Why do humans have unique auditory event‐related fields? Evidence from computational modeling and MEG experiments

Auditory event‐related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject‐specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identif...

Full description

Saved in:
Bibliographic Details
Published in:Psychophysiology Vol. 58; no. 4; pp. e13769 - n/a
Main Authors: Hajizadeh, Aida, Matysiak, Artur, Brechmann, André, König, Reinhard, May, Patrick J. C.
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01.04.2021
Subjects:
ISSN:0048-5772, 1469-8986, 1469-8986, 1540-5958
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Auditory event‐related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject‐specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject‐specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject‐specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core‐belt‐parabelt structure of the auditory cortex, and with the dynamics based on the leaky‐integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand‐averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject‐specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand‐averaged ERF is critically evaluated. This study addresses the fundamental but overlooked question of why auditory event‐related fields (ERFs) are highly specific to each subject. Using magnetoencephalography measurements and computational modeling of auditory cortex, we conclude that ERF subject‐specificity arises from both the cortical gross anatomy and the neural dynamics being specific to each subject.
AbstractList Auditory event‐related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject‐specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject‐specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject‐specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core‐belt‐parabelt structure of the auditory cortex, and with the dynamics based on the leaky‐integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand‐averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject‐specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand‐averaged ERF is critically evaluated. This study addresses the fundamental but overlooked question of why auditory event‐related fields (ERFs) are highly specific to each subject. Using magnetoencephalography measurements and computational modeling of auditory cortex, we conclude that ERF subject‐specificity arises from both the cortical gross anatomy and the neural dynamics being specific to each subject.
Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject-specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject-specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject-specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core-belt-parabelt structure of the auditory cortex, and with the dynamics based on the leaky-integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand-averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject-specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand-averaged ERF is critically evaluated.
Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject-specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject-specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject-specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core-belt-parabelt structure of the auditory cortex, and with the dynamics based on the leaky-integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand-averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject-specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand-averaged ERF is critically evaluated.Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in human cortex. They have a highly subject-specific morphology, albeit certain characteristic deflections (e.g., P1m, N1m, and P2m) can be identified in most subjects. Here, we explore the reason for this subject-specificity through a combination of MEG measurements and computational modeling of auditory cortex. We test whether ERF subject-specificity can predominantly be explained in terms of each subject having an individual cortical gross anatomy, which modulates the MEG signal, or whether individual cortical dynamics is also at play. To our knowledge, this is the first time that tools to address this question are being presented. The effects of anatomical and dynamical variation on the MEG signal is simulated in a model describing the core-belt-parabelt structure of the auditory cortex, and with the dynamics based on the leaky-integrator neuron model. The experimental and simulated ERFs are characterized in terms of the N1m amplitude, latency, and width. Also, we examine the waveform grand-averaged across subjects, and the standard deviation of this grand average. The results show that the intersubject variability of the ERF arises out of both the anatomy and the dynamics of auditory cortex being specific to each subject. Moreover, our results suggest that the latency variation of the N1m is largely related to subject-specific dynamics. The findings are discussed in terms of how learning, plasticity, and sound detection are reflected in the auditory ERFs. The notion of the grand-averaged ERF is critically evaluated.
Author May, Patrick J. C.
König, Reinhard
Brechmann, André
Hajizadeh, Aida
Matysiak, Artur
Author_xml – sequence: 1
  givenname: Aida
  surname: Hajizadeh
  fullname: Hajizadeh, Aida
  organization: Research Group Comparative Neuroscience
– sequence: 2
  givenname: Artur
  orcidid: 0000-0002-1395-8520
  surname: Matysiak
  fullname: Matysiak, Artur
  email: Artur.Matysiak@lin-magdeburg.de
  organization: Research Group Comparative Neuroscience
– sequence: 3
  givenname: André
  surname: Brechmann
  fullname: Brechmann, André
  organization: Combinatorial NeuroImaging Core Facility
– sequence: 4
  givenname: Reinhard
  surname: König
  fullname: König, Reinhard
  organization: Research Group Comparative Neuroscience
– sequence: 5
  givenname: Patrick J. C.
  surname: May
  fullname: May, Patrick J. C.
  organization: Lancaster University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33475173$$D View this record in MEDLINE/PubMed
BookMark eNp9kcGK1TAUhoOMOHdGNz6ABNyI0DFp0iZZiQzXURhxQEVclbQ59WZIk5q0V7vzEXxGn8RcO7oYxLMJh3z_D__5T9CRDx4QekjJGc3zbEzLeEaZqNUdtKG8VoVUsj5CG0K4LCohymN0ktI1IUTRsryHjhnjoqKCbVD6uFuwCXg3D9onvNN7wLO3X2bAejZ2CnHBsAc__fz-I4LTExjcW3AmPcfbvTXgO8B9DAPuwjDOk55s8NrhIRhw1n_G2hv8ZnuB4dsI0Q7ZKd1Hd3vtEjy4eU_Rh5fb9-evisu3F6_PX1wWHVNMFUxrJaAVUHalqaVSbck54bSuqaFGG04Ov3Vbtbzlsi8rmVfSEUFr1YIm7BQ9WX3HGHKgNDWDTR04pz2EOTUlF0owWYkD-vgWeh3mmINkqiJUSs5UlalHN9TcDmCaMQfScWn-nDMDT1egiyGlCP1fhJLm0FVz6Kr53VWGyS24s-v9pqit-7eErpKv1sHyH_Pm6t2nq1XzC5lqqJM
CitedBy_id crossref_primary_10_1111_psyp_14570
crossref_primary_10_1007_s00422_022_00936_7
crossref_primary_10_1016_j_heares_2023_108879
crossref_primary_10_3389_fnhum_2021_721574
crossref_primary_10_1016_j_neuroimage_2023_120364
crossref_primary_10_1016_j_heares_2024_109173
Cites_doi 10.1073/pnas.97.22.11793
10.1109/10.748978
10.3389/fnins.2014.00225
10.1016/S1388-2457(00)00320-5
10.3389/fnsys.2013.00011
10.1111/ejn.12833
10.1097/00003446-200104000-00001
10.1007/s00422-019-00795-9
10.1016/S0926-6410(03)00202-7
10.1044/1092-4388(2002/045)
10.1016/0304-8853(81)90078-0
10.1093/cercor/10.12.1155
10.1111/j.1469-8986.1993.tb02068.x
10.1007/s10548-006-0008-8
10.1103/RevModPhys.65.413
10.1016/j.clinph.2013.09.027
10.1152/jn.1997.77.2.923
10.1016/j.neuroscience.2017.11.036
10.3389/fnins.2014.00072
10.1523/JNEUROSCI.3907-05.2006
10.1109/TBME.1973.324177
10.1016/0168-5597(86)90037-7
10.1111/psyp.12047
10.1016/j.neuroimage.2003.10.009
10.3389/fncom.2013.00152
10.1097/00001756-200106130-00010
10.1088/0031-9155/32/1/004
10.1016/j.heares.2007.01.025
10.1007/s00429-017-1419-x
10.1093/cercor/bhm225
10.1016/B978-0-444-62630-1.00007-X
10.1016/j.neuroimage.2013.02.002
10.1093/cercor/bhy267
10.1007/s00429-013-0680-x
10.1162/NECO_a_00803
10.1111/j.1469-8986.2009.00856.x
10.1111/j.1469-8986.1997.tb02401.x
10.1088/0031-9155/40/3/001
10.1111/ejn.12820
10.1126/science.3755256
10.1214/aos/1176344552
10.1006/nimg.2000.0715
10.1097/00001756-200504250-00005
10.1016/S0006-3495(72)86068-5
10.1111/j.1469-8986.2012.01370.x
10.1152/jn.2000.84.5.2426
10.1007/BF02865945
10.1038/s41593-019-0410-7
10.1016/0006-8993(92)90475-O
10.1007/BF00130487
10.3389/neuro.01.1.1.015.2007
10.1111/nyas.12629
10.1016/j.physbeh.2016.02.006
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research
2021 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research
– notice: 2021 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
DOI 10.1111/psyp.13769
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-8986
1540-5958
EndPage n/a
ExternalDocumentID 33475173
10_1111_psyp_13769
PSYP13769
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union's Horizon 2020
  funderid: 763959
GroupedDBID ---
--Z
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29P
2QV
31~
33P
36B
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52R
52S
52T
52U
52V
52W
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A04
AABNI
AAESR
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABGDZ
ABITZ
ABIVO
ABJNI
ABLJU
ABPPZ
ABPVW
ABQWH
ABSOO
ABVKB
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACHQT
ACMXC
ACNCT
ACPOU
ACPRK
ACQPF
ACRPL
ACSCC
ACUHS
ACWUS
ACXQS
ACYXJ
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKFF
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-6
D-7
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSSH
DU5
DXH
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
F00
F01
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
G50
GODZA
HAOEW
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MVM
MXFUL
MXMAN
MXSSH
N04
N06
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OVD
P2W
P2Y
P2Z
P4B
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
SV3
TEORI
TN5
TUS
UAP
UB1
V8K
VQA
W8V
W99
WBKPD
WH7
WHDPE
WIH
WII
WIJ
WOHZO
WQZ
WRC
WSUWO
WXI
WXSBR
X7M
XG1
XJT
XOL
XSW
YNT
YYM
YYP
YZZ
ZCA
ZGI
ZWS
ZXP
ZZTAW
~IA
~WP
AAMMB
AAYXX
ABUFD
ADXHL
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
Z5M
7TK
K9.
7X8
ID FETCH-LOGICAL-c3939-3aa97eb7e2c2d6899b244041661d1dad407eb76b5b4b48f258eb70c07169bea03
IEDL.DBID 24P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609271400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-5772
1469-8986
IngestDate Thu Sep 04 16:56:58 EDT 2025
Mon Oct 06 18:20:35 EDT 2025
Wed Feb 19 02:27:40 EST 2025
Sat Nov 29 03:04:33 EST 2025
Tue Nov 18 20:57:45 EST 2025
Wed Jan 22 16:29:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords dynamics
auditory cortex
event-related field
anatomy
latency
ERF
N1m
computational modeling
magnetoencephalography
MEG
Language English
License Attribution
2021 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3939-3aa97eb7e2c2d6899b244041661d1dad407eb76b5b4b48f258eb70c07169bea03
Notes Funding information
This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 763959
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1395-8520
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.13769
PMID 33475173
PQID 2501884395
PQPubID 41359
PageCount 18
ParticipantIDs proquest_miscellaneous_2479738570
proquest_journals_2501884395
pubmed_primary_33475173
crossref_primary_10_1111_psyp_13769
crossref_citationtrail_10_1111_psyp_13769
wiley_primary_10_1111_psyp_13769_PSYP13769
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Psychophysiology
PublicationTitleAlternate Psychophysiology
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2004; 21
1987; 32
2007; 229
2018; 369
1993; 65
2015; 220
1999; 46
2003; 17
2013; 7
1997; 8
2019; 22
2000; 10
2002; 45
2015; 41
2013; 50
2000; 97
2006; 26
1993; 30
2019; 113
2019; 29
2016; 158
2014; 8
2007; 1
2001; 12
2001; 13
1972; 12
2014; 125
1979; 7
1986; 233
2008; 18
2006; 19
2015; 1337
1930; 130
1992
2000; 111
2015; 129
2001; 22
1991; 7
1878
1981; 22
1995; 40
1973; 20
2010; 47
1997; 77
1992; 572
1986; 65
1997; 34
2013; 74
2000; 84
2012; 49
2017; 222
2005; 16
2016; 28
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
Näätänen R. (e_1_2_8_37_1) 1992
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Heschl R. L. (e_1_2_8_18_1) 1878
e_1_2_8_2_1
e_1_2_8_4_1
Dalebout S. D. (e_1_2_8_12_1) 1997; 8
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 50
  start-page: 627
  year: 2013
  end-page: 639
  article-title: Variance stabilization for computing and comparing grand mean waveforms in MEG and EEG
  publication-title: Psychophysiology
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  article-title: Magnetoence‐phalography—Theory, instrumentation, and applications to non‐invasive studies of the working human brain
  publication-title: Reviews of Modern Physics
– volume: 233
  start-page: 625
  year: 1986
  end-page: 633
  article-title: Computing with neural circuits: A model
  publication-title: Science
– volume: 28
  start-page: 327
  year: 2016
  end-page: 353
  article-title: Memory stacking in hierarchical networks
  publication-title: Neural Computation
– volume: 22
  start-page: 1057
  year: 2019
  end-page: 1060
  article-title: Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones
  publication-title: Nature Neuroscience
– volume: 22
  start-page: 129
  year: 1981
  end-page: 201
  article-title: Biomagnetism
  publication-title: Journal of Magnetism and Magnetic Materials
– volume: 8
  start-page: 342
  issue: 5
  year: 1997
  end-page: 354
  article-title: Comparison of the intersubject and intrasubject variability of exogenous and endogenous auditory evoked potentials
  publication-title: Journal of the American Academy of Audiology
– volume: 17
  start-page: 781
  year: 2003
  end-page: 791
  article-title: Perceptual learning modulates sensory evoked response during vowel segregation
  publication-title: Cognitive Brain Research
– volume: 18
  start-page: 1973
  year: 2008
  end-page: 1980
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cerebral Cortex
– volume: 40
  start-page: 335
  year: 1995
  end-page: 349
  article-title: A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres
  publication-title: Physics in Medicine and Biology
– volume: 47
  start-page: 66
  year: 2010
  end-page: 122
  article-title: Mismatch negativity (MMN), the deviance‐elicited auditory deflection, explained
  publication-title: Psychophysiology
– volume: 84
  start-page: 2426
  year: 2000
  end-page: 2439
  article-title: Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex
  publication-title: Journal of Neurophysiology
– volume: 97
  start-page: 11793
  year: 2000
  end-page: 11799
  article-title: Subdivisions of auditory cortex and processing streams in primates
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 46
  start-page: 245
  year: 1999
  end-page: 259
  article-title: EEG and MEG: Forward solutions for inverse methods
  publication-title: IEEE Transactions on Bio‐Medical Engineering
– volume: 10
  start-page: 1155
  year: 2000
  end-page: 1167
  article-title: Sequence sensitivity of neurons in cat primary auditory cortex
  publication-title: Cerebral Cortex
– volume: 19
  start-page: 11
  year: 2006
  end-page: 20
  article-title: Long‐term stability of N1 sources using low‐resolution electromagnetic tomography
  publication-title: Brain Topography
– volume: 12
  start-page: 1561
  year: 2001
  end-page: 1565
  article-title: Human primary auditory cortex in women and men
  publication-title: NeuroReport
– volume: 8
  start-page: 225
  year: 2014
  article-title: An anatomical and functional topography of human auditory cortical areas
  publication-title: Frontiers in Neuroscience
– volume: 12
  start-page: 1
  year: 1972
  end-page: 24
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophysical Journal
– volume: 34
  start-page: 308
  year: 1997
  end-page: 316
  article-title: Temporal characteristics of auditory sensory memory: Neuromagnetic evidence
  publication-title: Psychophysiology
– volume: 16
  start-page: 545
  year: 2005
  end-page: 548
  article-title: Averaged and single‐trial brain responses in the assessment of human sound detection
  publication-title: NeuroReport
– volume: 32
  start-page: 11
  year: 1987
  end-page: 22
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Physics in Medicine and Biology
– volume: 7
  start-page: 11
  year: 1991
  end-page: 32
  article-title: Color indexing
  publication-title: International Journal of Computer Vision
– volume: 49
  start-page: 909
  year: 2012
  end-page: 919
  article-title: Stimulation‐history effects on the M100 revealed by its differential dependence on the stimulus onset interval
  publication-title: Psychophysiology
– volume: 21
  start-page: 701
  year: 2004
  end-page: 706
  article-title: Transient brain responses predict the temporal dynamics of sound detection in humans
  publication-title: NeuroImage
– volume: 113
  start-page: 321
  year: 2019
  end-page: 345
  article-title: Explaining event‐related fields by a mechanistic model encapsulating the anatomical structure of auditory cortex
  publication-title: Biological Cybernetics
– volume: 125
  start-page: 738
  year: 2014
  end-page: 747
  article-title: Distinct neural mechanisms of tonal processing between musicians and non‐musicians
  publication-title: Clinical Neurophysiology
– volume: 7
  start-page: 1
  year: 1979
  end-page: 26
  article-title: Bootstrap methods: Another look at the jackknife
  publication-title: The Annals of Statistics
– volume: 111
  start-page: 1427
  year: 2000
  end-page: 1437
  article-title: The auditory event‐related potential is a stable and reliable measure in elderly subjects over a 3‐year period
  publication-title: Clinical Neurophysiology
– volume: 158
  start-page: 43
  year: 2016
  end-page: 53
  article-title: Within‐ and between‐session replicability of cognitive brain processes: An MEG study with an N‐back task
  publication-title: Physiology & Behavior
– volume: 130
  start-page: 678
  year: 1930
  end-page: 757
  article-title: Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede
  publication-title: Zeitschrift für die gesamte Neurologie und Psychiatrie
– year: 1878
– volume: 13
  start-page: 684
  year: 2001
  end-page: 701
  article-title: Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system
  publication-title: NeuroImage
– volume: 29
  start-page: 410
  year: 2019
  end-page: 428
  article-title: Is human auditory cortex organization compatible with the monkey model? Contrary evidence from ultra‐high‐field functional and structural MRI
  publication-title: Cerebral Cortex
– volume: 572
  start-page: 236
  year: 1992
  end-page: 241
  article-title: Human auditory primary and association cortex have differing lifetimes for activation traces
  publication-title: Brain Research
– volume: 30
  start-page: 451
  year: 1993
  end-page: 459
  article-title: The reliability of ERP components in the auditory oddball paradigm
  publication-title: Psychophysiology
– volume: 1337
  start-page: 26
  year: 2015
  end-page: 31
  article-title: Neuronal oscillations as a mechanistic substrate of auditory temporal prediction
  publication-title: Annals of the New York Academy of Sciences
– volume: 74
  start-page: 22
  year: 2013
  end-page: 29
  article-title: How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields
  publication-title: NeuroImage
– volume: 229
  start-page: 213
  year: 2007
  end-page: 224
  article-title: The cognitive auditory cortex: Task‐specificity of stimulus representations
  publication-title: Hearing Research
– volume: 26
  start-page: 4046
  year: 2006
  end-page: 4053
  article-title: Effects of musical experience on different components of MEG responses elicited by sequential piano‐tones and chords
  publication-title: The Journal of Neuroscience
– volume: 22
  start-page: 79
  year: 2001
  end-page: 90
  article-title: Central auditory plasticity: Changes in the N1–P2 complex after speech‐sound training
  publication-title: Ear and Hearing
– volume: 20
  start-page: 141
  year: 1973
  end-page: 143
  article-title: Eccentric dipole in a spherical medium: Generalized expression for surface potentials
  publication-title: IEEE Transactions on Biomedical Engineering
– year: 1992
– volume: 1
  start-page: 197
  year: 2007
  end-page: 209
  article-title: Processing of sounds by population spikes in a model of primary auditory cortex
  publication-title: Frontiers in Neuroscience
– volume: 7
  start-page: 152
  year: 2013
  article-title: Temporal binding of sound emerges out of anatomical structure and synaptic dynamics of auditory cortex
  publication-title: Frontiers in Computational Neuroscience
– volume: 41
  start-page: 615
  year: 2015
  end-page: 630
  article-title: Computational modelling suggests that temporal integration results from synaptic adaptation in auditory cortex
  publication-title: The European Journal of Neuroscience
– volume: 65
  start-page: 59
  year: 1986
  end-page: 71
  article-title: Latency variability and temporal interrelationships of the auditory event‐related potentials (N1, P2, N2, and P3) in normal subjects
  publication-title: Electroencephalo‐graphy and Clinical Neurophysiology
– volume: 45
  start-page: 564
  year: 2002
  end-page: 572
  article-title: Auditory training induces asymmetrical changes in cortical neural activity
  publication-title: Journal of Speech, Language, and Hearing Research
– volume: 222
  start-page: 3587
  year: 2017
  end-page: 3603
  article-title: Prevalence and function of Heschl's gyrus morphotypes in musicians
  publication-title: Brain Structure & Function
– volume: 8
  start-page: 72
  year: 2014
  article-title: Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: Refining the hierarchical model
  publication-title: Frontiers in Neuroscience
– volume: 41
  start-page: 631
  year: 2015
  end-page: 640
  article-title: Averaging auditory evoked magnetoencephalographic and electroencephalographic responses: A critical discussion
  publication-title: The European Journal of Neuroscience
– volume: 220
  start-page: 729
  year: 2015
  end-page: 743
  article-title: Descriptive anatomy of Heschl's gyri in 430 healthy volunteers, including 198 left‐handers
  publication-title: Brain Structure & Function
– volume: 77
  start-page: 923
  year: 1997
  end-page: 943
  article-title: Time course of forward masking tuning curves in cat primary auditory cortex
  publication-title: Journal of Neurophysiology
– volume: 369
  start-page: 325
  year: 2018
  end-page: 335
  article-title: Musical expectations enhance auditory cortical processing in musicians: A magnetoencephalography study
  publication-title: Neuroscience
– volume: 7
  start-page: 11
  year: 2013
  article-title: A unified framework for the organization of the primate auditory cortex
  publication-title: Frontiers in Systems Neuroscience
– volume: 129
  start-page: 117
  year: 2015
  end-page: 147
  article-title: New perspectives on the auditory cortex: Learning and memory
  publication-title: Handbook of Clinical Neurology
– ident: e_1_2_8_20_1
  doi: 10.1073/pnas.97.22.11793
– ident: e_1_2_8_36_1
  doi: 10.1109/10.748978
– ident: e_1_2_8_33_1
  doi: 10.3389/fnins.2014.00225
– ident: e_1_2_8_42_1
  doi: 10.1016/S1388-2457(00)00320-5
– ident: e_1_2_8_5_1
  doi: 10.3389/fnsys.2013.00011
– ident: e_1_2_8_21_1
  doi: 10.1111/ejn.12833
– ident: e_1_2_8_50_1
  doi: 10.1097/00003446-200104000-00001
– ident: e_1_2_8_16_1
  doi: 10.1007/s00422-019-00795-9
– ident: e_1_2_8_41_1
  doi: 10.1016/S0926-6410(03)00202-7
– ident: e_1_2_8_49_1
  doi: 10.1044/1092-4388(2002/045)
– ident: e_1_2_8_54_1
  doi: 10.1016/0304-8853(81)90078-0
– volume: 8
  start-page: 342
  issue: 5
  year: 1997
  ident: e_1_2_8_12_1
  article-title: Comparison of the intersubject and intrasubject variability of exogenous and endogenous auditory evoked potentials
  publication-title: Journal of the American Academy of Audiology
– volume-title: Attention and brain function
  year: 1992
  ident: e_1_2_8_37_1
– ident: e_1_2_8_11_1
  doi: 10.1093/cercor/10.12.1155
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1469-8986.1993.tb02068.x
– ident: e_1_2_8_4_1
  doi: 10.1007/s10548-006-0008-8
– ident: e_1_2_8_17_1
  doi: 10.1103/RevModPhys.65.413
– ident: e_1_2_8_3_1
  doi: 10.1016/j.clinph.2013.09.027
– ident: e_1_2_8_10_1
  doi: 10.1152/jn.1997.77.2.923
– ident: e_1_2_8_39_1
  doi: 10.1016/j.neuroscience.2017.11.036
– ident: e_1_2_8_15_1
  doi: 10.3389/fnins.2014.00072
– ident: e_1_2_8_22_1
  doi: 10.1523/JNEUROSCI.3907-05.2006
– ident: e_1_2_8_9_1
  doi: 10.1109/TBME.1973.324177
– ident: e_1_2_8_32_1
  doi: 10.1016/0168-5597(86)90037-7
– ident: e_1_2_8_27_1
  doi: 10.1111/psyp.12047
– ident: e_1_2_8_25_1
  doi: 10.1016/j.neuroimage.2003.10.009
– ident: e_1_2_8_29_1
  doi: 10.3389/fncom.2013.00152
– ident: e_1_2_8_40_1
  doi: 10.1097/00001756-200106130-00010
– ident: e_1_2_8_43_1
  doi: 10.1088/0031-9155/32/1/004
– ident: e_1_2_8_44_1
  doi: 10.1016/j.heares.2007.01.025
– ident: e_1_2_8_6_1
  doi: 10.1007/s00429-017-1419-x
– ident: e_1_2_8_14_1
  doi: 10.1093/cercor/bhm225
– ident: e_1_2_8_52_1
  doi: 10.1016/B978-0-444-62630-1.00007-X
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuroimage.2013.02.002
– ident: e_1_2_8_7_1
  doi: 10.1093/cercor/bhy267
– ident: e_1_2_8_26_1
  doi: 10.1007/s00429-013-0680-x
– ident: e_1_2_8_53_1
  doi: 10.1162/NECO_a_00803
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1469-8986.2009.00856.x
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1469-8986.1997.tb02401.x
– ident: e_1_2_8_57_1
  doi: 10.1088/0031-9155/40/3/001
– ident: e_1_2_8_30_1
  doi: 10.1111/ejn.12820
– ident: e_1_2_8_19_1
  doi: 10.1126/science.3755256
– ident: e_1_2_8_13_1
  doi: 10.1214/aos/1176344552
– ident: e_1_2_8_35_1
  doi: 10.1006/nimg.2000.0715
– ident: e_1_2_8_48_1
  doi: 10.1097/00001756-200504250-00005
– ident: e_1_2_8_55_1
  doi: 10.1016/S0006-3495(72)86068-5
– ident: e_1_2_8_56_1
  doi: 10.1111/j.1469-8986.2012.01370.x
– ident: e_1_2_8_8_1
  doi: 10.1152/jn.2000.84.5.2426
– ident: e_1_2_8_51_1
  doi: 10.1007/BF02865945
– ident: e_1_2_8_38_1
  doi: 10.1038/s41593-019-0410-7
– ident: e_1_2_8_24_1
  doi: 10.1016/0006-8993(92)90475-O
– volume-title: Über die vordere quere Schläfenwindung des menschlichen Großhirns
  year: 1878
  ident: e_1_2_8_18_1
– ident: e_1_2_8_47_1
  doi: 10.1007/BF00130487
– ident: e_1_2_8_23_1
  doi: 10.3389/neuro.01.1.1.015.2007
– ident: e_1_2_8_34_1
  doi: 10.1111/nyas.12629
– ident: e_1_2_8_2_1
  doi: 10.1016/j.physbeh.2016.02.006
SSID ssj0009122
Score 2.3842146
Snippet Auditory event‐related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in...
Auditory event-related fields (ERFs) measured with magnetoencephalography (MEG) are useful for studying the neuronal underpinnings of auditory cognition in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13769
SubjectTerms Anatomy
auditory cortex
Auditory Cortex - anatomy & histology
Auditory Cortex - physiology
Biological Variation, Population - physiology
Cognition
computational modeling
Computational neuroscience
Computer Simulation
Cortex (auditory)
dynamics
ERF
event‐related field
Evoked Potentials, Auditory - physiology
Hearing
Humans
Latency
Magnetoencephalography
MEG
N1m
Neural Networks, Computer
Physical characteristics
Title Why do humans have unique auditory event‐related fields? Evidence from computational modeling and MEG experiments
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpsyp.13769
https://www.ncbi.nlm.nih.gov/pubmed/33475173
https://www.proquest.com/docview/2501884395
https://www.proquest.com/docview/2479738570
Volume 58
WOSCitedRecordID wos000609271400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8986
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009122
  issn: 0048-5772
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9RAEB5q2wdfqm3VRtsyxSIoRJLdTZOAUErb04daDrV6PoXdzYYKmjsuvcK9-RP8jf4SZ-eSuxZFEPMQNuyEXXZnMjObmW8A9iPrjKIrjCpThiqpstBUuQxp0pV2udUJx-Z8PEvPz7PBIO8vwasuF2aGDzE_cPOSwd9rL-DaNDeEfNRMRy9jko_8DqzE1PA8LVR_Abkbt1jhKgsTMiJbcFIfx7N497Y6-s3GvG2yss7p3fu_2d6HtdbWxKMZc6zDkqs3YPOoJj_72xSfIUd_8rH6JjSfLqdYDpFr9jV4qa8dThjcFbVP3BiOp8hgTz-__-D8F1ciR781h9hVJkWfq4KW60S0Z4zIlXZIPaKuS3x7-hoXJQWaB3DRO_1w_CZsCzKEVuYyD6XWeepM6oQV5QF5akZ4eMGYdHwZl7ok55B6D0xilFFZJZKMHiMbeUQe43QkH8JyPazdFiBj2wlN5oK0iqhMIhx5VuQNSuuNmACed_tS2Bat3BfN-Fp0Xotf0YJXNICnc9rRDKPjj1Tb3fYWrZw2hfB4hhkZZUkAe_NukjD_20TXbjghGpXmHvMnjQJ4NGOL-TBSqjSJUxnAC979v4xf9N9_7nPr8b8QP4G7wofRcLDQNixfjSduB1bt9dWXZrzLHE_3dJDtwsrJu97F2S96XAk-
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_0KuiLX_UjWnVEERQiSXa3SZ6kaM-K1-PQVutT2N1sqKC549Ir3Jt_gn-jf4mzc3t3FkUQ85SwE3bZ2cl8ZOY3AI8T64ykK04aU8dSNUVsmlLEtOhGu9Jqxbk5Hwb5cFgcHZWjkJvja2EW-BCrgJuXDP5eewH3AelfpHzSzSfPUxKQ8jxsSDpHqgcbr971Dwdr1N00wIXLIlZkRwZ8Up_Ks377rEb6zcw8a7Wy2ulf-c8FX4XLwd7EncUBuQbnXHsdNnda8rW_zvEJcgYoh9Y3oft4PMd6jNy3r8NjfepwxgCvqH3xxng6RwZ8-vHtO9fAuBo5A657gcvupOjrVdByr4gQZ0TutkMqEnVb4_7ua1y3FehuwGF_9-DlXhyaMsRWlKKMhdZl7kzuMpvV2-StmcxDDKak5-u01jU5iDS6bZSRRhZNpgp6TGziUXmM04m4Cb123LrbgIxvl2kyGYSVRGVU5si7Io9QWG_IRPB0yZjKBsRy3zjjS7X0XPyOVryjETxa0U4WOB1_pNpa8rcKstpVmcc0LMgwUxE8XA2TlPlfJ7p14xnRyLz0uD95EsGtxblYTSOEzFWaiwieMfv_Mn81ev9pxHd3_oX4AVzcO9gfVIM3w7d34VLm02o4eWgLeifTmbsHF-zpyeduej8IwE9r-gwz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ta9RAEB60ivjFt1qNVh1RBIWUJLvbJJ-kaE_FegR8q5_CvoUWau649Ar3zZ_gb-wv6exc7s6iCGI-JeyELLs7OzObZ54BeJpYbyRdcdIYF0vVFLFpShFTpxvtS6sVY3O-7OXDYbG_X1Y9Nifkwsz5IZYHbkEzeL8OCu7HrvlFy8fdbLyVkoKUF-GSVLTJBmJnWa04d9OeLFwWsSIvsmcnDUCe1bvn7dFvTuZ5n5WNzuD6f3b3BlzrvU3cmS-Pm3DBt7dgfaelSPv7DJ8h4z_5YH0duq8HM3Qj5Kp9HR7oE49TpndFHVI3RpMZMt3T6Y-fnAHjHTL-rXuJi9qkGLJV0HKliP6UEbnWDhlI1K3DD7tvcFVUoLsNnwe7n169jfuSDLEVpShjoXWZe5P7zGZum2I1kwWCwZSsvEuddhQeUuu2UUYaWTSZKugxsUng5DFeJ2ID1tpR6-8CMrtdpslhEFaSlFGZp9iK4kFhgxsTwfPFxNS25ysPZTOO6kXcEka05hGN4MlSdjxn6fij1OZifuteU7s6C4yGBbllKoLHy2bSsfDjRLd-NCUZmZeB9SdPIrgzXxfLzwghc5XmIoIXPP1_-X5dffxW8d29fxF-BFeq14N6793w_X24mgVMDSOHNmHteDL1D-CyPTk-7CYPefWfASxiChw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+do+humans+have+unique+auditory+event%E2%80%90related+fields%3F+Evidence+from+computational+modeling+and+MEG+experiments&rft.jtitle=Psychophysiology&rft.au=Hajizadeh%2C+Aida&rft.au=Matysiak%2C+Artur&rft.au=Brechmann%2C+Andr%C3%A9&rft.au=K%C3%B6nig%2C+Reinhard&rft.date=2021-04-01&rft.issn=0048-5772&rft.eissn=1469-8986&rft.volume=58&rft.issue=4&rft_id=info:doi/10.1111%2Fpsyp.13769&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_psyp_13769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-5772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-5772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-5772&client=summon