The Twisted Configuration of the Martian Magnetotail: MAVEN Observations
Measurements provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft are analyzed to investigate the Martian magnetotail configuration as a function of interplanetary magnetic field (IMF) BY. We find that the magnetotail lobes exhibit a ~45deg twist, either clockwise or countercloc...
Uložené v:
| Vydané v: | Geophysical research letters Ročník 45; číslo 10; s. 4559 - 4568 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Goddard Space Flight Center
American Geophysical Union
28.05.2018
John Wiley & Sons, Inc |
| Predmet: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Measurements provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft are analyzed to investigate the Martian magnetotail configuration as a function of interplanetary magnetic field (IMF) BY. We find that the magnetotail lobes exhibit a ~45deg twist, either clockwise or counterclockwise from the ecliptic plane, up to a few Mars radii downstream. Moreover, the associated cross-tail current sheet is rotated away from the expected location for a Venus-like induced magnetotail based on nominal IMF draping. Data-model comparisons using magnetohydrodynamic simulations are in good agreement with the observed tail twist. Model field line tracings indicate that a majority of the twisted tail lobes are composed of open field lines, surrounded by draped IMF. We infer that dayside magnetic reconnection between the crustal fields and draped IMF creates these open fields and may be responsible for the twisted tail configuration, similar to what is observed at Earth. |
|---|---|
| AbstractList | Measurements provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft are analyzed to investigate the Martian magnetotail configuration as a function of interplanetary magnetic field (IMF) BY. We find that the magnetotail lobes exhibit a ~45° twist, either clockwise or counterclockwise from the ecliptic plane, up to a few Mars radii downstream. Moreover, the associated cross‐tail current sheet is rotated away from the expected location for a Venus‐like induced magnetotail based on nominal IMF draping. Data‐model comparisons using magnetohydrodynamic simulations are in good agreement with the observed tail twist. Model field line tracings indicate that a majority of the twisted tail lobes are composed of open field lines, surrounded by draped IMF. We infer that dayside magnetic reconnection between the crustal fields and draped IMF creates these open fields and may be responsible for the twisted tail configuration, similar to what is observed at Earth.
Plain Language Summary
This study investigates the magnetic environment of Mars in order to understand how its structure is different from that of other planets. In the past, it was thought that the Sun's magnetic field interacts with Mars in a similar way to a comet or Venus. This would imply that the magnetic field geometry could be easily predicted; however, recent investigations have found that this is not the case. This work includes both simulation and MAVEN data to determine that the magnetic environment of Mars is much different than this original picture. The conclusions find that these fields are twisted from their expected geometry, suggesting a difference in the interaction between Mars and the Sun. Because atmospheric particles are able to travel along these magnetic fields, this unique geometry may have great implications for atmospheric loss at Mars.
Key Points
MAVEN data and simulations confirm that a twisted field configuration is present in the Martian magnetotail that is highly dependent on IMF BY
Open fields, likely created by magnetic reconnection between Mars crustal fields and the IMF, occupy a majority of the twisted tail lobes
Comparisons with Earth suggest that the dipolar component of Mars' crustal fields play a crucial role in altering the magnetotail structure Measurements provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft are analyzed to investigate the Martian magnetotail configuration as a function of interplanetary magnetic field (IMF) B Y . We find that the magnetotail lobes exhibit a ~45° twist, either clockwise or counterclockwise from the ecliptic plane, up to a few Mars radii downstream. Moreover, the associated cross‐tail current sheet is rotated away from the expected location for a Venus‐like induced magnetotail based on nominal IMF draping. Data‐model comparisons using magnetohydrodynamic simulations are in good agreement with the observed tail twist. Model field line tracings indicate that a majority of the twisted tail lobes are composed of open field lines, surrounded by draped IMF. We infer that dayside magnetic reconnection between the crustal fields and draped IMF creates these open fields and may be responsible for the twisted tail configuration, similar to what is observed at Earth. This study investigates the magnetic environment of Mars in order to understand how its structure is different from that of other planets. In the past, it was thought that the Sun's magnetic field interacts with Mars in a similar way to a comet or Venus. This would imply that the magnetic field geometry could be easily predicted; however, recent investigations have found that this is not the case. This work includes both simulation and MAVEN data to determine that the magnetic environment of Mars is much different than this original picture. The conclusions find that these fields are twisted from their expected geometry, suggesting a difference in the interaction between Mars and the Sun. Because atmospheric particles are able to travel along these magnetic fields, this unique geometry may have great implications for atmospheric loss at Mars. MAVEN data and simulations confirm that a twisted field configuration is present in the Martian magnetotail that is highly dependent on IMF B Y Open fields, likely created by magnetic reconnection between Mars crustal fields and the IMF, occupy a majority of the twisted tail lobes Comparisons with Earth suggest that the dipolar component of Mars' crustal fields play a crucial role in altering the magnetotail structure Measurements provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft are analyzed to investigate the Martian magnetotail configuration as a function of interplanetary magnetic field (IMF) BY. We find that the magnetotail lobes exhibit a ~45deg twist, either clockwise or counterclockwise from the ecliptic plane, up to a few Mars radii downstream. Moreover, the associated cross-tail current sheet is rotated away from the expected location for a Venus-like induced magnetotail based on nominal IMF draping. Data-model comparisons using magnetohydrodynamic simulations are in good agreement with the observed tail twist. Model field line tracings indicate that a majority of the twisted tail lobes are composed of open field lines, surrounded by draped IMF. We infer that dayside magnetic reconnection between the crustal fields and draped IMF creates these open fields and may be responsible for the twisted tail configuration, similar to what is observed at Earth. Measurements provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft are analyzed to investigate the Martian magnetotail configuration as a function of interplanetary magnetic field (IMF) BY. We find that the magnetotail lobes exhibit a ~45° twist, either clockwise or counterclockwise from the ecliptic plane, up to a few Mars radii downstream. Moreover, the associated cross‐tail current sheet is rotated away from the expected location for a Venus‐like induced magnetotail based on nominal IMF draping. Data‐model comparisons using magnetohydrodynamic simulations are in good agreement with the observed tail twist. Model field line tracings indicate that a majority of the twisted tail lobes are composed of open field lines, surrounded by draped IMF. We infer that dayside magnetic reconnection between the crustal fields and draped IMF creates these open fields and may be responsible for the twisted tail configuration, similar to what is observed at Earth. |
| Audience | PUBLIC |
| Author | Dong, Chuanfei Ma, Yingjuan Brain, David A. DiBraccio, Gina A. Harada, Yuki Gruesbeck, Jacob R. Hara, Takuya Mitchell, David L. Jakosky, Bruce M. Luhmann, Janet G. Soobiah, Yasir Xu, Shaosui Connerney, John E. P. Halekas, Jasper S. Espley, Jared R. Curry, Shannon M. Ruhunusiri, Suranga |
| Author_xml | – sequence: 1 givenname: Gina A. surname: DiBraccio fullname: DiBraccio, Gina A. organization: NASA Goddard Space Flight Center – sequence: 2 givenname: Janet G. surname: Luhmann fullname: Luhmann, Janet G. organization: California Univ – sequence: 3 givenname: Shannon M. surname: Curry fullname: Curry, Shannon M. organization: California Univ – sequence: 4 givenname: Jared R. surname: Espley fullname: Espley, Jared R. organization: NASA Goddard Space Flight Center – sequence: 5 givenname: Shaosui surname: Xu fullname: Xu, Shaosui organization: California Univ – sequence: 6 givenname: David L. surname: Mitchell fullname: Mitchell, David L. organization: California Univ – sequence: 7 givenname: Yingjuan surname: Ma fullname: Ma, Yingjuan organization: California Univ – sequence: 8 givenname: Chuanfei surname: Dong fullname: Dong, Chuanfei organization: Princeton Univ – sequence: 9 givenname: Jacob R. surname: Gruesbeck fullname: Gruesbeck, Jacob R. organization: NASA Goddard Space Flight Center – sequence: 10 givenname: John E. P. surname: Connerney fullname: Connerney, John E. P. – sequence: 11 givenname: Yuki surname: Harada fullname: Harada, Yuki organization: Iowa Univ – sequence: 12 givenname: Suranga surname: Ruhunusiri fullname: Ruhunusiri, Suranga organization: Iowa Univ – sequence: 13 givenname: Jasper S. surname: Halekas fullname: Halekas, Jasper S. organization: Iowa Univ – sequence: 14 givenname: Yasir surname: Soobiah fullname: Soobiah, Yasir organization: Maryland Univ – sequence: 15 givenname: Takuya surname: Hara fullname: Hara, Takuya organization: California Univ – sequence: 16 givenname: David A. surname: Brain fullname: Brain, David A. organization: Colorado Univ – sequence: 17 givenname: Bruce M. surname: Jakosky fullname: Jakosky, Bruce M. organization: Colorado Univ |
| BookMark | eNqFkT1PwzAQhi1UJNrCxsgQiZXA2c7FCVtVlRappRKqWCMnsUuqkBTbpeq_x22YGGC6k-65j_e9Aek1baMIuaZwT4GlDwxosq5BCIb0jPRpGkVhAiB6pA-Q-pyJ-IIMrN0AAAdO-2S2elfBal9Zp8pg3Da6Wu-MdFXbBK0OnC8upHGVbHxcN8q1Tlb1Y7AYvU1egmVulfk60faSnGtZW3X1E4dk9TRZjWfhfDl9Ho_mYcFTDmGc0IiXUcE16pRiwSCPpNZYlBoiRCFQS55oLGPOch1hgpFWuUSVJ2XOgA_JbTd2a9rPnbIu27Q70_iNGQPEGKlg3FN3HVWY1lqjdLY11Yc0h4xCdrQqO1o1nXdWeZz9wovKnWQ54-X-07SvanX4c0E2fZ2j4Kfzb7qmRlqZ-fH2BPp3xCiQfwOA04Nu |
| CitedBy_id | crossref_primary_10_1051_0004_6361_202142885 crossref_primary_10_1029_2018JA026452 crossref_primary_10_3847_1538_4357_ad8159 crossref_primary_10_1007_s11214_023_01017_2 crossref_primary_10_3389_fspas_2023_1064208 crossref_primary_10_3847_1538_3881_acf56f crossref_primary_10_1029_2022GL101643 crossref_primary_10_1029_2025GL114745 crossref_primary_10_1029_2023JA031546 crossref_primary_10_1029_2021JA030146 crossref_primary_10_1029_2024GL114441 crossref_primary_10_3847_1538_4357_ac1ce5 crossref_primary_10_1029_2019JA027755 crossref_primary_10_3389_fspas_2022_966164 crossref_primary_10_3847_1538_4357_adeb87 crossref_primary_10_1029_2019GL084151 crossref_primary_10_1029_2024JA032477 crossref_primary_10_1029_2024JA033445 crossref_primary_10_1093_mnras_stad605 crossref_primary_10_1029_2021JA030227 crossref_primary_10_1029_2023JA032258 crossref_primary_10_1016_j_icarus_2023_115856 crossref_primary_10_1029_2022JA030575 crossref_primary_10_1093_mnras_stz1819 crossref_primary_10_3847_1538_4357_ad463c crossref_primary_10_3389_fspas_2023_1162005 crossref_primary_10_3847_1538_4357_ad863e crossref_primary_10_3847_1538_4357_adc925 crossref_primary_10_1007_s11214_021_00791_1 crossref_primary_10_1051_0004_6361_202243323 crossref_primary_10_1029_2018JA025543 crossref_primary_10_1038_s41550_020_1099_y crossref_primary_10_3847_2041_8213_ad0784 crossref_primary_10_1029_2020JA028576 crossref_primary_10_1029_2021JA029132 crossref_primary_10_1029_2020JA028130 crossref_primary_10_1029_2019GL081913 crossref_primary_10_1029_2023JA031848 crossref_primary_10_1029_2022JA031232 crossref_primary_10_1029_2021JA029535 crossref_primary_10_1029_2021GL093826 crossref_primary_10_1029_2019JA026522 crossref_primary_10_1029_2022JE007334 crossref_primary_10_3847_2041_8213_aaff6e crossref_primary_10_1029_2020GL088921 crossref_primary_10_1016_j_jastp_2024_106253 crossref_primary_10_1029_2020GL087757 crossref_primary_10_1029_2025JA034317 crossref_primary_10_1029_2019GL084387 crossref_primary_10_1029_2022SW003215 crossref_primary_10_1186_s40623_021_01542_w crossref_primary_10_1029_2019JA027312 crossref_primary_10_1029_2022GL098007 crossref_primary_10_1029_2018JA026366 crossref_primary_10_1029_2023JA031301 crossref_primary_10_1029_2022JA030989 crossref_primary_10_1016_j_icarus_2025_116566 crossref_primary_10_1029_2019GL082709 crossref_primary_10_1038_s41598_024_53492_4 crossref_primary_10_3847_1538_4357_ac51d7 crossref_primary_10_3847_1538_4357_ad93ad crossref_primary_10_1029_2018GL079972 crossref_primary_10_1029_2022JA030510 crossref_primary_10_1029_2023JA031935 crossref_primary_10_1029_2021JA029542 crossref_primary_10_1029_2021JA029224 crossref_primary_10_1029_2018JA025866 crossref_primary_10_1029_2018JA026118 crossref_primary_10_1002_2018GL077281 crossref_primary_10_1029_2021JA029428 crossref_primary_10_1029_2021JA029867 crossref_primary_10_1029_2025JA033717 crossref_primary_10_1029_2024GL112399 crossref_primary_10_1051_0004_6361_202244139 crossref_primary_10_3847_2041_8213_adbf10 crossref_primary_10_1007_s11214_022_00906_2 crossref_primary_10_3389_fspas_2022_1101945 crossref_primary_10_1029_2025JA033997 |
| Cites_doi | 10.1007/s11214-015-0169-4 10.1002/2016JA023488 10.1002/2017JA023952 10.1029/91JA03145 10.1007/s11214-011-9831-7 10.1002/2016GL067752 10.1002/2016JA023707 10.1126/science.284.5415.790 10.1007/s11214-011-9811-y 10.1029/2004JA010420 10.1002/2017GL075831 10.1029/GL017i006p00885 10.1002/2015GL065346 10.1002/2015GL066122 10.1029/91JA00086 10.1029/2010GL043916 10.1002/2015GL065248 10.1023/B:SPAC.0000032718.47512.92 10.1029/2001GL013619 10.1029/94JA01271 10.1002/2018GL077281 10.1016/j.icarus.2005.09.021 10.1029/92JA02233 10.1029/2006GL026229 10.1002/2015JA021359 10.1023/B:SPAC.0000032714.66124.4e 10.1002/2016JA023517 10.1002/2017GL073754 10.1029/2009JA014544 10.1016/j.pss.2007.12.005 10.1002/2015GL065293 10.1002/2017JA024741 10.1002/2017JA024491 10.1002/2016JA023467 10.1002/2015GL065004 10.1029/2007GL032289 10.1016/0032-0633(91)90139-2 10.1007/s11214-011-9845-1 10.1029/JZ066i004p01043 10.1029/95JA00593 10.1029/JA090iA05p04011 10.1029/2008GL033730 10.1029/2001JA000239 10.1073/pnas.0507469102 10.1007/s11214-013-0029-z 10.1002/2016JA023167 10.1029/94JA00300 10.1126/science.279.5357.1676 10.1029/2007JA012435 10.1007/s11214-015-0139-x 10.1002/2015GL065005 10.1029/GL011i010p01082 10.1029/2001JE001835 10.1016/0032-0633(81)90141-0 10.1029/JB087iB12p10285 10.1002/2015JA020990 10.1016/j.pss.2015.05.004 10.1029/2003JA010367 10.1029/2011GL050444 10.1016/j.icarus.2005.09.023 10.1007/s11214-006-9122-x |
| ContentType | Journal Article |
| Copyright | 2018. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2018. American Geophysical Union. All Rights Reserved. |
| DBID | CYE CYI AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| DOI | 10.1029/2018gl077251 |
| DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | 4568 |
| ExternalDocumentID | 10_1029_2018GL077251 GRL57320 20180006575 |
| Genre | article |
| GrantInformation | NNH10CC04C SPEC5732 |
| GrantInformation_xml | – fundername: NASA |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFPKN AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 CYE CYI DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A A00 AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WIH WYJ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| ID | FETCH-LOGICAL-c3930-68143d4c3f5f915c20b4aff5cdf0455775fa38f5d632bf45854feba5eb8db203 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435262000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Fri Jul 25 19:01:51 EDT 2025 Tue Nov 18 22:14:17 EST 2025 Sat Nov 29 02:57:28 EST 2025 Wed Jan 22 16:54:31 EST 2025 Fri Nov 21 15:47:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Configuration Magnetotail Martian |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3930-68143d4c3f5f915c20b4aff5cdf0455775fa38f5d632bf45854feba5eb8db203 |
| Notes | E-ISSN: 1944-8007 GSFC GSFC-E-DAA-TN60525 ISSN: 0094-8276 Goddard Space Flight Center Report Number: GSFC-E-DAA-TN60525 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8990-094X 0000-0002-7463-9419 0000-0002-6371-9683 0000-0002-1215-992X 0000-0001-9154-7236 0000-0002-2778-4998 0000-0003-2584-7091 0000-0001-7478-6462 0000-0002-4001-6352 0000-0003-0626-9353 0000-0002-0758-9976 0000-0003-4605-8454 0000-0002-4089-0234 0000-0001-5258-6128 0000-0002-5121-600X 0000-0001-8932-368X |
| PQID | 2055651723 |
| PQPubID | 54723 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2055651723 crossref_primary_10_1029_2018GL077251 crossref_citationtrail_10_1029_2018GL077251 wiley_primary_10_1029_2018GL077251_GRL57320 nasa_ntrs_20180006575 |
| PublicationCentury | 2000 |
| PublicationDate | 28 May 2018 |
| PublicationDateYYYYMMDD | 2018-05-28 |
| PublicationDate_xml | – month: 05 year: 2018 text: 28 May 2018 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Goddard Space Flight Center |
| PublicationPlace_xml | – name: Goddard Space Flight Center – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2018 |
| Publisher | American Geophysical Union John Wiley & Sons, Inc |
| Publisher_xml | – name: American Geophysical Union – name: John Wiley & Sons, Inc |
| References | 1991; 39 2010; 37 2015a; 42 1990; 17 2006; 33 2017; 44 1991; 96 2015; 120 2008; 56 1999; 284 2008; 35 1981; 29 1998; 279 2012; 39 2001; 28 2018; 45 2004; 109 1992; 97 2015b; 42 2009; 114 2015; 195 2004; 111 2007; 112 1980; 18 2005; 102 2015; 42 1993; 98 1984; 11 1982; 87 2016; 43 2002; 107 1994; 99 1985; 90 1995; 100 2015; 117 2006; 182 2017; 122 1961; 66 2011; 162 2006; 126 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 Dubinin E. M. (e_1_2_6_27_1) 1980; 18 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Liemohn M. W. (e_1_2_6_48_1) 2017; 122 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_46_1 |
| References_xml | – volume: 182 start-page: 329 issue: 2 year: 2006 end-page: 336 article-title: Structure of the Martian wake publication-title: Icarus – volume: 17 start-page: 885 year: 1990 end-page: 888 article-title: The magnetotail of Mars—Phobos observations publication-title: Geophysical Research Letters – volume: 112 year: 2007 article-title: Electron pitch angle distributions as indicators of magnetic field topology near Mars publication-title: Journal of Geophysical Research – volume: 122 start-page: 547 year: 2017 end-page: 578 article-title: Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results publication-title: Journal of Geophysical Research: Space Physics – volume: 195 start-page: 3 issue: 1–4 year: 2015 end-page: 48 article-title: The Mars Atmosphere and Volatile Evolution (MAVEN) mission publication-title: Space Science Reviews – volume: 42 start-page: 8838 year: 2015a end-page: 8845 article-title: Magnetic reconnection in the near‐Mars magnetotail: MAVEN observations publication-title: Geophysical Research Letters – volume: 39 year: 2012 article-title: A chain of magnetic flux ropes in the magnetotail of Mars publication-title: Geophysical Research Letters – volume: 195 start-page: 125 issue: 1–4 year: 2015 end-page: 151 article-title: The Solar Wind Ion Analyzer for MAVEN publication-title: Space Science Reviews – volume: 90 start-page: 4011 year: 1985 end-page: 4019 article-title: The distant magnetotails response to a strong interplanetary magnetic‐field —Twisting, flattening, and field line bending publication-title: Journal of Geophysical Research – volume: 162 start-page: 309 issue: 1–4 year: 2011 end-page: 334 article-title: Ion acceleration and outflow from Mars and Venus: An overview publication-title: Space Science Reviews – volume: 42 start-page: 9087 year: 2015 end-page: 9094 article-title: Implications of MAVEN Mars near‐wake measurements and models publication-title: Geophysical Research Letters – volume: 102 start-page: 14,970 issue: 42 year: 2005 end-page: 14,975 article-title: Tectonic implications of Mars crustal magnetism publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 162 start-page: 113 issue: 1–4 year: 2011 end-page: 171 article-title: The induced magnetospheres of Mars, Venus, and Titan publication-title: Space Science Reviews – volume: 122 start-page: 5114 year: 2017 end-page: 5131 article-title: Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN publication-title: Journal of Geophysical Research: Space Physics – volume: 182 start-page: 464 issue: 2 year: 2006 end-page: 473 article-title: The magnetic field draping direction at Mars from April 1999 through August 2004 publication-title: Icarus – volume: 42 start-page: 8828 year: 2015 end-page: 8837 article-title: Magnetotail dynamics at Mars: Initial MAVEN observations publication-title: Geophysical Research Letters – volume: 109 year: 2004 article-title: Solar wind interaction with the ionosphere/atmosphere and crustal magnetic fields at Mars: Mars Global Surveyor magnetometer/electron reflectometer, radio science, and accelerometer data publication-title: Journal of Geophysical Research – volume: 122 start-page: 4308 year: 2017 end-page: 4324 article-title: MAVEN observations of tail current sheet flapping at Mars publication-title: Journal of Geophysical Research: Space Physics – volume: 42 start-page: 9142 year: 2015 end-page: 9148 article-title: The spatial distribution of planetary ion fluxes near Mars observed by MAVEN publication-title: Geophysical Research Letters – volume: 35 year: 2008 article-title: Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX‐ASPERA‐3 and MEX‐MARSIS observations publication-title: Geophysical Research Letters – volume: 43 start-page: 1426 year: 2016 end-page: 1434 article-title: Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN publication-title: Geophysical Research Letters – volume: 44 start-page: 11,229 year: 2017 end-page: 11,238 article-title: High‐altitude closed magnetic loops at Mars observed by MAVEN publication-title: Geophysical Research Letters – volume: 18 start-page: 470 year: 1980 end-page: 474 article-title: The combined magnetosphere publication-title: Kosmicheskie Issledovaniia – volume: 126 start-page: 77 issue: 1–4 year: 2006 end-page: 112 article-title: Mars global surveyor measurements of the Martian solar wind interaction publication-title: Space Science Reviews – volume: 39 start-page: 167 issue: 1–2 year: 1991 end-page: 173 article-title: A commentary on our present understanding of the Martian magnetosphere publication-title: Planetary and Space Science – volume: 122 start-page: 9777 year: 2017 end-page: 9789 article-title: Characterization of low‐altitude nightside Martian magnetic topology using electron pitch angle distributions publication-title: Journal of Geophysical Research: Space Physics – volume: 111 start-page: 203 issue: 1/2 year: 2004 end-page: 221 article-title: Mars Global Surveyor observations of solar wind magnetic field draping around Mars publication-title: Space Science Reviews – volume: 122 start-page: 11,285 year: 2017 end-page: 11,301 article-title: The effect of solar wind variations on the escape of oxygen ions from Mars through different channels: MAVEN observations publication-title: Journal of Geophysical Research: Space Physics – volume: 195 start-page: 257 issue: 1–4 year: 2015 end-page: 291 article-title: The MAVEN magnetic field investigation publication-title: Space Science Reviews – volume: 114 year: 2009 article-title: In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters publication-title: Journal of Geophysical Research – volume: 284 start-page: 790 issue: 5415 year: 1999 end-page: 793 article-title: Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment publication-title: Science – volume: 99 start-page: 21,233 year: 1994 end-page: 21,240 article-title: Solar‐wind electrons as tracers of the Martian magnetotail topology publication-title: Journal of Geophysical Research – volume: 122 start-page: 4009 year: 2017 end-page: 4022 article-title: Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations publication-title: Journal of Geophysical Research: Space Physics – volume: 107 issue: E10 year: 2002 article-title: An improved 50‐degree spherical harmonic model of the magnetic field of Mars derived from both high‐altitude and low‐altitude data publication-title: Journal of Geophysical Research – volume: 109 year: 2004 article-title: Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars publication-title: Journal of Geophysical Research – volume: 35 year: 2008 article-title: Evidence for collisionless magnetic reconnection at Mars publication-title: Geophysical Research Letters – volume: 45 year: 2018 article-title: Magnetic reconnection on dayside crustal magnetic fields at Mars: MAVEN observations publication-title: Geophysical Research Letters – volume: 122 start-page: 6397 year: 2017 end-page: 6414 article-title: Ionospheric control of the dawn‐dusk asymmetry of the Mars magnetotail current sheet publication-title: Journal of Geophysical Research – volume: 42 start-page: 8925 year: 2015b end-page: 8932 article-title: Marsward and tailward ions in the near‐Mars magnetotail: MAVEN observations publication-title: Geophysical Research Letters – volume: 99 start-page: 11,113 year: 1994 end-page: 11,126 article-title: Interplanetary magnetic‐field control of magnetotail magnetic‐field geometry—IMP‐8 observations publication-title: Journal of Geophysical Research – volume: 162 start-page: 173 issue: 1–4 year: 2011 end-page: 211 article-title: Ion energization and escape on Mars and Venus publication-title: Space Science Reviews – volume: 107 year: 2002 article-title: Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars publication-title: Journal of Geophysical Research – volume: 66 start-page: 1043 year: 1961 end-page: 1047 article-title: Steady state of Chapman‐Ferraro problem in 2 dimensions publication-title: Journal of Geophysical Research – volume: 97 start-page: 19,239 year: 1992 end-page: 19,249 article-title: A determination of twisting of the Earth's magnetotail at distances 115–220 Re ‐ Isee 3 publication-title: Journal of Geophysical Research – volume: 120 start-page: 7737 year: 2015 end-page: 7747 article-title: Dependence of the location of the Martian magnetic lobes on the interplanetary magnetic field direction: Observations from Mars Global Surveyor publication-title: Journal of Geophysical Research: Space Physics – volume: 111 start-page: 33 issue: 1/2 year: 2004 end-page: 114 article-title: The plasma environment of Mars publication-title: Space Science Reviews – volume: 87 start-page: 285 year: 1982 end-page: 296 article-title: The solar‐wind interaction with Mars revisited publication-title: Journal of Geophysical Research – volume: 56 start-page: 823 issue: 6 year: 2008 end-page: 827 article-title: Magnetized Mars: Transformation of Earth‐like magnetosphere to Venus‐like induced magnetosphere publication-title: Planetary and Space Science – volume: 42 start-page: 8942 year: 2015 end-page: 8950 article-title: Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel publication-title: Geophysical Research Letters – volume: 122 start-page: 1831 year: 2017 end-page: 1852 article-title: Martian low‐altitude magnetic topology deduced from MAVEN/SWEA observations publication-title: Journal of Geophysical Research: Space Physics – volume: 44 start-page: 7653 year: 2017 end-page: 7662 article-title: On the origins of magnetic flux ropes in near‐Mars magnetotail current sheets publication-title: Geophysical Research Letters – volume: 33 year: 2006 article-title: Current sheets at low altitudes in the Martian magnetotail publication-title: Geophysical Research Letters – volume: 96 start-page: 11,199 year: 1991 end-page: 11,208 article-title: A comparison of induced magnetotails of planetary bodies—Venus, Mars, and Titan publication-title: Journal of Geophysical Research – volume: 100 start-page: 17,163 year: 1995 end-page: 17,172 article-title: Interplanetary magnetic‐field control of magnetotail field—IMP‐8 data and Mhd model compared publication-title: Journal of Geophysical Research – volume: 120 start-page: 7857 year: 2015 end-page: 7872 article-title: Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations publication-title: Journal of Geophysical Research: Space Physics – volume: 279 start-page: 1676 issue: 5357 year: 1998 end-page: 1680 article-title: Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission publication-title: Science – volume: 117 start-page: 15 year: 2015 end-page: 23 article-title: Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements publication-title: Planetary and Space Science – volume: 98 start-page: 3991 year: 1993 end-page: 3997 article-title: Ion‐acceleration in the Martian tail—Phobos observations publication-title: Journal of Geophysical Research – volume: 37 year: 2010 article-title: Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape publication-title: Geophysical Research Letters – volume: 28 start-page: 4015 year: 2001 end-page: 4018 article-title: The global magnetic field of Mars and implications for crustal evolution publication-title: Geophysical Research Letters – volume: 11 start-page: 1082 year: 1984 end-page: 1085 article-title: The relationship between the IMF by and the distant tail (150–238 Re) lobe and plasmasheet by fields publication-title: Geophysical Research Letters – volume: 29 start-page: 79 issue: 1 year: 1981 end-page: 96 article-title: Magnetospheric asymmetries associated with the Y‐component of the Imf publication-title: Planetary and Space Science – ident: e_1_2_6_14_1 doi: 10.1007/s11214-015-0169-4 – ident: e_1_2_6_17_1 doi: 10.1002/2016JA023488 – volume: 18 start-page: 470 year: 1980 ident: e_1_2_6_27_1 article-title: The combined magnetosphere publication-title: Kosmicheskie Issledovaniia – ident: e_1_2_6_39_1 doi: 10.1002/2017JA023952 – ident: e_1_2_6_54_1 doi: 10.1029/91JA03145 – ident: e_1_2_6_22_1 doi: 10.1007/s11214-011-9831-7 – ident: e_1_2_6_33_1 doi: 10.1002/2016GL067752 – volume: 122 start-page: 6397 year: 2017 ident: e_1_2_6_48_1 article-title: Ionospheric control of the dawn‐dusk asymmetry of the Mars magnetotail current sheet publication-title: Journal of Geophysical Research doi: 10.1002/2016JA023707 – ident: e_1_2_6_2_1 doi: 10.1126/science.284.5415.790 – ident: e_1_2_6_52_1 doi: 10.1007/s11214-011-9811-y – ident: e_1_2_6_47_1 doi: 10.1029/2004JA010420 – ident: e_1_2_6_62_1 doi: 10.1002/2017GL075831 – ident: e_1_2_6_63_1 doi: 10.1029/GL017i006p00885 – ident: e_1_2_6_20_1 doi: 10.1002/2015GL065346 – ident: e_1_2_6_49_1 doi: 10.1002/2015GL066122 – ident: e_1_2_6_51_1 doi: 10.1029/91JA00086 – ident: e_1_2_6_8_1 doi: 10.1029/2010GL043916 – ident: e_1_2_6_18_1 doi: 10.1002/2015GL065248 – ident: e_1_2_6_55_1 doi: 10.1023/B:SPAC.0000032718.47512.92 – ident: e_1_2_6_13_1 doi: 10.1029/2001GL013619 – ident: e_1_2_6_25_1 doi: 10.1029/94JA01271 – ident: e_1_2_6_38_1 doi: 10.1002/2018GL077281 – ident: e_1_2_6_31_1 doi: 10.1016/j.icarus.2005.09.021 – ident: e_1_2_6_24_1 doi: 10.1029/92JA02233 – ident: e_1_2_6_32_1 doi: 10.1029/2006GL026229 – ident: e_1_2_6_56_1 doi: 10.1002/2015JA021359 – ident: e_1_2_6_16_1 doi: 10.1023/B:SPAC.0000032714.66124.4e – ident: e_1_2_6_21_1 doi: 10.1002/2016JA023517 – ident: e_1_2_6_37_1 doi: 10.1002/2017GL073754 – ident: e_1_2_6_34_1 doi: 10.1029/2009JA014544 – ident: e_1_2_6_43_1 doi: 10.1016/j.pss.2007.12.005 – ident: e_1_2_6_10_1 doi: 10.1002/2015GL065293 – ident: e_1_2_6_23_1 doi: 10.1002/2017JA024741 – ident: e_1_2_6_60_1 doi: 10.1002/2017JA024491 – ident: e_1_2_6_61_1 doi: 10.1002/2016JA023467 – ident: e_1_2_6_40_1 doi: 10.1002/2015GL065004 – ident: e_1_2_6_29_1 doi: 10.1029/2007GL032289 – ident: e_1_2_6_5_1 doi: 10.1016/0032-0633(91)90139-2 – ident: e_1_2_6_6_1 doi: 10.1007/s11214-011-9845-1 – ident: e_1_2_6_28_1 doi: 10.1029/JZ066i004p01043 – ident: e_1_2_6_44_1 doi: 10.1029/95JA00593 – ident: e_1_2_6_57_1 doi: 10.1029/JA090iA05p04011 – ident: e_1_2_6_26_1 doi: 10.1029/2008GL033730 – ident: e_1_2_6_46_1 doi: 10.1029/2001JA000239 – ident: e_1_2_6_12_1 doi: 10.1073/pnas.0507469102 – ident: e_1_2_6_36_1 doi: 10.1007/s11214-013-0029-z – ident: e_1_2_6_35_1 doi: 10.1002/2016JA023167 – ident: e_1_2_6_45_1 doi: 10.1029/94JA00300 – ident: e_1_2_6_3_1 doi: 10.1126/science.279.5357.1676 – ident: e_1_2_6_9_1 doi: 10.1029/2007JA012435 – ident: e_1_2_6_42_1 doi: 10.1007/s11214-015-0139-x – ident: e_1_2_6_41_1 doi: 10.1002/2015GL065005 – ident: e_1_2_6_59_1 doi: 10.1029/GL011i010p01082 – ident: e_1_2_6_4_1 doi: 10.1029/2001JE001835 – ident: e_1_2_6_15_1 doi: 10.1016/0032-0633(81)90141-0 – ident: e_1_2_6_58_1 doi: 10.1029/JB087iB12p10285 – ident: e_1_2_6_19_1 doi: 10.1002/2015JA020990 – ident: e_1_2_6_50_1 doi: 10.1016/j.pss.2015.05.004 – ident: e_1_2_6_53_1 doi: 10.1029/2003JA010367 – ident: e_1_2_6_30_1 doi: 10.1029/2011GL050444 – ident: e_1_2_6_11_1 doi: 10.1016/j.icarus.2005.09.023 – ident: e_1_2_6_7_1 doi: 10.1007/s11214-006-9122-x |
| SSID | ssj0003031 |
| Score | 2.5442412 |
| Snippet | Measurements provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft are analyzed to investigate the Martian magnetotail configuration as a... |
| SourceID | proquest crossref wiley nasa |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4559 |
| SubjectTerms | Aerosols Atmospheric evolution Computational fluid dynamics Computer simulation Configurations Earth Fluid flow Geometry Interplanetary magnetic field Investigations Lobes Lunar And Planetary Science And Exploration Magnetic field magnetic field topology Magnetic fields Magnetic reconnection Magnetohydrodynamic simulation Magnetotails Mars Mars atmosphere Mars crustal magnetic fields Mars environment Mars magnetotail configuration Mars missions Mars spacecraft MAVEN data Planetary magnetic fields Planets Rotation solar wind‐Mars interaction Spacecraft Venus |
| Title | The Twisted Configuration of the Martian Magnetotail: MAVEN Observations |
| URI | https://ntrs.nasa.gov/citations/20180006575 https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GL077251 https://www.proquest.com/docview/2055651723 |
| Volume | 45 |
| WOSCitedRecordID | wos000435262000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-8007 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yFXzxOnE6Rx70SYpb2vTi29BdhFplTN1bSZpkDKSTdVP8956kXdkeFMSnluZCyDk5-U568h2ELlwiJBeCWYIFEhwUSa0g8cDncQNwhxhsGjllfuhFkT8aBU_FgZu-C5PzQ5QHbnplGHutFzjjWUE2oDkyYefye2ET0KG5Qd1yWjqBwet9VBpisM55wrzAsXziuUXcOzS_Xm28tiNVUpaxNbS5ilnNptPd--9w99FuATdxO9ePA7Qh00O03TPpfL_gzQSAJtkR6oO-4OGnFrrA-hrgZLzIlQNPFQaUiA3hAEvhOU7lfKojT2_wQ_ulE-FHXp7tZlU07HaGt32ryLJgJXZgg-_oA2QSTmIrqoIWTUiTO0wpmggFcI96HlXM9hUVrk24csC9cJTkjEruC06a9jHM2TSVJwg7LicA2HzlMI1zXAbgSROUAeQBM6bsGrpaTnScFAzkOhHGW2z-hJMgXp2kGrosa7_nzBs_1KtqmcXQVWYKDKzyaA3Vl0KMi3WpyykgWABtejBGXL_2HfcGIfVs0jz9U-0ztKO_6yAD4tdRZT5byHO0lXzMJ9msgTbvBt3nsGGU9RvRkOEW |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yFX3xW5xOzYM-SXGmTT98G7Iv7KrIUN9K2iRjIJ2sm-J_711ay3xQEJ9a6CWE3OXyu_TyO0LOXCZVIqWwpAgUBCiKW0HqQczjBhAOCdg0Csr80Isi__k5uC_rnOJdmIIfojpww5Vh_DUucDyQLtkGkCQTti6_GzYBHuIV6mUHsAbWbnjqR5UrBv9clMwLHMtnnltmvkP7y8XW3_akWiZy8Q1vLqJWs-10Nv894C2yUSJO2ipMZJssqWyHrHZNRd8PeDM5oGm-S3pgMnT4jnqXFG8Cjkfzwj7oRFMAitRwDogMnqNMzSaYfHpNB63HdkTvkup4N98jw057eNOzykILVmoHNoSPPqAm6aS25jq44ilrJo7QmqdSA-Ljnse1sH3NpWuzRDsQYThaJYKrxJcJa9r7MGmTTB0Q6rgJA8zma0cg1HEF4CfkKAPUA55M23Vy8TXTcVqSkGMtjJfY_AxnQbw4SXVyXkm_FuQbP8jtodJi6Co3Hwyy8nidNL60GJdLE79zALGA23AwRl-_9h13H0Lu2ax5-CfpU7LWGw7COOxHt0dkHWUw54D5DVKbTefqmKykb7NxPj0xFvsJ8xbjlA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yP_DFz4nzMw_6JMWZNv3wTXSbYq1jTNlbSZtkDKQbdir-996lXZkPCuJTC7mGkFzufpdefkfIicukSqQUlhSBggBFcStIPYh53ADCIQFOo6DMD70o8geDoFvWOcW7MAU_RHXghjvD2Gvc4Goidck2gCSZ4Lr8TtgEeIhXqBcdrCNTI4s3vfZTWBljsNBF0bzAsXzmuWXuO_RwPv_9N69Uy0QuviHOedxqHE97_d9D3iBrJeakV4WSbJIFlW2R5Y6p6fsJbyYLNM23yS0oDe1_4MpLincBR8O3QkPoWFOAitSwDogMnsNMTceYfnpJH66eWxF9TKoD3rxO-u1W__rWKkstWKkd2BBA-oCbpJPamuvggqesmThCa55KDZiPex7XwvY1l67NEu1AjOFolQiuEl8mrGnvwKSNM7VLqOMmDFCbrx2BYMcVgKCQpQxwD9gybTfI2Wym47SkIcdqGC-x-R3Ognh-khrktJKeFPQbP8jVcdFi6Co3DQZbebxBDmarGJebE9s5wFhAbjgYs16_9h13eiH3bNbc-5P0MVnp3rTj8C663yerKIJJB8w_ILXp65s6JEvp-3SUvx6VKvsFWUPkPQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Twisted+Configuration+of+the+Martian+Magnetotail%3A+MAVEN+Observations&rft.jtitle=Geophysical+research+letters&rft.au=DiBraccio%2C+Gina+A.&rft.au=Luhmann%2C+Janet+G.&rft.au=Curry%2C+Shannon+M.&rft.au=Espley%2C+Jared+R.&rft.date=2018-05-28&rft.pub=American+Geophysical+Union&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=45&rft.issue=10&rft_id=info:doi/10.1029%2F2018gl077251&rft.externalDBID=CYI&rft.externalDocID=20180006575 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |