_j_heares_2024_109173 |
| Cites_doi | 10.1073/pnas.97.22.11793 10.1109/10.748978 10.3389/fnins.2014.00225 10.1016/S1388-2457(00)00320-5 10.3389/fnsys.2013.00011 10.1111/ejn.12833 10.1097/00003446-200104000-00001 10.1007/s00422-019-00795-9 10.1016/S0926-6410(03)00202-7 10.1044/1092-4388(2002/045) 10.1016/0304-8853(81)90078-0 10.1093/cercor/10.12.1155 10.1111/j.1469-8986.1993.tb02068.x 10.1007/s10548-006-0008-8 10.1103/RevModPhys.65.413 10.1016/j.clinph.2013.09.027 10.1152/jn.1997.77.2.923 10.1016/j.neuroscience.2017.11.036 10.3389/fnins.2014.00072 10.1523/JNEUROSCI.3907-05.2006 10.1109/TBME.1973.324177 10.1016/0168-5597(86)90037-7 10.1111/psyp.12047 10.1016/j.neuroimage.2003.10.009 10.3389/fncom.2013.00152 10.1097/00001756-200106130-00010 10.1088/0031-9155/32/1/004 10.1016/j.heares.2007.01.025 10.1007/s00429-017-1419-x 10.1093/cercor/bhm225 10.1016/B978-0-444-62630-1.00007-X 10.1016/j.neuroimage.2013.02.002 10.1093/cercor/bhy267 10.1007/s00429-013-0680-x 10.1162/NECO_a_00803 10.1111/j.1469-8986.2009.00856.x 10.1111/j.1469-8986.1997.tb02401.x 10.1088/0031-9155/40/3/001 10.1111/ejn.12820 10.1126/science.3755256 10.1214/aos/1176344552 10.1006/nimg.2000.0715 10.1097/00001756-200504250-00005 10.1016/S0006-3495(72)86068-5 10.1111/j.1469-8986.2012.01370.x 10.1152/jn.2000.84.5.2426 10.1007/BF02865945 10.1038/s41593-019-0410-7 10.1016/0006-8993(92)90475-O 10.1007/BF00130487 10.3389/neuro.01.1.1.015.2007 10.1111/nyas.12629 10.1016/j.physbeh.2016.02.006 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research 2021 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research – notice: 2021 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 |
| DOI | 10.1111/psyp.13769 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1469-8986 1540-5958 |
| EndPage | n/a |
| ExternalDocumentID | 33475173 10_1111_psyp_13769 PSYP13769 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: European Union's Horizon 2020 funderid: 763959 |
| GroupedDBID | --- --Z -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29P 2QV 31~ 33P 36B 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52R 52S 52T 52U 52V 52W 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A04 AABNI AAESR AAHHS AAHQN AAIPD AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABGDZ ABITZ ABIVO ABJNI ABLJU ABPPZ ABPVW ABQWH ABSOO ABVKB ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACHQT ACMXC ACNCT ACPOU ACPRK ACQPF ACRPL ACSCC ACUHS ACWUS ACXQS ACYXJ ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFKFF AFPWT AFWVQ AFYRF AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-6 D-7 D-C D-D DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSSH DU5 DXH EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EPS ESX F00 F01 F5P FEDTE FUBAC FZ0 G-S G.N G50 GODZA HAOEW HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MVM MXFUL MXMAN MXSSH N04 N06 N9A NEJ NF~ O66 O9- OHT OIG OVD P2W P2Y P2Z P4B P4C PALCI PQQKQ Q.N Q11 QB0 R.K RCA RIG RIWAO RJQFR ROL RX1 S10 SAMSI SUPJJ SV3 TEORI TN5 TUS UAP UB1 V8K VQA W8V W99 WBKPD WH7 WHDPE WIH WII WIJ WOHZO WQZ WRC WSUWO WXI WXSBR X7M XG1 XJT XOL XSW YNT YYM YYP YZZ ZCA ZGI ZWS ZXP ZZTAW ~IA ~WP AAMMB AAYXX ABUFD ADXHL AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM VXZ YIF YIN Z5M 7TK K9. 7X8 |
| ID | FETCH-LOGICAL-c3939-3aa97eb7e2c2d6899b244041661d1dad407eb76b5b4b48f258eb70c07169bea03 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609271400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-5772 1469-8986 |
| IngestDate | Thu Sep 04 16:56:58 EDT 2025 Mon Oct 06 18:20:35 EDT 2025 Wed Feb 19 02:27:40 EST 2025 Sat Nov 29 03:04:33 EST 2025 Tue Nov 18 20:57:45 EST 2025 Wed Jan 22 16:29:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | dynamics auditory cortex event-related field anatomy latency ERF N1m computational modeling magnetoencephalography MEG |
| Language | English |
| License | Attribution 2021 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3939-3aa97eb7e2c2d6899b244041661d1dad407eb76b5b4b48f258eb70c07169bea03 |
| Notes | Funding information This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 763959 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1395-8520 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.13769 |
| PMID | 33475173 |
| PQID | 2501884395 |
| PQPubID | 41359 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2479738570 proquest_journals_2501884395 pubmed_primary_33475173 crossref_primary_10_1111_psyp_13769 crossref_citationtrail_10_1111_psyp_13769 wiley_primary_10_1111_psyp_13769_PSYP13769 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Psychophysiology |
| PublicationTitleAlternate | Psychophysiology |
| PublicationYear | 2021 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2004; 21 1987; 32 2007; 229 2018; 369 1993; 65 2015; 220 1999; 46 2003; 17 2013; 7 1997; 8 2019; 22 2000; 10 2002; 45 2015; 41 2013; 50 2000; 97 2006; 26 1993; 30 2019; 113 2019; 29 2016; 158 2014; 8 2007; 1 2001; 12 2001; 13 1972; 12 2014; 125 1979; 7 1986; 233 2008; 18 2006; 19 2015; 1337 1930; 130 1992 2000; 111 2015; 129 2001; 22 1991; 7 1878 1981; 22 1995; 40 1973; 20 2010; 47 1997; 77 1992; 572 1986; 65 1997; 34 2013; 74 2000; 84 2012; 49 2017; 222 2005; 16 2016; 28 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 Näätänen R. (e_1_2_8_37_1) 1992 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Heschl R. L. (e_1_2_8_18_1) 1878 e_1_2_8_2_1 e_1_2_8_4_1 Dalebout S. D. (e_1_2_8_12_1) 1997; 8 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 50 start-page: 627 year: 2013 end-page: 639 article-title: Variance stabilization for computing and comparing grand mean waveforms in MEG and EEG publication-title: Psychophysiology – volume: 65 start-page: 413 year: 1993 end-page: 497 article-title: Magnetoence‐phalography—Theory, instrumentation, and applications to non‐invasive studies of the working human brain publication-title: Reviews of Modern Physics – volume: 233 start-page: 625 year: 1986 end-page: 633 article-title: Computing with neural circuits: A model publication-title: Science – volume: 28 start-page: 327 year: 2016 end-page: 353 article-title: Memory stacking in hierarchical networks publication-title: Neural Computation – volume: 22 start-page: 1057 year: 2019 end-page: 1060 article-title: Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones publication-title: Nature Neuroscience – volume: 22 start-page: 129 year: 1981 end-page: 201 article-title: Biomagnetism publication-title: Journal of Magnetism and Magnetic Materials – volume: 8 start-page: 342 issue: 5 year: 1997 end-page: 354 article-title: Comparison of the intersubject and intrasubject variability of exogenous and endogenous auditory evoked potentials publication-title: Journal of the American Academy of Audiology – volume: 17 start-page: 781 year: 2003 end-page: 791 article-title: Perceptual learning modulates sensory evoked response during vowel segregation publication-title: Cognitive Brain Research – volume: 18 start-page: 1973 year: 2008 end-page: 1980 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cerebral Cortex – volume: 40 start-page: 335 year: 1995 end-page: 349 article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres publication-title: Physics in Medicine and Biology – volume: 47 start-page: 66 year: 2010 end-page: 122 article-title: Mismatch negativity (MMN), the deviance‐elicited auditory deflection, explained publication-title: Psychophysiology – volume: 84 start-page: 2426 year: 2000 end-page: 2439 article-title: Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex publication-title: Journal of Neurophysiology – volume: 97 start-page: 11793 year: 2000 end-page: 11799 article-title: Subdivisions of auditory cortex and processing streams in primates publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 46 start-page: 245 year: 1999 end-page: 259 article-title: EEG and MEG: Forward solutions for inverse methods publication-title: IEEE Transactions on Bio‐Medical Engineering – volume: 10 start-page: 1155 year: 2000 end-page: 1167 article-title: Sequence sensitivity of neurons in cat primary auditory cortex publication-title: Cerebral Cortex – volume: 19 start-page: 11 year: 2006 end-page: 20 article-title: Long‐term stability of N1 sources using low‐resolution electromagnetic tomography publication-title: Brain Topography – volume: 12 start-page: 1561 year: 2001 end-page: 1565 article-title: Human primary auditory cortex in women and men publication-title: NeuroReport – volume: 8 start-page: 225 year: 2014 article-title: An anatomical and functional topography of human auditory cortical areas publication-title: Frontiers in Neuroscience – volume: 12 start-page: 1 year: 1972 end-page: 24 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophysical Journal – volume: 34 start-page: 308 year: 1997 end-page: 316 article-title: Temporal characteristics of auditory sensory memory: Neuromagnetic evidence publication-title: Psychophysiology – volume: 16 start-page: 545 year: 2005 end-page: 548 article-title: Averaged and single‐trial brain responses in the assessment of human sound detection publication-title: NeuroReport – volume: 32 start-page: 11 year: 1987 end-page: 22 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Physics in Medicine and Biology – volume: 7 start-page: 11 year: 1991 end-page: 32 article-title: Color indexing publication-title: International Journal of Computer Vision – volume: 49 start-page: 909 year: 2012 end-page: 919 article-title: Stimulation‐history effects on the M100 revealed by its differential dependence on the stimulus onset interval publication-title: Psychophysiology – volume: 21 start-page: 701 year: 2004 end-page: 706 article-title: Transient brain responses predict the temporal dynamics of sound detection in humans publication-title: NeuroImage – volume: 113 start-page: 321 year: 2019 end-page: 345 article-title: Explaining event‐related fields by a mechanistic model encapsulating the anatomical structure of auditory cortex publication-title: Biological Cybernetics – volume: 125 start-page: 738 year: 2014 end-page: 747 article-title: Distinct neural mechanisms of tonal processing between musicians and non‐musicians publication-title: Clinical Neurophysiology – volume: 7 start-page: 1 year: 1979 end-page: 26 article-title: Bootstrap methods: Another look at the jackknife publication-title: The Annals of Statistics – volume: 111 start-page: 1427 year: 2000 end-page: 1437 article-title: The auditory event‐related potential is a stable and reliable measure in elderly subjects over a 3‐year period publication-title: Clinical Neurophysiology – volume: 158 start-page: 43 year: 2016 end-page: 53 article-title: Within‐ and between‐session replicability of cognitive brain processes: An MEG study with an N‐back task publication-title: Physiology & Behavior – volume: 130 start-page: 678 year: 1930 end-page: 757 article-title: Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede publication-title: Zeitschrift für die gesamte Neurologie und Psychiatrie – year: 1878 – volume: 13 start-page: 684 year: 2001 end-page: 701 article-title: Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system publication-title: NeuroImage – volume: 29 start-page: 410 year: 2019 end-page: 428 article-title: Is human auditory cortex organization compatible with the monkey model? Contrary evidence from ultra‐high‐field functional and structural MRI publication-title: Cerebral Cortex – volume: 572 start-page: 236 year: 1992 end-page: 241 article-title: Human auditory primary and association cortex have differing lifetimes for activation traces publication-title: Brain Research – volume: 30 start-page: 451 year: 1993 end-page: 459 article-title: The reliability of ERP components in the auditory oddball paradigm publication-title: Psychophysiology – volume: 1337 start-page: 26 year: 2015 end-page: 31 article-title: Neuronal oscillations as a mechanistic substrate of auditory temporal prediction publication-title: Annals of the New York Academy of Sciences – volume: 74 start-page: 22 year: 2013 end-page: 29 article-title: How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields publication-title: NeuroImage – volume: 229 start-page: 213 year: 2007 end-page: 224 article-title: The cognitive auditory cortex: Task‐specificity of stimulus representations publication-title: Hearing Research – volume: 26 start-page: 4046 year: 2006 end-page: 4053 article-title: Effects of musical experience on different components of MEG responses elicited by sequential piano‐tones and chords publication-title: The Journal of Neuroscience – volume: 22 start-page: 79 year: 2001 end-page: 90 article-title: Central auditory plasticity: Changes in the N1–P2 complex after speech‐sound training publication-title: Ear and Hearing – volume: 20 start-page: 141 year: 1973 end-page: 143 article-title: Eccentric dipole in a spherical medium: Generalized expression for surface potentials publication-title: IEEE Transactions on Biomedical Engineering – year: 1992 – volume: 1 start-page: 197 year: 2007 end-page: 209 article-title: Processing of sounds by population spikes in a model of primary auditory cortex publication-title: Frontiers in Neuroscience – volume: 7 start-page: 152 year: 2013 article-title: Temporal binding of sound emerges out of anatomical structure and synaptic dynamics of auditory cortex publication-title: Frontiers in Computational Neuroscience – volume: 41 start-page: 615 year: 2015 end-page: 630 article-title: Computational modelling suggests that temporal integration results from synaptic adaptation in auditory cortex publication-title: The European Journal of Neuroscience – volume: 65 start-page: 59 year: 1986 end-page: 71 article-title: Latency variability and temporal interrelationships of the auditory event‐related potentials (N1, P2, N2, and P3) in normal subjects publication-title: Electroencephalo‐graphy and Clinical Neurophysiology – volume: 45 start-page: 564 year: 2002 end-page: 572 article-title: Auditory training induces asymmetrical changes in cortical neural activity publication-title: Journal of Speech, Language, and Hearing Research – volume: 222 start-page: 3587 year: 2017 end-page: 3603 article-title: Prevalence and function of Heschl's gyrus morphotypes in musicians publication-title: Brain Structure & Function – volume: 8 start-page: 72 year: 2014 article-title: Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: Refining the hierarchical model publication-title: Frontiers in Neuroscience – volume: 41 start-page: 631 year: 2015 end-page: 640 article-title: Averaging auditory evoked magnetoencephalographic and electroencephalographic responses: A critical discussion publication-title: The European Journal of Neuroscience – volume: 220 start-page: 729 year: 2015 end-page: 743 article-title: Descriptive anatomy of Heschl's gyri in 430 healthy volunteers, including 198 left‐handers publication-title: Brain Structure & Function – volume: 77 start-page: 923 year: 1997 end-page: 943 article-title: Time course of forward masking tuning curves in cat primary auditory cortex publication-title: Journal of Neurophysiology – volume: 369 start-page: 325 year: 2018 end-page: 335 article-title: Musical expectations enhance auditory cortical processing in musicians: A magnetoencephalography study publication-title: Neuroscience – volume: 7 start-page: 11 year: 2013 article-title: A unified framework for the organization of the primate auditory cortex publication-title: Frontiers in Systems Neuroscience – volume: 129 start-page: 117 year: 2015 end-page: 147 article-title: New perspectives on the auditory cortex: Learning and memory publication-title: Handbook of Clinical Neurology – ident: e_1_2_8_20_1 doi: 10.1073/pnas.97.22.11793 – ident: e_1_2_8_36_1 doi: 10.1109/10.748978 – ident: e_1_2_8_33_1 doi: 10.3389/fnins.2014.00225 – ident: e_1_2_8_42_1 doi: 10.1016/S1388-2457(00)00320-5 – ident: e_1_2_8_5_1 doi: 10.3389/fnsys.2013.00011 – ident: e_1_2_8_21_1 doi: 10.1111/ejn.12833 – ident: e_1_2_8_50_1 doi: 10.1097/00003446-200104000-00001 – ident: e_1_2_8_16_1 doi: 10.1007/s00422-019-00795-9 – ident: e_1_2_8_41_1 doi: 10.1016/S0926-6410(03)00202-7 – ident: e_1_2_8_49_1 doi: 10.1044/1092-4388(2002/045) – ident: e_1_2_8_54_1 doi: 10.1016/0304-8853(81)90078-0 – volume: 8 start-page: 342 issue: 5 year: 1997 ident: e_1_2_8_12_1 article-title: Comparison of the intersubject and intrasubject variability of exogenous and endogenous auditory evoked potentials publication-title: Journal of the American Academy of Audiology – volume-title: Attention and brain function year: 1992 ident: e_1_2_8_37_1 – ident: e_1_2_8_11_1 doi: 10.1093/cercor/10.12.1155 – ident: e_1_2_8_45_1 doi: 10.1111/j.1469-8986.1993.tb02068.x – ident: e_1_2_8_4_1 doi: 10.1007/s10548-006-0008-8 – ident: e_1_2_8_17_1 doi: 10.1103/RevModPhys.65.413 – ident: e_1_2_8_3_1 doi: 10.1016/j.clinph.2013.09.027 – ident: e_1_2_8_10_1 doi: 10.1152/jn.1997.77.2.923 – ident: e_1_2_8_39_1 doi: 10.1016/j.neuroscience.2017.11.036 – ident: e_1_2_8_15_1 doi: 10.3389/fnins.2014.00072 – ident: e_1_2_8_22_1 doi: 10.1523/JNEUROSCI.3907-05.2006 – ident: e_1_2_8_9_1 doi: 10.1109/TBME.1973.324177 – ident: e_1_2_8_32_1 doi: 10.1016/0168-5597(86)90037-7 – ident: e_1_2_8_27_1 doi: 10.1111/psyp.12047 – ident: e_1_2_8_25_1 doi: 10.1016/j.neuroimage.2003.10.009 – ident: e_1_2_8_29_1 doi: 10.3389/fncom.2013.00152 – ident: e_1_2_8_40_1 doi: 10.1097/00001756-200106130-00010 – ident: e_1_2_8_43_1 doi: 10.1088/0031-9155/32/1/004 – ident: e_1_2_8_44_1 doi: 10.1016/j.heares.2007.01.025 – ident: e_1_2_8_6_1 doi: 10.1007/s00429-017-1419-x – ident: e_1_2_8_14_1 doi: 10.1093/cercor/bhm225 – ident: e_1_2_8_52_1 doi: 10.1016/B978-0-444-62630-1.00007-X – ident: e_1_2_8_46_1 doi: 10.1016/j.neuroimage.2013.02.002 – ident: e_1_2_8_7_1 doi: 10.1093/cercor/bhy267 – ident: e_1_2_8_26_1 doi: 10.1007/s00429-013-0680-x – ident: e_1_2_8_53_1 doi: 10.1162/NECO_a_00803 – ident: e_1_2_8_28_1 doi: 10.1111/j.1469-8986.2009.00856.x – ident: e_1_2_8_31_1 doi: 10.1111/j.1469-8986.1997.tb02401.x – ident: e_1_2_8_57_1 doi: 10.1088/0031-9155/40/3/001 – ident: e_1_2_8_30_1 doi: 10.1111/ejn.12820 – ident: e_1_2_8_19_1 doi: 10.1126/science.3755256 – ident: e_1_2_8_13_1 doi: 10.1214/aos/1176344552 – ident: e_1_2_8_35_1 doi: 10.1006/nimg.2000.0715 – ident: e_1_2_8_48_1 doi: 10.1097/00001756-200504250-00005 – ident: e_1_2_8_55_1 doi: 10.1016/S0006-3495(72)86068-5 – ident: e_1_2_8_56_1 doi: 10.1111/j.1469-8986.2012.01370.x – ident: e_1_2_8_8_1 doi: 10.1152/jn.2000.84.5.2426 – ident: e_1_2_8_51_1 doi: 10.1007/BF02865945 – ident: e_1_2_8_38_1 doi: 10.1038/s41593-019-0410-7 – ident: e_1_2_8_24_1 doi: 10.1016/0006-8993(92)90475-O – volume-title: Über die vordere quere Schläfenwindung des menschlichen Großhirns year: 1878 ident: e_1_2_8_18_1 – ident: e_1_2_8_47_1 doi: 10.1007/BF00130487 – ident: e_1_2_8_23_1 doi: 10.3389/neuro.01.1.1.015.2007 – ident: e_1_2_8_34_1 doi: 10.1111/nyas.12629 – ident: e_1_2_8_2_1 doi: 10.1016/j.physbeh.2016.02.006 |
| SSID | ssj0009122 |
| Score | 2.3842146 |
| Snippet | Auditory event‐related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in... Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e13769 |
| SubjectTerms | Anatomy auditory cortex Auditory Cortex - anatomy & histology Auditory Cortex - physiology Biological Variation, Population - physiology Cognition computational modeling Computational neuroscience Computer Simulation Cortex (auditory) dynamics ERF event‐related field Evoked Potentials, Auditory - physiology Hearing Humans Latency Magnetoencephalography MEG N1m Neural Networks, Computer Physical characteristics |
| Title | Why do humans have unique auditory event‐related fields? Evidence from computational modeling and MEG experiments |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.13769 https://www.ncbi.nlm.nih.gov/pubmed/33475173 https://www.proquest.com/docview/2501884395 https://www.proquest.com/docview/2479738570 |
| Volume | 58 |
| WOSCitedRecordID | wos000609271400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8986 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009122 issn: 0048-5772 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9RAEB5q2wdfqm3VRtsyxSIoRJLdTZOAUErb04daDrV6PoXdzYYKmjsuvcK9-RP8jf4SZ-eSuxZFEPMQNuyEXXZnMjObmW8A9iPrjKIrjCpThiqpstBUuQxp0pV2udUJx-Z8PEvPz7PBIO8vwasuF2aGDzE_cPOSwd9rL-DaNDeEfNRMRy9jko_8DqzE1PA8LVR_Abkbt1jhKgsTMiJbcFIfx7N497Y6-s3GvG2yss7p3fu_2d6HtdbWxKMZc6zDkqs3YPOoJj_72xSfIUd_8rH6JjSfLqdYDpFr9jV4qa8dThjcFbVP3BiOp8hgTz-__-D8F1ciR781h9hVJkWfq4KW60S0Z4zIlXZIPaKuS3x7-hoXJQWaB3DRO_1w_CZsCzKEVuYyD6XWeepM6oQV5QF5akZ4eMGYdHwZl7ok55B6D0xilFFZJZKMHiMbeUQe43QkH8JyPazdFiBj2wlN5oK0iqhMIhx5VuQNSuuNmACed_tS2Bat3BfN-Fp0Xotf0YJXNICnc9rRDKPjj1Tb3fYWrZw2hfB4hhkZZUkAe_NukjD_20TXbjghGpXmHvMnjQJ4NGOL-TBSqjSJUxnAC979v4xf9N9_7nPr8b8QP4G7wofRcLDQNixfjSduB1bt9dWXZrzLHE_3dJDtwsrJu97F2S96XAk- |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_0KuiLX_UjWnVEERQiSXa3SZ6kaM-K1-PQVutT2N1sqKC549Ir3Jt_gn-jf4mzc3t3FkUQ85SwE3bZ2cl8ZOY3AI8T64ykK04aU8dSNUVsmlLEtOhGu9Jqxbk5Hwb5cFgcHZWjkJvja2EW-BCrgJuXDP5eewH3AelfpHzSzSfPUxKQ8jxsSDpHqgcbr971Dwdr1N00wIXLIlZkRwZ8Up_Ks377rEb6zcw8a7Wy2ulf-c8FX4XLwd7EncUBuQbnXHsdNnda8rW_zvEJcgYoh9Y3oft4PMd6jNy3r8NjfepwxgCvqH3xxng6RwZ8-vHtO9fAuBo5A657gcvupOjrVdByr4gQZ0TutkMqEnVb4_7ua1y3FehuwGF_9-DlXhyaMsRWlKKMhdZl7kzuMpvV2-StmcxDDKak5-u01jU5iDS6bZSRRhZNpgp6TGziUXmM04m4Cb123LrbgIxvl2kyGYSVRGVU5si7Io9QWG_IRPB0yZjKBsRy3zjjS7X0XPyOVryjETxa0U4WOB1_pNpa8rcKstpVmcc0LMgwUxE8XA2TlPlfJ7p14xnRyLz0uD95EsGtxblYTSOEzFWaiwieMfv_Mn81ev9pxHd3_oX4AVzcO9gfVIM3w7d34VLm02o4eWgLeifTmbsHF-zpyeduej8IwE9r-gwz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ta9RAEB60ivjFt1qNVh1RBIWUJLvbJJ-kaE_FegR8q5_CvoUWau649Ar3zZ_gb-wv6exc7s6iCGI-JeyELLs7OzObZ54BeJpYbyRdcdIYF0vVFLFpShFTpxvtS6sVY3O-7OXDYbG_X1Y9Nifkwsz5IZYHbkEzeL8OCu7HrvlFy8fdbLyVkoKUF-GSVLTJBmJnWa04d9OeLFwWsSIvsmcnDUCe1bvn7dFvTuZ5n5WNzuD6f3b3BlzrvU3cmS-Pm3DBt7dgfaelSPv7DJ8h4z_5YH0duq8HM3Qj5Kp9HR7oE49TpndFHVI3RpMZMt3T6Y-fnAHjHTL-rXuJi9qkGLJV0HKliP6UEbnWDhlI1K3DD7tvcFVUoLsNnwe7n169jfuSDLEVpShjoXWZe5P7zGZum2I1kwWCwZSsvEuddhQeUuu2UUYaWTSZKugxsUng5DFeJ2ID1tpR6-8CMrtdpslhEFaSlFGZp9iK4kFhgxsTwfPFxNS25ysPZTOO6kXcEka05hGN4MlSdjxn6fij1OZifuteU7s6C4yGBbllKoLHy2bSsfDjRLd-NCUZmZeB9SdPIrgzXxfLzwghc5XmIoIXPP1_-X5dffxW8d29fxF-BFeq14N6793w_X24mgVMDSOHNmHteDL1D-CyPTk-7CYPefWfASxiChw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+do+humans+have+unique+auditory+event%E2%80%90related+fields%3F+Evidence+from+computational+modeling+and+MEG+experiments&rft.jtitle=Psychophysiology&rft.au=Hajizadeh%2C+Aida&rft.au=Matysiak%2C+Artur&rft.au=Brechmann%2C+Andr%C3%A9&rft.au=K%C3%B6nig%2C+Reinhard&rft.date=2021-04-01&rft.issn=0048-5772&rft.eissn=1469-8986&rft.volume=58&rft.issue=4&rft_id=info:doi/10.1111%2Fpsyp.13769&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_psyp_13769 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon |