Data‐driven computing in dynamics

Summary We formulate extensions to data‐riven computing for both distance‐minimizing and entropy‐maximizing schemes to incorporate time integration. Previous works focused on formulating both types of solvers in the presence of static equilibrium constraints. Here, formulations assign data points to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 113; číslo 11; s. 1697 - 1710
Hlavní autoři: Kirchdoerfer, T., Ortiz, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 16.03.2018
Témata:
ISSN:0029-5981, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Summary We formulate extensions to data‐riven computing for both distance‐minimizing and entropy‐maximizing schemes to incorporate time integration. Previous works focused on formulating both types of solvers in the presence of static equilibrium constraints. Here, formulations assign data points to a variable relevance depending on distance to the solution and on maximum‐entropy weighting, with distance‐minimizing schemes discussed as a special case. The resulting schemes consist of the minimization of a suitably defined free energy over phase space subject to compatibility and a time‐discretized momentum conservation constraint. We present selected numerical tests that establish the convergence properties of both types of data‐driven solvers and solutions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.5716