Higher‐order and higher floating‐point precision numerical approximations of finite strain elasticity moduli
Summary Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational efficiency are investigated, with reference to hyperelastic constitutive models with known analytical solutions. The methods are high...
Saved in:
| Published in: | International journal for numerical methods in engineering Vol. 120; no. 10; pp. 1184 - 1201 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bognor Regis
Wiley Subscription Services, Inc
07.12.2019
|
| Subjects: | |
| ISSN: | 0029-5981, 1097-0207 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Summary
Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational efficiency are investigated, with reference to hyperelastic constitutive models with known analytical solutions. The methods are higher‐order and higher floating‐point precision numerical approximation, the latter being novel in this context. A general formula for higher‐order approximation finite difference schemes is derived and a new procedure is proposed to implement increased floating‐point precision. The accuracy of the approximated elasticity moduli is investigated numerically using higher‐order approximations in standard double precision and increased quadruple precision. It is found that, as the order of the approximation increases, the elasticity moduli tend toward the analytical solution. Using higher floating‐point precision, the approximated elasticity moduli for all orders of approximation are found to be more accurate than the standard double precision evaluation of the analytical moduli. Application of the techniques to a finite element problem shows that the numerically approximated methods obtain convergence equivalent to the analytical method but require greater computational effort. It is concluded that numerical approximation of elasticity moduli is a powerful and effective means of implementing advanced constitutive models in the finite element method without prior derivation of difficult analytical solutions. |
|---|---|
| AbstractList | Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational efficiency are investigated, with reference to hyperelastic constitutive models with known analytical solutions. The methods are higher‐order and higher floating‐point precision numerical approximation, the latter being novel in this context. A general formula for higher‐order approximation finite difference schemes is derived and a new procedure is proposed to implement increased floating‐point precision. The accuracy of the approximated elasticity moduli is investigated numerically using higher‐order approximations in standard double precision and increased quadruple precision. It is found that, as the order of the approximation increases, the elasticity moduli tend toward the analytical solution. Using higher floating‐point precision, the approximated elasticity moduli for all orders of approximation are found to be more accurate than the standard double precision evaluation of the analytical moduli. Application of the techniques to a finite element problem shows that the numerically approximated methods obtain convergence equivalent to the analytical method but require greater computational effort. It is concluded that numerical approximation of elasticity moduli is a powerful and effective means of implementing advanced constitutive models in the finite element method without prior derivation of difficult analytical solutions. Summary Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational efficiency are investigated, with reference to hyperelastic constitutive models with known analytical solutions. The methods are higher‐order and higher floating‐point precision numerical approximation, the latter being novel in this context. A general formula for higher‐order approximation finite difference schemes is derived and a new procedure is proposed to implement increased floating‐point precision. The accuracy of the approximated elasticity moduli is investigated numerically using higher‐order approximations in standard double precision and increased quadruple precision. It is found that, as the order of the approximation increases, the elasticity moduli tend toward the analytical solution. Using higher floating‐point precision, the approximated elasticity moduli for all orders of approximation are found to be more accurate than the standard double precision evaluation of the analytical moduli. Application of the techniques to a finite element problem shows that the numerically approximated methods obtain convergence equivalent to the analytical method but require greater computational effort. It is concluded that numerical approximation of elasticity moduli is a powerful and effective means of implementing advanced constitutive models in the finite element method without prior derivation of difficult analytical solutions. |
| Author | Connolly, Stephen John Mackenzie, Donald Gorash, Yevgen |
| Author_xml | – sequence: 1 givenname: Stephen John orcidid: 0000-0001-6286-0469 surname: Connolly fullname: Connolly, Stephen John email: stephen.connolly@strath.ac.uk organization: University of Strathclyde – sequence: 2 givenname: Donald orcidid: 0000-0002-1824-1684 surname: Mackenzie fullname: Mackenzie, Donald organization: University of Strathclyde – sequence: 3 givenname: Yevgen orcidid: 0000-0003-2802-7814 surname: Gorash fullname: Gorash, Yevgen organization: University of Strathclyde |
| BookMark | eNp1kM9KAzEQxoNUsK2CjxDw4mVrsnH_5CilWqHqRc9hNpu0KbvJmmzR3nwEn9EnMW09iR6GgZnfzHzzjdDAOqsQOqdkQglJr2yrJjkt8iM0pIQXCUlJMUDD2OJJxkt6gkYhrAmhNCNsiLq5Wa6U__r4dL5WHoOt8Wpfwrpx0Bu7jL3OGdvjzitpgnEW202rvJHQYOg6795NG0lnA3Yaa2NNr3DoPRiLVQOhN9L0W9y6etOYU3SsoQnq7CeP0cvt7Hk6TxZPd_fTm0UiGWd5AhUveCYLVeqshJrJNEuZJjkwpnSeg4IaaCpzToAWmvKK07LKsho0qFKSio3RxWFv1Pe6UaEXa7fxNp4UKaMsxnVMYzQ5UNK7ELzSIkrd_7KT3whKxM5VEV0VO1fjwOWvgc7H7_32LzQ5oG-mUdt_OfH4MNvz34LJjU8 |
| CitedBy_id | crossref_primary_10_1080_15376494_2020_1762952 crossref_primary_10_1007_s00366_024_02031_w crossref_primary_10_1002_nme_6962 crossref_primary_10_1002_nme_7566 crossref_primary_10_1016_j_cma_2022_115612 |
| Cites_doi | 10.1002/(SICI)1097-0207(20000520)48:2<159::AID-NME871>3.0.CO;2-Y 10.1016/j.cma.2013.11.005 10.1016/S0022-5096(99)00017-4 10.1007/s00419-014-0939-6 10.1016/j.commatsci.2012.02.027 10.1016/0045-7825(96)01019-5 10.2514/6.2011-886 10.1016/j.ijsolstr.2017.12.010 10.1016/0045-7825(85)90070-2 10.1515/jmbm-2012-0007 10.1007/s00466-009-0395-2 10.5254/1.3538357 10.1098/rspa.1999.0431 10.2514/1.J052184 10.1090/S0025-5718-1988-0935077-0 10.1016/j.cam.2004.12.026 10.1007/s00419-017-1259-4 10.1016/j.jmps.2005.04.010 10.1108/02644409710166190 10.1016/j.finel.2014.05.016 10.1016/j.cma.2014.08.020 10.1016/S0377-0427(99)00358-1 10.1016/j.compstruc.2014.04.009 10.1115/1.4002375 10.1007/s00419-012-0610-z 10.1137/1.9781611971200 10.1080/10255842.2015.1118467 10.1016/S0045-7825(99)00296-0 10.1098/rspa.2012.0167 10.1098/rsta.1948.0002 10.1007/s003660200028 10.1016/j.jmps.2005.04.006 10.1016/j.ijimpeng.2019.03.005 10.1115/1.2979872 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/nme.6176 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics |
| EISSN | 1097-0207 |
| EndPage | 1201 |
| ExternalDocumentID | 10_1002_nme_6176 NME6176 |
| Genre | article |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: EP/N509760/1 - studentship 1811648 |
| GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3936-ab9795c7e8f58ad3c2523f06a33ef66aeada12c690a17f19b918b55dafae8c0b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481157300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 |
| IngestDate | Fri Jul 25 12:21:21 EDT 2025 Sat Nov 29 06:43:57 EST 2025 Tue Nov 18 22:37:03 EST 2025 Wed Jan 22 16:37:45 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3936-ab9795c7e8f58ad3c2523f06a33ef66aeada12c690a17f19b918b55dafae8c0b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6286-0469 0000-0003-2802-7814 0000-0002-1824-1684 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.6176 |
| PQID | 2313231431 |
| PQPubID | 996376 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2313231431 crossref_citationtrail_10_1002_nme_6176 crossref_primary_10_1002_nme_6176 wiley_primary_10_1002_nme_6176_NME6176 |
| PublicationCentury | 2000 |
| PublicationDate | 7 December 2019 |
| PublicationDateYYYYMMDD | 2019-12-07 |
| PublicationDate_xml | – month: 12 year: 2019 text: 7 December 2019 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 44 2015; 283 2012; 82 1948; 240 2002; 18 2016; 19 2012 2013; 22 2000; 48 2011 2017; 88 2008 1994 1988; 51 2012; 59 2019; 129 1996; 16 2012; 468 2014; 89 1985; 48 2018; 136‐137 2005; 183 2000 2000; 126 2013; 51 2015; 85 1997; 14 2010; 132 2018 2005; 53 2014; 140 1999; 455 2000; 189 1998; 7 1996; 69 1996; 134 2008; 130 2014; 269 2012; 218 e_1_2_8_29_1 Mathur R (e_1_2_8_11_1) 2012 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Wriggers P (e_1_2_8_8_1) 2008 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_21_1 e_1_2_8_42_1 Isaacson E (e_1_2_8_28_1) 1994 e_1_2_8_23_1 Holzapfel GA (e_1_2_8_22_1) 2000 e_1_2_8_41_1 Bailey DH (e_1_2_8_20_1) 2012; 218 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 Simo JC (e_1_2_8_24_1) 1998 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 51 start-page: 2582 issue: 11 year: 2013 end-page: 2599 article-title: Review and unification of methods for computing derivatives of multidisciplinary computational models publication-title: AIAA Journal – year: 2011 – volume: 468 start-page: 3047 issue: 2146 year: 2012 end-page: 3058 article-title: Work conjugacy error in commercial finite‐element codes: its magnitude and how to compensate for it publication-title: Proc Royal Soc A Math Phys Eng Sci – volume: 69 start-page: 59 issue: 1 year: 1996 end-page: 61 article-title: A new constitutive relation for rubber publication-title: Rubber Chem Technol – volume: 269 start-page: 454 year: 2014 end-page: 470 article-title: Robust numerical calculation of tangent moduli at finite strains based on complex‐step derivative approximation and its application to localization analysis publication-title: Comput Methods Appl Mech Eng – volume: 89 start-page: 33 year: 2014 end-page: 51 article-title: Numerically approximated Cauchy integral (NACI) for implementation of constitutive models publication-title: Finite Elem Anal Des – volume: 136‐137 start-page: 125 year: 2018 end-page: 136 article-title: Experimental characterization and continuum modeling of inelasticity in filled rubber‐like materials publication-title: Int J Solids Struct – volume: 16 year: 1996 – volume: 283 start-page: 22 year: 2015 end-page: 45 article-title: A highly accurate 1st‐ and 2nd‐order differentiation scheme for hyperelastic material models based on hyper‐dual numbers publication-title: Comput Methods Appl Mech Eng – volume: 189 start-page: 277 issue: 1 year: 2000 end-page: 296 article-title: Numerical differentiation for local and global tangent operators in computational plasticity publication-title: Comput Methods Appl Mech Eng – year: 2000 – volume: 218 start-page: 10106 issue: 20 year: 2012 end-page: 10121 article-title: High‐precision computation: mathematical physics and dynamics publication-title: Appl Math Comput – volume: 51 start-page: 699 issue: 184 year: 1988 end-page: 706 article-title: Generation of finite difference formulas on arbitrarily spaced grids publication-title: Math Comp – year: 2018 – year: 1994 – volume: 82 start-page: 1183 issue: 9 year: 2012 end-page: 1217 article-title: Hyperelastic models for rubber‐like materials: consistent tangent operators and suitability for Treloar's data publication-title: Arch Appl Mech – volume: 59 start-page: 65 year: 2012 end-page: 74 article-title: Experimental study and numerical modelling of VHB 4910 polymer publication-title: Comput Mater Sci – year: 2012 – volume: 140 start-page: 1 year: 2014 end-page: 13 article-title: Complex step derivative approximation for numerical evaluation of tangent moduli publication-title: Comput Struct – volume: 22 start-page: 27 issue: 1‐2 year: 2013 end-page: 50 article-title: More hyperelastic models for rubber‐like materials: consistent tangent operators and comparative study publication-title: J Mech Behav Mater – volume: 44 start-page: 631 issue: 5 year: 2009 end-page: 649 article-title: Automation of primal and sensitivity analysis of transient coupled problems publication-title: Computational Mechanics – volume: 85 start-page: 1103 issue: 8 year: 2015 end-page: 1125 article-title: Automatic differentiation for stress and consistent tangent computation publication-title: Arch Appl Mech – volume: 53 start-page: 2259 issue: 10 year: 2005 end-page: 2283 article-title: A micro‐macro approach to rubber‐like materials. Part III: the micro‐sphere model of anisotropic Mullins‐type damage publication-title: J Mech Phys Solids – volume: 48 start-page: 159 issue: 2 year: 2000 end-page: 184 article-title: Numerical differentiation for non‐trivial consistent tangent matrices: an application to the MRS‐Lade model publication-title: Int J Numer Methods Eng – volume: 88 start-page: 3 issue: 1‐2 year: 2017 end-page: 26 article-title: Identifiability of material parameters in solid mechanics publication-title: Arch Appl Mech – year: 2008 – volume: 14 start-page: 216 issue: 2 year: 1997 end-page: 232 article-title: On the finite element implementation of rubber‐like materials at finite strains publication-title: Engineering Computations – volume: 183 start-page: 29 issue: 1 year: 2005 end-page: 52 article-title: General explicit difference formulas for numerical differentiation publication-title: J Comput Appl Math – volume: 132 issue: 10 year: 2010 article-title: Automatic generation of user material subroutines for biomechanical growth analysis publication-title: J Biomech Eng – volume: 48 start-page: 101 issue: 1 year: 1985 end-page: 118 article-title: Consistent tangent operators for rate‐independent elastoplasticity publication-title: Comput Methods Appl Mech Eng – volume: 130 issue: 6 year: 2008 article-title: Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models publication-title: J Biomech Eng – volume: 126 start-page: 269 issue: 1‐2 year: 2000 end-page: 276 article-title: New finite difference formulas for numerical differentiation publication-title: J Comput Appl Math – volume: 53 start-page: 2231 issue: 10 year: 2005 end-page: 2258 article-title: A micro‐macro approach to rubber‐like materials. Part II: the micro‐sphere model of finite rubber viscoelasticity publication-title: J Mech Phys Solids – volume: 7 year: 1998 – volume: 19 start-page: 1171 issue: 11 year: 2016 end-page: 1180 article-title: Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber‐reinforced hyperelastic material model publication-title: Comput Methods Biomech Biomed Engin – volume: 455 start-page: 2861 issue: 1988 year: 1999 end-page: 2877 article-title: A pseudo‐elastic model for the Mullins effect in filled rubber publication-title: Proc Royal Soc A Math Phys Eng Sci – volume: 240 start-page: 459 issue: 822 year: 1948 end-page: 490 article-title: Large elastic deformations of isotropic materials. I. Fundamental concepts publication-title: Philos Trans R Soc A Math Phys Eng Sci – volume: 134 start-page: 223 issue: 3‐4 year: 1996 end-page: 240 article-title: Numerical computation of algorithmic (consistent) tangent moduli in large‐strain computational inelasticity publication-title: Comput Methods Appl Mech Eng – volume: 129 start-page: 152 year: 2019 end-page: 167 article-title: Temperature and strain rate dependent large tensile deformation and tensile failure behavior of transparent polyurethane at intermediate strain rates publication-title: Int J Impact Eng – volume: 48 start-page: 323 issue: 2 year: 2000 end-page: 365 article-title: Superimposed finite elastic‐viscoelastic‐plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation publication-title: J Mech Phys Solids – volume: 18 start-page: 312 issue: 4 year: 2002 end-page: 327 article-title: Multi‐language and multi‐environment generation of nonlinear finite element codes publication-title: Eng Comput – ident: e_1_2_8_13_1 doi: 10.1002/(SICI)1097-0207(20000520)48:2<159::AID-NME871>3.0.CO;2-Y – ident: e_1_2_8_2_1 doi: 10.1016/j.cma.2013.11.005 – ident: e_1_2_8_35_1 doi: 10.1016/S0022-5096(99)00017-4 – ident: e_1_2_8_7_1 doi: 10.1007/s00419-014-0939-6 – volume-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering year: 2000 ident: e_1_2_8_22_1 – ident: e_1_2_8_30_1 doi: 10.1016/j.commatsci.2012.02.027 – ident: e_1_2_8_3_1 doi: 10.1016/0045-7825(96)01019-5 – ident: e_1_2_8_18_1 doi: 10.2514/6.2011-886 – volume: 218 start-page: 10106 issue: 20 year: 2012 ident: e_1_2_8_20_1 article-title: High‐precision computation: mathematical physics and dynamics publication-title: Appl Math Comput – ident: e_1_2_8_36_1 doi: 10.1016/j.ijsolstr.2017.12.010 – ident: e_1_2_8_32_1 doi: 10.1016/0045-7825(85)90070-2 – ident: e_1_2_8_41_1 doi: 10.1515/jmbm-2012-0007 – ident: e_1_2_8_6_1 doi: 10.1007/s00466-009-0395-2 – ident: e_1_2_8_38_1 doi: 10.5254/1.3538357 – ident: e_1_2_8_21_1 – ident: e_1_2_8_33_1 doi: 10.1098/rspa.1999.0431 – ident: e_1_2_8_17_1 doi: 10.2514/1.J052184 – ident: e_1_2_8_27_1 doi: 10.1090/S0025-5718-1988-0935077-0 – ident: e_1_2_8_26_1 doi: 10.1016/j.cam.2004.12.026 – ident: e_1_2_8_39_1 doi: 10.1007/s00419-017-1259-4 – volume-title: Nonlinear Finite Element Methods year: 2008 ident: e_1_2_8_8_1 – ident: e_1_2_8_34_1 doi: 10.1016/j.jmps.2005.04.010 – ident: e_1_2_8_42_1 doi: 10.1108/02644409710166190 – ident: e_1_2_8_15_1 doi: 10.1016/j.finel.2014.05.016 – ident: e_1_2_8_19_1 doi: 10.1016/j.cma.2014.08.020 – ident: e_1_2_8_25_1 doi: 10.1016/S0377-0427(99)00358-1 – ident: e_1_2_8_14_1 doi: 10.1016/j.compstruc.2014.04.009 – ident: e_1_2_8_4_1 doi: 10.1115/1.4002375 – ident: e_1_2_8_40_1 doi: 10.1007/s00419-012-0610-z – ident: e_1_2_8_10_1 doi: 10.1137/1.9781611971200 – ident: e_1_2_8_16_1 doi: 10.1080/10255842.2015.1118467 – volume-title: Computational Inelasticity year: 1998 ident: e_1_2_8_24_1 – volume-title: Analysis of Numerical Methods year: 1994 ident: e_1_2_8_28_1 – ident: e_1_2_8_12_1 doi: 10.1016/S0045-7825(99)00296-0 – ident: e_1_2_8_23_1 doi: 10.1098/rspa.2012.0167 – ident: e_1_2_8_37_1 doi: 10.1098/rsta.1948.0002 – volume-title: An Analytical Approach to Computing Step Sizes for Finite‐Difference Derivatives year: 2012 ident: e_1_2_8_11_1 – ident: e_1_2_8_5_1 doi: 10.1007/s003660200028 – ident: e_1_2_8_29_1 doi: 10.1016/j.jmps.2005.04.006 – ident: e_1_2_8_31_1 doi: 10.1016/j.ijimpeng.2019.03.005 – ident: e_1_2_8_9_1 doi: 10.1115/1.2979872 |
| SSID | ssj0011503 |
| Score | 2.3402345 |
| Snippet | Summary
Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and... Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1184 |
| SubjectTerms | Accuracy Approximation Computational efficiency Constitutive models Elasticity elasticity moduli Exact solutions Finite difference method Finite element method higher floating‐point precision higher‐order approximation hyperelasticity Mathematical models nonlinear finite element method numerical differentiation Numerical methods Strain |
| Title | Higher‐order and higher floating‐point precision numerical approximations of finite strain elasticity moduli |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6176 https://www.proquest.com/docview/2313231431 |
| Volume | 120 |
| WOSCitedRecordID | wos000481157300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 0029-5981 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgywEOLRQQfSEjITiF-pGXj1XbFYd2hRBFvUUTx1YjbZPVZhfBrT-hv7G_pGPHWbYSSEicoiRjxfLMeD7H428Iec8ZqyDOIIqVzqNYSx0pjPORMDwVrMKI6Mt0fj_LJpP88lJ9CVmV7ixMzw-x-uHmPMPP187BoewO10hDr80nDL_pY7Ih0GzjEdk4-Tq-OFvtISDUkUOCR6JyPlDPMnE4tH0YjH4jzHWc6gPNeOt_uvicbAZ4SY96e3hBHplmm2wFqEmDI3fb5NkaDyHena_IW7uXZNbnftzd3HpeTgpNRa_8I2qnLbg8aXw3a-tmQWfzUKOHNst-72dKPU35z7o_E9nR1lJbO2RLO1-PghoE7C6Xe_GLXrfVclq_Ihfj02_Hn6NQmCHSUsk0glJlKtGZyW2SQyW1wOWsZSlIaWyaAloncKFx4Q08s1yViudlklRgweSalfI1GTVtY94QaiqW2RgQiIKISwUlg8pmjOO0K2PD-A75OGio0IG13HV2WvR8y6LAQS7cIO-QdyvJWc_U8QeZ_UHJRfDVrhCOvVIibsSPffDq_Gv7YnJ-6q67_yq4R54iwvIFJ1i2T0aL-dIckCf6x6Lu5m-Dxd4DZmP0IA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB_sKbR9qFZbamtrCqU-rSab_Rd8EuuheHeIqPi2ZLMJXTh3j9u70r71I_Qz9pN0kt09T6hQ6NOymwkbkpnML8nkNwCfGKW5DGLpBUIlXqC48gT6ec_XLPJpjh7Rpem8GcSjUXJ7Ky5W4LC7C9PwQyw23KxluPnaGrjdkD5YYg290_vof6MnsBqgFoU9WP1y2b8eLA4REOvwLsIjFAnruGepf9DVfeiN7iHmMlB1nqa__l9t3IAXLcAkR41GvIQVXW7Cegs2SWvK9SY8X2IixLfhgr613oJJE_3x--cvx8xJZJmTr-4TMeNK2khpLJtURTkjk2mbpYeU8-b0Z0wcUfn3orkVWZPKEFNYbEtql5GCaITsNpp79oPcVfl8XLyC6_7J1fGp16Zm8BQXPPJkJmIRqlgnJkxkzpWPC1pDI8m5NlEkUT8l8xUuvSWLDROZYEkWhrk0UieKZvw19Mqq1G-A6JzGJpAIRaUfZEJmVOYmpgwnXh5oyrZhrxuiVLW85bax47RhXPZT7OTUdvI2fFxIThqujr_I7HSjnLbWWqe-5a_kiBzxZ5_deD5aPx0NT-zz7b8K7sLT06vhIB2cjc7fwTPEWy79BI13oDebzvV7WFPfZkU9_dCq7x_x5vgQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiE4tFBA9AEYCcEprR3nZXFCtCsQ21WFKOotcvwQkbZJtNmtyo2f0N_YX9KxkyyLBBISpyjJWLE8M57P8fgbgNeMUi2jVAaRUFkQKa4CgXE-CA1LQqoxIvoynd_G6WSSnZ-L0zV4N5yF6fghlj_cnGf4-do5uGm0PVxhDb0wBxh_kzuwEcUiQa_cOPoyOhsvNxEQ6_AhwyMWGRu4Z2l4OLT9PRr9gpirQNVHmtHWf_XxIWz2AJO87yziEayZahu2erBJeldut-HBChMh3p0s6Vvbx9B02R83P689MyeRlSbf_SNip7V0mdL4rqnLak6aWV-lh1SLbvdnSjxR-VXZnYpsSW2JLR22Ja2vSEEMQnaXzT3_QS5qvZiWT-BsdPz1w8egL80QKC54EshCpCJWqclsnEnNVYgLWksTybmxSSLRPiULFS69JUstE4VgWRHHWlppMkUL_hTWq7oyz4AYTVMbSYSiMowKIQsqtU0pw4mXR4ayHXg7qChXPW-56-w07xiXwxwHOXeDvAOvlpJNx9XxB5n9Qct5761tHjr-So7IET_2xuvzr-3zycmxu-7-q-BLuHd6NMrHnyaf9-A-wi1ffYKm-7A-ny3Mc7irLudlO3vRW-8tixL3iw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher%E2%80%90order+and+higher+floating%E2%80%90point+precision+numerical+approximations+of+finite+strain+elasticity+moduli&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Connolly%2C+Stephen+John&rft.au=Mackenzie%2C+Donald&rft.au=Gorash%2C+Yevgen&rft.date=2019-12-07&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=120&rft.issue=10&rft.spage=1184&rft.epage=1201&rft_id=info:doi/10.1002%2Fnme.6176&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |