Higher‐order and higher floating‐point precision numerical approximations of finite strain elasticity moduli

Summary Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational efficiency are investigated, with reference to hyperelastic constitutive models with known analytical solutions. The methods are high...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering Vol. 120; no. 10; pp. 1184 - 1201
Main Authors: Connolly, Stephen John, Mackenzie, Donald, Gorash, Yevgen
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 07.12.2019
Subjects:
ISSN:0029-5981, 1097-0207
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational efficiency are investigated, with reference to hyperelastic constitutive models with known analytical solutions. The methods are higher‐order and higher floating‐point precision numerical approximation, the latter being novel in this context. A general formula for higher‐order approximation finite difference schemes is derived and a new procedure is proposed to implement increased floating‐point precision. The accuracy of the approximated elasticity moduli is investigated numerically using higher‐order approximations in standard double precision and increased quadruple precision. It is found that, as the order of the approximation increases, the elasticity moduli tend toward the analytical solution. Using higher floating‐point precision, the approximated elasticity moduli for all orders of approximation are found to be more accurate than the standard double precision evaluation of the analytical moduli. Application of the techniques to a finite element problem shows that the numerically approximated methods obtain convergence equivalent to the analytical method but require greater computational effort. It is concluded that numerical approximation of elasticity moduli is a powerful and effective means of implementing advanced constitutive models in the finite element method without prior derivation of difficult analytical solutions.
AbstractList Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational efficiency are investigated, with reference to hyperelastic constitutive models with known analytical solutions. The methods are higher‐order and higher floating‐point precision numerical approximation, the latter being novel in this context. A general formula for higher‐order approximation finite difference schemes is derived and a new procedure is proposed to implement increased floating‐point precision. The accuracy of the approximated elasticity moduli is investigated numerically using higher‐order approximations in standard double precision and increased quadruple precision. It is found that, as the order of the approximation increases, the elasticity moduli tend toward the analytical solution. Using higher floating‐point precision, the approximated elasticity moduli for all orders of approximation are found to be more accurate than the standard double precision evaluation of the analytical moduli. Application of the techniques to a finite element problem shows that the numerically approximated methods obtain convergence equivalent to the analytical method but require greater computational effort. It is concluded that numerical approximation of elasticity moduli is a powerful and effective means of implementing advanced constitutive models in the finite element method without prior derivation of difficult analytical solutions.
Summary Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational efficiency are investigated, with reference to hyperelastic constitutive models with known analytical solutions. The methods are higher‐order and higher floating‐point precision numerical approximation, the latter being novel in this context. A general formula for higher‐order approximation finite difference schemes is derived and a new procedure is proposed to implement increased floating‐point precision. The accuracy of the approximated elasticity moduli is investigated numerically using higher‐order approximations in standard double precision and increased quadruple precision. It is found that, as the order of the approximation increases, the elasticity moduli tend toward the analytical solution. Using higher floating‐point precision, the approximated elasticity moduli for all orders of approximation are found to be more accurate than the standard double precision evaluation of the analytical moduli. Application of the techniques to a finite element problem shows that the numerically approximated methods obtain convergence equivalent to the analytical method but require greater computational effort. It is concluded that numerical approximation of elasticity moduli is a powerful and effective means of implementing advanced constitutive models in the finite element method without prior derivation of difficult analytical solutions.
Author Connolly, Stephen John
Mackenzie, Donald
Gorash, Yevgen
Author_xml – sequence: 1
  givenname: Stephen John
  orcidid: 0000-0001-6286-0469
  surname: Connolly
  fullname: Connolly, Stephen John
  email: stephen.connolly@strath.ac.uk
  organization: University of Strathclyde
– sequence: 2
  givenname: Donald
  orcidid: 0000-0002-1824-1684
  surname: Mackenzie
  fullname: Mackenzie, Donald
  organization: University of Strathclyde
– sequence: 3
  givenname: Yevgen
  orcidid: 0000-0003-2802-7814
  surname: Gorash
  fullname: Gorash, Yevgen
  organization: University of Strathclyde
BookMark eNp1kM9KAzEQxoNUsK2CjxDw4mVrsnH_5CilWqHqRc9hNpu0KbvJmmzR3nwEn9EnMW09iR6GgZnfzHzzjdDAOqsQOqdkQglJr2yrJjkt8iM0pIQXCUlJMUDD2OJJxkt6gkYhrAmhNCNsiLq5Wa6U__r4dL5WHoOt8Wpfwrpx0Bu7jL3OGdvjzitpgnEW202rvJHQYOg6795NG0lnA3Yaa2NNr3DoPRiLVQOhN9L0W9y6etOYU3SsoQnq7CeP0cvt7Hk6TxZPd_fTm0UiGWd5AhUveCYLVeqshJrJNEuZJjkwpnSeg4IaaCpzToAWmvKK07LKsho0qFKSio3RxWFv1Pe6UaEXa7fxNp4UKaMsxnVMYzQ5UNK7ELzSIkrd_7KT3whKxM5VEV0VO1fjwOWvgc7H7_32LzQ5oG-mUdt_OfH4MNvz34LJjU8
CitedBy_id crossref_primary_10_1080_15376494_2020_1762952
crossref_primary_10_1007_s00366_024_02031_w
crossref_primary_10_1002_nme_6962
crossref_primary_10_1002_nme_7566
crossref_primary_10_1016_j_cma_2022_115612
Cites_doi 10.1002/(SICI)1097-0207(20000520)48:2<159::AID-NME871>3.0.CO;2-Y
10.1016/j.cma.2013.11.005
10.1016/S0022-5096(99)00017-4
10.1007/s00419-014-0939-6
10.1016/j.commatsci.2012.02.027
10.1016/0045-7825(96)01019-5
10.2514/6.2011-886
10.1016/j.ijsolstr.2017.12.010
10.1016/0045-7825(85)90070-2
10.1515/jmbm-2012-0007
10.1007/s00466-009-0395-2
10.5254/1.3538357
10.1098/rspa.1999.0431
10.2514/1.J052184
10.1090/S0025-5718-1988-0935077-0
10.1016/j.cam.2004.12.026
10.1007/s00419-017-1259-4
10.1016/j.jmps.2005.04.010
10.1108/02644409710166190
10.1016/j.finel.2014.05.016
10.1016/j.cma.2014.08.020
10.1016/S0377-0427(99)00358-1
10.1016/j.compstruc.2014.04.009
10.1115/1.4002375
10.1007/s00419-012-0610-z
10.1137/1.9781611971200
10.1080/10255842.2015.1118467
10.1016/S0045-7825(99)00296-0
10.1098/rspa.2012.0167
10.1098/rsta.1948.0002
10.1007/s003660200028
10.1016/j.jmps.2005.04.006
10.1016/j.ijimpeng.2019.03.005
10.1115/1.2979872
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6176
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 1201
ExternalDocumentID 10_1002_nme_6176
NME6176
Genre article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/N509760/1 - studentship 1811648
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3936-ab9795c7e8f58ad3c2523f06a33ef66aeada12c690a17f19b918b55dafae8c0b3
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481157300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:21:21 EDT 2025
Sat Nov 29 06:43:57 EST 2025
Tue Nov 18 22:37:03 EST 2025
Wed Jan 22 16:37:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3936-ab9795c7e8f58ad3c2523f06a33ef66aeada12c690a17f19b918b55dafae8c0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6286-0469
0000-0003-2802-7814
0000-0002-1824-1684
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.6176
PQID 2313231431
PQPubID 996376
PageCount 18
ParticipantIDs proquest_journals_2313231431
crossref_citationtrail_10_1002_nme_6176
crossref_primary_10_1002_nme_6176
wiley_primary_10_1002_nme_6176_NME6176
PublicationCentury 2000
PublicationDate 7 December 2019
PublicationDateYYYYMMDD 2019-12-07
PublicationDate_xml – month: 12
  year: 2019
  text: 7 December 2019
  day: 07
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 44
2015; 283
2012; 82
1948; 240
2002; 18
2016; 19
2012
2013; 22
2000; 48
2011
2017; 88
2008
1994
1988; 51
2012; 59
2019; 129
1996; 16
2012; 468
2014; 89
1985; 48
2018; 136‐137
2005; 183
2000
2000; 126
2013; 51
2015; 85
1997; 14
2010; 132
2018
2005; 53
2014; 140
1999; 455
2000; 189
1998; 7
1996; 69
1996; 134
2008; 130
2014; 269
2012; 218
e_1_2_8_29_1
Mathur R (e_1_2_8_11_1) 2012
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Wriggers P (e_1_2_8_8_1) 2008
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_21_1
e_1_2_8_42_1
Isaacson E (e_1_2_8_28_1) 1994
e_1_2_8_23_1
Holzapfel GA (e_1_2_8_22_1) 2000
e_1_2_8_41_1
Bailey DH (e_1_2_8_20_1) 2012; 218
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
Simo JC (e_1_2_8_24_1) 1998
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 51
  start-page: 2582
  issue: 11
  year: 2013
  end-page: 2599
  article-title: Review and unification of methods for computing derivatives of multidisciplinary computational models
  publication-title: AIAA Journal
– year: 2011
– volume: 468
  start-page: 3047
  issue: 2146
  year: 2012
  end-page: 3058
  article-title: Work conjugacy error in commercial finite‐element codes: its magnitude and how to compensate for it
  publication-title: Proc Royal Soc A Math Phys Eng Sci
– volume: 69
  start-page: 59
  issue: 1
  year: 1996
  end-page: 61
  article-title: A new constitutive relation for rubber
  publication-title: Rubber Chem Technol
– volume: 269
  start-page: 454
  year: 2014
  end-page: 470
  article-title: Robust numerical calculation of tangent moduli at finite strains based on complex‐step derivative approximation and its application to localization analysis
  publication-title: Comput Methods Appl Mech Eng
– volume: 89
  start-page: 33
  year: 2014
  end-page: 51
  article-title: Numerically approximated Cauchy integral (NACI) for implementation of constitutive models
  publication-title: Finite Elem Anal Des
– volume: 136‐137
  start-page: 125
  year: 2018
  end-page: 136
  article-title: Experimental characterization and continuum modeling of inelasticity in filled rubber‐like materials
  publication-title: Int J Solids Struct
– volume: 16
  year: 1996
– volume: 283
  start-page: 22
  year: 2015
  end-page: 45
  article-title: A highly accurate 1st‐ and 2nd‐order differentiation scheme for hyperelastic material models based on hyper‐dual numbers
  publication-title: Comput Methods Appl Mech Eng
– volume: 189
  start-page: 277
  issue: 1
  year: 2000
  end-page: 296
  article-title: Numerical differentiation for local and global tangent operators in computational plasticity
  publication-title: Comput Methods Appl Mech Eng
– year: 2000
– volume: 218
  start-page: 10106
  issue: 20
  year: 2012
  end-page: 10121
  article-title: High‐precision computation: mathematical physics and dynamics
  publication-title: Appl Math Comput
– volume: 51
  start-page: 699
  issue: 184
  year: 1988
  end-page: 706
  article-title: Generation of finite difference formulas on arbitrarily spaced grids
  publication-title: Math Comp
– year: 2018
– year: 1994
– volume: 82
  start-page: 1183
  issue: 9
  year: 2012
  end-page: 1217
  article-title: Hyperelastic models for rubber‐like materials: consistent tangent operators and suitability for Treloar's data
  publication-title: Arch Appl Mech
– volume: 59
  start-page: 65
  year: 2012
  end-page: 74
  article-title: Experimental study and numerical modelling of VHB 4910 polymer
  publication-title: Comput Mater Sci
– year: 2012
– volume: 140
  start-page: 1
  year: 2014
  end-page: 13
  article-title: Complex step derivative approximation for numerical evaluation of tangent moduli
  publication-title: Comput Struct
– volume: 22
  start-page: 27
  issue: 1‐2
  year: 2013
  end-page: 50
  article-title: More hyperelastic models for rubber‐like materials: consistent tangent operators and comparative study
  publication-title: J Mech Behav Mater
– volume: 44
  start-page: 631
  issue: 5
  year: 2009
  end-page: 649
  article-title: Automation of primal and sensitivity analysis of transient coupled problems
  publication-title: Computational Mechanics
– volume: 85
  start-page: 1103
  issue: 8
  year: 2015
  end-page: 1125
  article-title: Automatic differentiation for stress and consistent tangent computation
  publication-title: Arch Appl Mech
– volume: 53
  start-page: 2259
  issue: 10
  year: 2005
  end-page: 2283
  article-title: A micro‐macro approach to rubber‐like materials. Part III: the micro‐sphere model of anisotropic Mullins‐type damage
  publication-title: J Mech Phys Solids
– volume: 48
  start-page: 159
  issue: 2
  year: 2000
  end-page: 184
  article-title: Numerical differentiation for non‐trivial consistent tangent matrices: an application to the MRS‐Lade model
  publication-title: Int J Numer Methods Eng
– volume: 88
  start-page: 3
  issue: 1‐2
  year: 2017
  end-page: 26
  article-title: Identifiability of material parameters in solid mechanics
  publication-title: Arch Appl Mech
– year: 2008
– volume: 14
  start-page: 216
  issue: 2
  year: 1997
  end-page: 232
  article-title: On the finite element implementation of rubber‐like materials at finite strains
  publication-title: Engineering Computations
– volume: 183
  start-page: 29
  issue: 1
  year: 2005
  end-page: 52
  article-title: General explicit difference formulas for numerical differentiation
  publication-title: J Comput Appl Math
– volume: 132
  issue: 10
  year: 2010
  article-title: Automatic generation of user material subroutines for biomechanical growth analysis
  publication-title: J Biomech Eng
– volume: 48
  start-page: 101
  issue: 1
  year: 1985
  end-page: 118
  article-title: Consistent tangent operators for rate‐independent elastoplasticity
  publication-title: Comput Methods Appl Mech Eng
– volume: 130
  issue: 6
  year: 2008
  article-title: Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models
  publication-title: J Biomech Eng
– volume: 126
  start-page: 269
  issue: 1‐2
  year: 2000
  end-page: 276
  article-title: New finite difference formulas for numerical differentiation
  publication-title: J Comput Appl Math
– volume: 53
  start-page: 2231
  issue: 10
  year: 2005
  end-page: 2258
  article-title: A micro‐macro approach to rubber‐like materials. Part II: the micro‐sphere model of finite rubber viscoelasticity
  publication-title: J Mech Phys Solids
– volume: 7
  year: 1998
– volume: 19
  start-page: 1171
  issue: 11
  year: 2016
  end-page: 1180
  article-title: Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber‐reinforced hyperelastic material model
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 455
  start-page: 2861
  issue: 1988
  year: 1999
  end-page: 2877
  article-title: A pseudo‐elastic model for the Mullins effect in filled rubber
  publication-title: Proc Royal Soc A Math Phys Eng Sci
– volume: 240
  start-page: 459
  issue: 822
  year: 1948
  end-page: 490
  article-title: Large elastic deformations of isotropic materials. I. Fundamental concepts
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
– volume: 134
  start-page: 223
  issue: 3‐4
  year: 1996
  end-page: 240
  article-title: Numerical computation of algorithmic (consistent) tangent moduli in large‐strain computational inelasticity
  publication-title: Comput Methods Appl Mech Eng
– volume: 129
  start-page: 152
  year: 2019
  end-page: 167
  article-title: Temperature and strain rate dependent large tensile deformation and tensile failure behavior of transparent polyurethane at intermediate strain rates
  publication-title: Int J Impact Eng
– volume: 48
  start-page: 323
  issue: 2
  year: 2000
  end-page: 365
  article-title: Superimposed finite elastic‐viscoelastic‐plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation
  publication-title: J Mech Phys Solids
– volume: 18
  start-page: 312
  issue: 4
  year: 2002
  end-page: 327
  article-title: Multi‐language and multi‐environment generation of nonlinear finite element codes
  publication-title: Eng Comput
– ident: e_1_2_8_13_1
  doi: 10.1002/(SICI)1097-0207(20000520)48:2<159::AID-NME871>3.0.CO;2-Y
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cma.2013.11.005
– ident: e_1_2_8_35_1
  doi: 10.1016/S0022-5096(99)00017-4
– ident: e_1_2_8_7_1
  doi: 10.1007/s00419-014-0939-6
– volume-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering
  year: 2000
  ident: e_1_2_8_22_1
– ident: e_1_2_8_30_1
  doi: 10.1016/j.commatsci.2012.02.027
– ident: e_1_2_8_3_1
  doi: 10.1016/0045-7825(96)01019-5
– ident: e_1_2_8_18_1
  doi: 10.2514/6.2011-886
– volume: 218
  start-page: 10106
  issue: 20
  year: 2012
  ident: e_1_2_8_20_1
  article-title: High‐precision computation: mathematical physics and dynamics
  publication-title: Appl Math Comput
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ijsolstr.2017.12.010
– ident: e_1_2_8_32_1
  doi: 10.1016/0045-7825(85)90070-2
– ident: e_1_2_8_41_1
  doi: 10.1515/jmbm-2012-0007
– ident: e_1_2_8_6_1
  doi: 10.1007/s00466-009-0395-2
– ident: e_1_2_8_38_1
  doi: 10.5254/1.3538357
– ident: e_1_2_8_21_1
– ident: e_1_2_8_33_1
  doi: 10.1098/rspa.1999.0431
– ident: e_1_2_8_17_1
  doi: 10.2514/1.J052184
– ident: e_1_2_8_27_1
  doi: 10.1090/S0025-5718-1988-0935077-0
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cam.2004.12.026
– ident: e_1_2_8_39_1
  doi: 10.1007/s00419-017-1259-4
– volume-title: Nonlinear Finite Element Methods
  year: 2008
  ident: e_1_2_8_8_1
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jmps.2005.04.010
– ident: e_1_2_8_42_1
  doi: 10.1108/02644409710166190
– ident: e_1_2_8_15_1
  doi: 10.1016/j.finel.2014.05.016
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cma.2014.08.020
– ident: e_1_2_8_25_1
  doi: 10.1016/S0377-0427(99)00358-1
– ident: e_1_2_8_14_1
  doi: 10.1016/j.compstruc.2014.04.009
– ident: e_1_2_8_4_1
  doi: 10.1115/1.4002375
– ident: e_1_2_8_40_1
  doi: 10.1007/s00419-012-0610-z
– ident: e_1_2_8_10_1
  doi: 10.1137/1.9781611971200
– ident: e_1_2_8_16_1
  doi: 10.1080/10255842.2015.1118467
– volume-title: Computational Inelasticity
  year: 1998
  ident: e_1_2_8_24_1
– volume-title: Analysis of Numerical Methods
  year: 1994
  ident: e_1_2_8_28_1
– ident: e_1_2_8_12_1
  doi: 10.1016/S0045-7825(99)00296-0
– ident: e_1_2_8_23_1
  doi: 10.1098/rspa.2012.0167
– ident: e_1_2_8_37_1
  doi: 10.1098/rsta.1948.0002
– volume-title: An Analytical Approach to Computing Step Sizes for Finite‐Difference Derivatives
  year: 2012
  ident: e_1_2_8_11_1
– ident: e_1_2_8_5_1
  doi: 10.1007/s003660200028
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jmps.2005.04.006
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ijimpeng.2019.03.005
– ident: e_1_2_8_9_1
  doi: 10.1115/1.2979872
SSID ssj0011503
Score 2.3402345
Snippet Summary Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and...
Two real‐domain numerical approximation methods for accurate computation of finite strain elasticity moduli are developed and their accuracy and computational...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1184
SubjectTerms Accuracy
Approximation
Computational efficiency
Constitutive models
Elasticity
elasticity moduli
Exact solutions
Finite difference method
Finite element method
higher floating‐point precision
higher‐order approximation
hyperelasticity
Mathematical models
nonlinear finite element method
numerical differentiation
Numerical methods
Strain
Title Higher‐order and higher floating‐point precision numerical approximations of finite strain elasticity moduli
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6176
https://www.proquest.com/docview/2313231431
Volume 120
WOSCitedRecordID wos000481157300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB2VhQMcoKVUXQrISBWcUhI7cexjBaw4wApVpeIWObEtIi3JarOL4MYn8I18CbbjbBeJSkg9RYnHkuWZyTzb4zcA300EianGPOBK6SBmkgeCpDigSVRIGtFUu63sP-fpcMiur_mlz6q0d2Fafoj5hpv1DPe_tg4u8uZogTT0Vv0w4ZcuwTI2Zhv3YPnk1-DqfH6GYKAO6RI8Es6ijno2xEdd39fB6C_CXMSpLtAMNv5niB9h3cNL9LO1h0_wQVWbsOGhJvKO3GzC2gIPoXm7mJO3Np9h3OZ-PD8-OV5OJCqJbtwnpEe1sHnSpm1cl9UUjSe-Rg-qZu3Zzwg5mvL7sr0T2aBaI11aZIsaV48CKQPYbS739AHd1nI2KrfganD6-_gs8IUZgoJwQgOR85QnRaqYTpiQpMBmOatDKghRmlJhrFNEuDALbxGlOuI5j1ieJFJooVgR5uQL9Kq6Ul8BSUZIKnQSCxXG0sATRpXESsS5YAqTvA-HnYaywrOW28GOspZvGWdmkjM7yX3Yn0uOW6aON2R2OiVn3lebDFv2SmJwY9SHA6fOf_bPhhen9rn9XsFvsGoQlis4EaY70JtOZmoXVoq7adlM9rzFvgA96PRh
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-6tLD1oX83mrVbVSjtkxtbsmWJPY2toaVJKKMdfTOyJTFDaoc4GetbP8I-Yz9JJdnOMthgsCdjSwKhu_P9dDr9DuDYeJCQasw9rpT2Qia5J0iMPRoFmaQBjbULZX8dxKMRu7vj1yvwob0LU_NDLAJu1jLc_9oauA1I95ZYQ-_VmfG_9AWshkaLog6sfv7Svx0sDhEM1iFthkfEWdByz_q414793Rv9gpjLQNV5mv7mf81xCzYagIk-1hqxDSuq2IHNBmyixpSrHVhfYiI0b8MFfWu1C5M6--Pp8adj5kSikOib-4T0uBQ2U9q0Tcq8mKHJtKnSg4p5ffozRo6o_Ede34qsUKmRzi22RZWrSIGUgew2m3v2gO5LOR_nr-G2f37z6cJrSjN4GeGEeiLlMY-yWDEdMSFJhs2GVvtUEKI0pcLopwhwZrbeIoh1wFMesDSKpNBCscxPyRvoFGWh9gBJRkgsdBQK5YfSABRGlcRKhKlgCpO0C6etiJKs4S23kx0nNeMyTswiJ3aRu3C06DmpuTr-0OeglXLSWGuVYMtfSQxyDLpw4uT51_HJaHhun2__teMhvLy4GQ6SweXoah9eGbzlyk_48QF0ZtO5egdr2fdZXk3fN-r7DM0N-FE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED6ydJT1odnajWbtNhVG9-TWlmxZYk9jbWhpGspYS9-MbEnMkNgmTsb2tp-w39hfUkm2sww2GOzJ2DqB0N35Pkmn7wDemggSUo25x5XSXsgk9wSJsUejIJM0oLF2W9m343gyYXd3_LoH77u7MA0_xGrDzXqG-19bB1eV1CdrrKEzdWziL30EG2HEqfHKjdNPo5vx6hDBYB3SZXhEnAUd96yPT7q-v0ejXxBzHai6SDMa_NcYn8J2CzDRh8YinkFPFTswaMEmal253oGtNSZC83a1om-td6Fqsj_uf_x0zJxIFBJ9cZ-QnpbCZkqbtqrMiwWq5m2VHlQsm9OfKXJE5d_y5lZkjUqNdG6xLapdRQqkDGS32dyL72hWyuU0fw43o7PPH8-9tjSDlxFOqCdSHvMoixXTEROSZNgsaLVPBSFKUyqMfYoAZ2bpLYJYBzzlAUujSAotFMv8lLyAflEWag-QZITEQkehUH4oDUBhVEmsRJgKpjBJh_CuU1GStbzldrDTpGFcxomZ5MRO8hAOV5JVw9XxB5mDTstJ6611gi1_JTHIMRjCkdPnX_snk6sz-3z5r4JvYPP6dJSMLyaX-_DEwC1XfcKPD6C_mC_VK3icfV3k9fx1a70PZfj3zA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher%E2%80%90order+and+higher+floating%E2%80%90point+precision+numerical+approximations+of+finite+strain+elasticity+moduli&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Connolly%2C+Stephen+John&rft.au=Mackenzie%2C+Donald&rft.au=Gorash%2C+Yevgen&rft.date=2019-12-07&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=120&rft.issue=10&rft.spage=1184&rft.epage=1201&rft_id=info:doi/10.1002%2Fnme.6176&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon