Intentional machines: A defence of trust in medical artificial intelligence

Trust constitutes a fundamental strategy to deal with risks and uncertainty in complex societies. In line with the vast literature stressing the importance of trust in doctor–patient relationships, trust is therefore regularly suggested as a way of dealing with the risks of medical artificial intell...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioethics Ročník 36; číslo 2; s. 154 - 161
Hlavní autoři: Starke, Georg, Brule, Rik, Elger, Bernice Simone, Haselager, Pim
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishing Ltd 01.02.2022
Témata:
ISSN:0269-9702, 1467-8519, 1467-8519
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Trust constitutes a fundamental strategy to deal with risks and uncertainty in complex societies. In line with the vast literature stressing the importance of trust in doctor–patient relationships, trust is therefore regularly suggested as a way of dealing with the risks of medical artificial intelligence (AI). Yet, this approach has come under charge from different angles. At least two lines of thought can be distinguished: (1) that trusting AI is conceptually confused, that is, that we cannot trust AI; and (2) that it is also dangerous, that is, that we should not trust AI—particularly if the stakes are as high as they routinely are in medicine. In this paper, we aim to defend a notion of trust in the context of medical AI against both charges. To do so, we highlight the technically mediated intentions manifest in AI systems, rendering trust a conceptually plausible stance for dealing with them. Based on literature from human–robot interactions, psychology and sociology, we then propose a novel model to analyse notions of trust, distinguishing between three aspects: reliability, competence, and intentions. We discuss each aspect and make suggestions regarding how medical AI may become worthy of our trust.
AbstractList Trust constitutes a fundamental strategy to deal with risks and uncertainty in complex societies. In line with the vast literature stressing the importance of trust in doctor-patient relationships, trust is therefore regularly suggested as a way of dealing with the risks of medical artificial intelligence (AI). Yet, this approach has come under charge from different angles. At least two lines of thought can be distinguished: (1) that trusting AI is conceptually confused, that is, that we cannot trust AI; and (2) that it is also dangerous, that is, that we should not trust AI-particularly if the stakes are as high as they routinely are in medicine. In this paper, we aim to defend a notion of trust in the context of medical AI against both charges. To do so, we highlight the technically mediated intentions manifest in AI systems, rendering trust a conceptually plausible stance for dealing with them. Based on literature from human-robot interactions, psychology and sociology, we then propose a novel model to analyse notions of trust, distinguishing between three aspects: reliability, competence, and intentions. We discuss each aspect and make suggestions regarding how medical AI may become worthy of our trust.
Trust constitutes a fundamental strategy to deal with risks and uncertainty in complex societies. In line with the vast literature stressing the importance of trust in doctor–patient relationships, trust is therefore regularly suggested as a way of dealing with the risks of medical artificial intelligence (AI). Yet, this approach has come under charge from different angles. At least two lines of thought can be distinguished: (1) that trusting AI is conceptually confused, that is, that we cannot trust AI; and (2) that it is also dangerous, that is, that we should not trust AI—particularly if the stakes are as high as they routinely are in medicine. In this paper, we aim to defend a notion of trust in the context of medical AI against both charges. To do so, we highlight the technically mediated intentions manifest in AI systems, rendering trust a conceptually plausible stance for dealing with them. Based on literature from human–robot interactions, psychology and sociology, we then propose a novel model to analyse notions of trust, distinguishing between three aspects: reliability, competence, and intentions. We discuss each aspect and make suggestions regarding how medical AI may become worthy of our trust.
Trust constitutes a fundamental strategy to deal with risks and uncertainty in complex societies. In line with the vast literature stressing the importance of trust in doctor-patient relationships, trust is therefore regularly suggested as a way of dealing with the risks of medical artificial intelligence (AI). Yet, this approach has come under charge from different angles. At least two lines of thought can be distinguished: (1) that trusting AI is conceptually confused, that is, that we cannot trust AI; and (2) that it is also dangerous, that is, that we should not trust AI-particularly if the stakes are as high as they routinely are in medicine. In this paper, we aim to defend a notion of trust in the context of medical AI against both charges. To do so, we highlight the technically mediated intentions manifest in AI systems, rendering trust a conceptually plausible stance for dealing with them. Based on literature from human-robot interactions, psychology and sociology, we then propose a novel model to analyse notions of trust, distinguishing between three aspects: reliability, competence, and intentions. We discuss each aspect and make suggestions regarding how medical AI may become worthy of our trust.Trust constitutes a fundamental strategy to deal with risks and uncertainty in complex societies. In line with the vast literature stressing the importance of trust in doctor-patient relationships, trust is therefore regularly suggested as a way of dealing with the risks of medical artificial intelligence (AI). Yet, this approach has come under charge from different angles. At least two lines of thought can be distinguished: (1) that trusting AI is conceptually confused, that is, that we cannot trust AI; and (2) that it is also dangerous, that is, that we should not trust AI-particularly if the stakes are as high as they routinely are in medicine. In this paper, we aim to defend a notion of trust in the context of medical AI against both charges. To do so, we highlight the technically mediated intentions manifest in AI systems, rendering trust a conceptually plausible stance for dealing with them. Based on literature from human-robot interactions, psychology and sociology, we then propose a novel model to analyse notions of trust, distinguishing between three aspects: reliability, competence, and intentions. We discuss each aspect and make suggestions regarding how medical AI may become worthy of our trust.
Author Starke, Georg
Brule, Rik
Elger, Bernice Simone
Haselager, Pim
Author_xml – sequence: 1
  givenname: Georg
  orcidid: 0000-0001-7428-2619
  surname: Starke
  fullname: Starke, Georg
  email: georg.starke@unibas.ch
  organization: University of Basel
– sequence: 2
  givenname: Rik
  surname: Brule
  fullname: Brule, Rik
  organization: Radboud University
– sequence: 3
  givenname: Bernice Simone
  surname: Elger
  fullname: Elger, Bernice Simone
  organization: University of Geneva
– sequence: 4
  givenname: Pim
  surname: Haselager
  fullname: Haselager, Pim
  organization: Radboud University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34142373$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1Lw0AQhhdR7Ide_AES8CJC6n7lY73VUrVY6EXPYbuZ6JZkU3cTpP_ejakeijiHmWV53mFm3hE6NrUBhC4InhAft2tdw4TQVJAjNCQ8TsI0IuIYDTGNRSgSTAdo5NwG-xBRdIoGjBNOWcKG6HlhGjCNro0sg0qqd23A3QXTIIcCjIKgLoLGtq4JtAkqyLXynLSNLrTS_qm9vCz1W8eeoZNClg7O93WMXh_mL7OncLl6XMymy1AxwUhISREleSQB4wRSnAuQhBdECsHTqOCYpxAnlGMhCY0457H_TCVjuYpjHPOcjdF133dr648WXJNV2ik_hjRQty7zKsZ5lDLi0asDdFO31u_qqZhizCjxaYwu91S79jtmW6sraXfZz5k8cNMDytbOWSh-EYKzzoOs8yD79sDD-ABWupHdiRsrdfm3hPSST13C7p_m2f1iNe81Xw-plgQ
CitedBy_id crossref_primary_10_1371_journal_pone_0294028
crossref_primary_10_1109_ACCESS_2025_3586555
crossref_primary_10_1007_s12525_022_00605_4
crossref_primary_10_3389_ffutr_2023_1137469
crossref_primary_10_1007_s12525_025_00795_7
crossref_primary_10_1186_s12874_023_01921_9
crossref_primary_10_1186_s12910_023_00898_w
crossref_primary_10_3389_fpubh_2025_1637270
crossref_primary_10_1007_s12369_023_01082_1
crossref_primary_10_1177_20552076221111947
crossref_primary_10_1017_S0963180122000445
crossref_primary_10_1136_bmjopen_2023_079617
crossref_primary_10_1007_s41649_024_00300_w
crossref_primary_10_1007_s12525_022_00592_6
crossref_primary_10_1007_s00481_023_00760_y
crossref_primary_10_1080_15265161_2024_2399828
crossref_primary_10_1007_s11019_024_10222_x
crossref_primary_10_3389_fnhum_2024_1489307
crossref_primary_10_1016_j_jrt_2025_100106
crossref_primary_10_1007_s00481_025_00872_7
crossref_primary_10_1007_s00481_025_00878_1
crossref_primary_10_1007_s43681_022_00177_1
crossref_primary_10_1080_15265161_2021_1965257
crossref_primary_10_1007_s13347_023_00664_1
crossref_primary_10_2196_56306
crossref_primary_10_1186_s12910_023_00917_w
crossref_primary_10_1186_s12910_022_00842_4
crossref_primary_10_1007_s13347_025_00843_2
crossref_primary_10_3390_ai6050101
crossref_primary_10_1007_s00146_023_01789_9
crossref_primary_10_1080_13600869_2023_2192569
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons Ltd
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QJ
7U4
8BJ
BHHNA
DWI
FQK
JBE
K9.
WZK
7X8
DOI 10.1111/bioe.12891
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Applied Social Sciences Index & Abstracts (ASSIA)
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
Sociological Abstracts
Sociological Abstracts
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
Sociological Abstracts (Ovid)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Sociological Abstracts (pre-2017)
ProQuest Health & Medical Complete (Alumni)
International Bibliography of the Social Sciences (IBSS)
Applied Social Sciences Index and Abstracts (ASSIA)
Sociological Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Sociological Abstracts (pre-2017)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Philosophy
Psychology
EISSN 1467-8519
EndPage 161
ExternalDocumentID 34142373
10_1111_bioe_12891
BIOE12891
Genre article
Journal Article
GroupedDBID ---
--Z
-ET
.3N
.GA
.GJ
.Y3
04C
05W
0R~
10A
186
1OB
1OC
23N
31~
33P
36B
3O-
4.4
44B
50Y
50Z
51W
51Y
52M
52O
52Q
52R
52S
52T
52U
52V
52W
53G
5GY
5HH
5LA
5VS
66C
6J9
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A04
AABCJ
AABNI
AAESR
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABLJU
ABPPZ
ABPVW
ABQWH
ABSOO
ABTAH
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACHQT
ACJZB
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOJX
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKFF
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMSDO
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-6
D-7
D-C
D-D
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSSH
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EHE
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
F00
F01
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
G50
GODZA
GXZFM
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MVM
MXFUL
MXMAN
MXSSH
N04
N06
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2Y
P2Z
P4B
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RWL
RX1
RXW
SAMSI
SUPJJ
SV3
TAE
TEORI
TN5
TUS
UB1
UPT
V8K
W8V
W99
WBKPD
WGLLI
WH7
WIH
WII
WIJ
WOHZO
WQ9
WQZ
WRC
WSUWO
WXI
WXSBR
XG1
XJT
XSW
YCJ
YUY
ZGI
ZY4
ZZTAW
~IA
~WP
AAMMB
AAYXX
ABUFD
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QJ
7U4
8BJ
BHHNA
DWI
FQK
JBE
K9.
WZK
7X8
ID FETCH-LOGICAL-c3931-21f57d5ae007e80d9ea14f1a99485f4048e672409a12544465f48a33dc66064d3
IEDL.DBID DRFUL
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000662903100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-9702
1467-8519
IngestDate Fri Jul 11 09:48:50 EDT 2025
Sat Nov 08 17:46:27 EST 2025
Thu Apr 03 07:05:07 EDT 2025
Sat Nov 29 02:38:09 EST 2025
Tue Nov 18 22:24:36 EST 2025
Wed Jan 22 16:26:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords trust
trustworthiness
artificial intelligence
healthcare
Language English
License 2021 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3931-21f57d5ae007e80d9ea14f1a99485f4048e672409a12544465f48a33dc66064d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7428-2619
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bioe.12891
PMID 34142373
PQID 2620032100
PQPubID 32153
PageCount 8
ParticipantIDs proquest_miscellaneous_2543445831
proquest_journals_2620032100
pubmed_primary_34142373
crossref_primary_10_1111_bioe_12891
crossref_citationtrail_10_1111_bioe_12891
wiley_primary_10_1111_bioe_12891_BIOE12891
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioethics
PublicationTitleAlternate Bioethics
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
SSID ssj0000955
Score 2.4530694
Snippet Trust constitutes a fundamental strategy to deal with risks and uncertainty in complex societies. In line with the vast literature stressing the importance of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 154
SubjectTerms Artificial Intelligence
Bioethics
Competence
Complex societies
Fees & charges
healthcare
Humans
Intelligence
Literary criticism
Machinery
Medicine
Novels
Physician patient relationships
Physician-Patient Relations
Psychology
Reliability
Reproducibility of Results
Sociology
Trust
trustworthiness
Uncertainty
Title Intentional machines: A defence of trust in medical artificial intelligence
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbioe.12891
https://www.ncbi.nlm.nih.gov/pubmed/34142373
https://www.proquest.com/docview/2620032100
https://www.proquest.com/docview/2543445831
Volume 36
WOSCitedRecordID wos000662903100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8519
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000955
  issn: 0269-9702
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60HvTFo171YkVfFCJNsjlWfPEqivVAVPoWNpsNFGwqVoX-e2c2SasogviWY5INOzO7M5mZbwB2AteRgfRDK5UysbiOY0s6oWd5vlZ2igIUmvqKx1ZwfR222-J2DA7LWpgcH2L4w400w6zXpOAy7n9S8rjT0_u4ulLp-oSDgutVYOL0rvnQGq3EwnQ9RTdDWCKgTJ75MpNn9PTXDemblfnVaDW7TnP2f987BzOFtcmOcvGYhzGd1WAq7z85qMH0VRFZr0H1tuxpMFiAS5PYnv8lZF2Tbqn7B-yIJTqllYD1UmaKNVgnY9081MNIBnM4Ctb5hPO5CA_Ns_uTc6voumApV7i25dipFySe1Gg96LCRCC1tntpSEI5MylHjtR-gHSCkTfBm3MeLoXTdRPnoDPHEXYJK1sv0CrCGRAVXimvt-jxWPBToDvtpwPHcUzavw2459ZEqIMmpM8ZTVLomNGmRmbQ6bA9pn3Mgjh-p1ksORoUy9iPC3G9QrVKjDlvD26hGFBuRme69IQ2V2FIMGV-xnHN-OAxu9JQ85NZhzzD4l_Gj44ubM3O0-hfiNag6VFZhssHXoYIs1Bswqd5fO_2XTRgP2uFmIdwfm1P4ig
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB6k9XrxqFe16oq-KESaZnOsb_Uoim0VsdK3sN1soGBTsSr4753ZJK2iCOJbjsnBzszuzM7MNwAHvlOTvvQCK5Yysrju9SxZC1zL9bSyYxSgwNRXPDT9djvodsVtlptDtTApPsR4w400w8zXpOC0If1Jy3v9oT7G6ZVq14sc5QgFvHh-1-g0J1OxMG1P0c8QlvAplWc5T-WZPP11RfpmZn61Ws2y01j85w8vwUJmb7J6KiDLMKWTEsykHSjfSzDbymLrJZi_zbsavK_AtUltT_cJ2cAkXOrRCauzSMc0F7BhzEy5BusnbJAGexhJYQpIwfqfkD5XodO4uD-7tLK-C5ZyhGNbNTt2_ciVGu0HHVQjoaXNY1sKQpKJOeq89ny0BIS0CeCMe3gxkI4TKQ_dIR45a1BIhoneAFaVqOJKca0dj_cUDwQ6xF7sczx3lc3LcJiPfagyUHLqjfEY5s4JDVpoBq0M-2PapxSK40eqSs7CMFPHUUio-1WqVqqWYW98GxWJoiMy0cNXpKEiW4oi4yvWU9aPP4NLPaUPOWU4Mhz-5fvh6dXNhTna_AvxLsxd3reaYfOqfb0F8zUqsjC54RUoIDv1Nkyrt5f-6Hknk_EPqrv7kg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9k6tiLuvk1PyP6olBZ1_Qjvk3dcDjnEJW9lTRNYOA6cSr435tL282hCOJbP65Nyd0ld7273wEc-U6d-9wLLMV5bFEZRRavB67lelLYSgtQYOorHjt-txv0-6yX5eZgLUyKDzH54YaaYdZrVHD5HKsvWh4NRvJUL69Yuz5PsYtMAeYv71oPnelSzEzbU-1nMIv5mMpTzlN5pk_P7kjfzMxZq9VsO63lf37wCixl9iZppAJShjmZVGAx7UD5UYHiTRZbr0Cpl3c1-FiFa5Panv4nJEOTcCnHZ6RBYqlwLSAjRUy5BhkkZJgGewhKYQpIQQZfkD7X4KHVvL-4srK-C5ZwmGNbdVu5fuxyqe0HGdRiJrlNlc0ZIskoqnVeer62BBi3EeCMevpiwB0nFp52h2jsrEMhGSVyE0iNaxUXgkrpeDQSNGDaIfaUT_W5K2xaheN87kORgZJjb4ynMHdOcNJCM2lVOJzQPqdQHD9S7eQsDDN1HIeIul_DaqVaFQ4mt7UiYXSEJ3L0pmmwyBajyPoVGynrJ8PorR7Th5wqnBgO_zJ-eN6-bZqjrb8Q70Oxd9kKO-3u9TaU6lhjYVLDd6CguSl3YUG8vw7GL3uZiH8COx_7DQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intentional+machines%3A+A+defence+of+trust+in+medical+artificial+intelligence&rft.jtitle=Bioethics&rft.au=Starke%2C+Georg&rft.au=Brule%2C+Rik&rft.au=Elger%2C+Bernice+Simone&rft.au=Haselager%2C+Pim&rft.date=2022-02-01&rft.issn=0269-9702&rft.eissn=1467-8519&rft.volume=36&rft.issue=2&rft.spage=154&rft.epage=161&rft_id=info:doi/10.1111%2Fbioe.12891&rft.externalDBID=10.1111%252Fbioe.12891&rft.externalDocID=BIOE12891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-9702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-9702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-9702&client=summon