Data‐driven computing in dynamics

Summary We formulate extensions to data‐riven computing for both distance‐minimizing and entropy‐maximizing schemes to incorporate time integration. Previous works focused on formulating both types of solvers in the presence of static equilibrium constraints. Here, formulations assign data points to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 113; H. 11; S. 1697 - 1710
Hauptverfasser: Kirchdoerfer, T., Ortiz, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 16.03.2018
Schlagworte:
ISSN:0029-5981, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary We formulate extensions to data‐riven computing for both distance‐minimizing and entropy‐maximizing schemes to incorporate time integration. Previous works focused on formulating both types of solvers in the presence of static equilibrium constraints. Here, formulations assign data points to a variable relevance depending on distance to the solution and on maximum‐entropy weighting, with distance‐minimizing schemes discussed as a special case. The resulting schemes consist of the minimization of a suitably defined free energy over phase space subject to compatibility and a time‐discretized momentum conservation constraint. We present selected numerical tests that establish the convergence properties of both types of data‐driven solvers and solutions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.5716