Generalized threshold replenishment: an adaptive vector quantization algorithm for the coding of nonstationary sources

In this paper, we describe a new adaptive-vector-quantization (AVQ) algorithm designed for the coding of non-stationary sources. This new algorithm, generalized threshold replenishment (GTR), differs from prior AVQ algorithms in that it features an explicit, online consideration of both rate and dis...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 7; číslo 10; s. 1410 - 1424
Hlavný autor: Fowler, J.E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.10.1998
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1057-7149
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we describe a new adaptive-vector-quantization (AVQ) algorithm designed for the coding of non-stationary sources. This new algorithm, generalized threshold replenishment (GTR), differs from prior AVQ algorithms in that it features an explicit, online consideration of both rate and distortion. Because of its online nature, GTR is more amenable to real-time hardware and software implementation than are many prior AVQ algorithms that rely on traditional batch training methods. Additionally, as rate-distortion cost criteria are used in both the determination of nearest-neighbor codewords and the decision to update the codebook, GTR achieves rate-distortion performance superior to that of other AVQ algorithms, particularly for low-rate coding. Results are presented that illustrate low-rate performance surpassing that of other AVQ algorithms for the coding of both an image sequence and an artificial non-stationary random process. For the image sequence, it is shown that (1) most AVQ algorithms achieve distortion much lower than that of nonadaptive VQ for the same rate (about 1.5 b/pixel), and (2) GTR achieves performance substantially superior to that of the other AVQ algorithms for low-rate coding, being the only algorithm to achieve a rate below 1.0 b/pixel.
AbstractList In this paper, we describe a new adaptive-vector-quantization (AVQ) algorithm designed for the coding of non-stationary sources. This new algorithm, generalized threshold replenishment (GTR), differs from prior AVQ algorithms in that it features an explicit, online consideration of both rate and distortion. Because of its online nature, GTR is more amenable to real-time hardware and software implementation than are many prior AVQ algorithms that rely on traditional batch training methods. Additionally, as rate-distortion cost criteria are used in both the determination of nearest-neighbor codewords and the decision to update the codebook, GTR achieves rate-distortion performance superior to that of other AVQ algorithms, particularly for low-rate coding. Results are presented that illustrate low-rate performance surpassing that of other AVQ algorithms for the coding of both an image sequence and an artificial non-stationary random process. For the image sequence, it is shown that (1) most AVQ algorithms achieve distortion much lower than that of nonadaptive VQ for the same rate (about 1.5 b/pixel), and (2) GTR achieves performance substantially superior to that of the other AVQ algorithms for low-rate coding, being the only algorithm to achieve a rate below 1.0 b/pixel.
In this paper, we describe a new adaptive-vector-quantization (AVQ) algorithm designed for the coding of non-stationary sources. This new algorithm, generalized threshold replenishment (GTR), differs from prior AVQ algorithms in that it features an explicit, online consideration of both rate and distortion. Because of its online nature, GTR is more amenable to real-time hardware and software implementation than are many prior AVQ algorithms that rely on traditional batch training methods. Additionally, as rate-distortion cost criteria are used in both the determination of nearest-neighbor codewords and the decision to update the codebook, GTR achieves rate-distortion performance superior to that of other AVQ algorithms, particularly for low-rate coding. Results are presented that illustrate low-rate performance surpassing that of other AVQ algorithms for the coding of both an image sequence and an artificial nonstationary random process. For the image sequence, it is shown that 1) most AVQ algorithms achieve distortion much lower than that of nonadaptive VQ for the same rate (about 1.5 b /pixel), and 2) GTR achieves performance substantially superior to that of the other AVQ algorithms for low-rate coding, being the only algorithm to achieve a rate below 1.0 b/pixel.
In this paper, we describe a new adaptive-vector-quantization (AVQ) algorithm designed for the coding of non-stationary sources. This new algorithm, generalized threshold replenishment (GTR), differs from prior AVQ algorithms in that it features an explicit, online consideration of both rate and distortion. Because of its online nature, GTR is more amenable to real-time hardware and software implementation than are many prior AVQ algorithms that rely on traditional batch training methods. Additionally, as rate-distortion cost criteria are used in both the determination of nearest-neighbor codewords and the decision to update the codebook, GTR achieves rate-distortion performance superior to that of other AVQ algorithms, particularly for low-rate coding. Results are presented that illustrate low-rate performance surpassing that of other AVQ algorithms for the coding of both an image sequence and an artificial non-stationary random process. For the image sequence, it is shown that (1) most AVQ algorithms achieve distortion much lower than that of nonadaptive VQ for the same rate (about 1.5 b/pixel), and (2) GTR achieves performance substantially superior to that of the other AVQ algorithms for low-rate coding, being the only algorithm to achieve a rate below 1.0 b/pixel.In this paper, we describe a new adaptive-vector-quantization (AVQ) algorithm designed for the coding of non-stationary sources. This new algorithm, generalized threshold replenishment (GTR), differs from prior AVQ algorithms in that it features an explicit, online consideration of both rate and distortion. Because of its online nature, GTR is more amenable to real-time hardware and software implementation than are many prior AVQ algorithms that rely on traditional batch training methods. Additionally, as rate-distortion cost criteria are used in both the determination of nearest-neighbor codewords and the decision to update the codebook, GTR achieves rate-distortion performance superior to that of other AVQ algorithms, particularly for low-rate coding. Results are presented that illustrate low-rate performance surpassing that of other AVQ algorithms for the coding of both an image sequence and an artificial non-stationary random process. For the image sequence, it is shown that (1) most AVQ algorithms achieve distortion much lower than that of nonadaptive VQ for the same rate (about 1.5 b/pixel), and (2) GTR achieves performance substantially superior to that of the other AVQ algorithms for low-rate coding, being the only algorithm to achieve a rate below 1.0 b/pixel.
In this paper, we describe a new adaptive-vector-quantization (AVQ) algorithm designed for the coding of non-stationary sources. This new algorithm, generalized threshold replenishment (GTR), differs from prior AVQ algorithms in that it features an explicit, online consideration of both rate and distortion. Because of its online nature, GTR is more amenable to real-time hardware and software implementation than are many prior AVQ algorithms that rely on traditional batch training methods. Additionally, as rate-distortion cost criteria are used in both the determination of nearest-neighbor codewords and the decision to update the codebook, GTR achieves rate-distortion performance superior to that of other AVQ algorithms, particularly for low-rate coding. Results are presented that illustrate low-rate performance surpassing that of other AVQ algorithms for the coding of both an image sequence and an artificial non-stationary random process. For the image sequence, it is shown that (1) most AVQ algorithms achieve distortion much lower than that of nonadaptive VQ for the same rate (about 1.5 b/pixel), and (2) GTR achieves performance substantially superior to that of the other AVQ algorithms for low-rate coding, being the only algorithm to achieve a rate below 1.0 b/pixel
Author Fowler, J.E.
Author_xml – sequence: 1
  givenname: J.E.
  surname: Fowler
  fullname: Fowler, J.E.
  organization: Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2405151$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18276208$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9rFTEQB_AcKv3pwasHyUEqHl6bH5tNtjcpWoWCFz0v2WTSjewmr0n2gf3rG91nBRE9hWE-M4TvnKCDEAMg9IKSC0pJd6n4haSqUewAHVMi5EbSpjtCJzl_I4Q2graH6IgqJltG1DHa3UCApCf_ABaXMUEe42Rxgu0EwedxhlCusA5YW70tfgd4B6bEhO8XHYp_0MXH2pzuYvJlnLGrrTICNtH6cIejw_V_ufxkOn3HOS7JQD5Dz5yeMjzfv6fo64f3X64_bm4_33y6fne7MbxjZeOY1ZJQzYG4DoySTLgGBOOgpLVgiNCUcOE6yYYBBqBWDs7VsrGusbTjp-jNuneb4v0CufSzzwamSQeIS-4lb6jiijRVnv9TMsUZa4n6P5RCENK2Fb7aw2WYwfbb5OcaQf8r_Ape74HORk8u6WB8fnKsIYIKWtnblZkUc07gfm8i_Y-b94r3682rvfzDGr-GX5L2018nXq4THgCeNu-bj868uhg
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s11265_014_0876_1
crossref_primary_10_1049_ip_vis_20000614
crossref_primary_10_1016_j_rti_2005_04_004
crossref_primary_10_1016_j_neunet_2007_04_029
crossref_primary_10_1049_iet_com_20060546
crossref_primary_10_1109_TIP_2008_918042
crossref_primary_10_1049_iet_ipr_2011_0303
crossref_primary_10_1109_10_951524
crossref_primary_10_1109_TVT_2017_2742460
crossref_primary_10_1109_76_889056
crossref_primary_10_1109_TIP_2003_810915
Cites_doi 10.1109/ISIT.1997.612981
10.1109/ICASSP.1995.480054
10.1109/83.557354
10.1109/49.62824
10.1109/29.17498
10.1109/TCOM.1980.1094577
10.1007/978-1-4615-3626-0
10.1109/DCC.1994.305926
10.1109/TCOMM.1994.577050
10.1049/ip-i-2.1992.0002
10.1109/TCOM.1986.1096600
10.1007/978-3-662-00784-6
10.1145/5684.5688
10.1109/76.285621
10.1109/ICASSP.1990.116022
10.1109/DCC.1997.582055
10.1109/26.1481
10.1109/TIT.1970.1054423
10.1109/18.490546
10.1109/18.508836
10.1109/TIT.1975.1055439
10.1109/ICIP.1994.413388
ContentType Journal Article
Copyright 1998 INIST-CNRS
Copyright_xml – notice: 1998 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/83.718482
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Computer and Information Systems Abstracts
MEDLINE - Academic
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EndPage 1424
ExternalDocumentID 18276208
2405151
10_1109_83_718482
718482
Genre Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c392t-f2da701a3e0f9ec8725f4e523e87ddec05a1035f972bbebe1d7bfff974df4d193
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000076029400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
IngestDate Sat Sep 27 23:33:20 EDT 2025
Sun Sep 28 09:50:15 EDT 2025
Sun Sep 28 11:09:19 EDT 2025
Thu Apr 03 07:06:42 EDT 2025
Mon Jul 21 09:13:24 EDT 2025
Sat Nov 29 03:20:35 EST 2025
Tue Nov 18 21:40:52 EST 2025
Tue Aug 26 21:00:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Software tool
Non stationary system
Adaptive algorithm
Vector quantization
Image processing
Coding
Image sequence
Deformation ratio
Real time processing
Implementation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-f2da701a3e0f9ec8725f4e523e87ddec05a1035f972bbebe1d7bfff974df4d193
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18276208
PQID 27550066
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_734183804
pubmed_primary_18276208
pascalfrancis_primary_2405151
proquest_miscellaneous_28322608
proquest_miscellaneous_27550066
crossref_primary_10_1109_83_718482
crossref_citationtrail_10_1109_83_718482
ieee_primary_718482
PublicationCentury 1900
PublicationDate 1998-10-01
PublicationDateYYYYMMDD 1998-10-01
PublicationDate_xml – month: 10
  year: 1998
  text: 1998-10-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 1998
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
crersho (ref5) 1985
ref14
ref30
ref11
ref10
lancini (ref6) 1992
chang (ref16) 1992; 139
ref1
ref24
goodman (ref3) 1991
ref23
ref26
ref22
ref21
kohonen (ref25) 1988
ref28
ref27
ref29
ref8
(ref18) 1997
ref7
fowler (ref17) 1996
ref9
ref4
paul (ref2) 1982
fowler (ref19) 1997
berger (ref20) 1971
References_xml – ident: ref29
  doi: 10.1109/ISIT.1997.612981
– ident: ref12
  doi: 10.1109/ICASSP.1995.480054
– ident: ref11
  doi: 10.1109/83.557354
– ident: ref14
  doi: 10.1109/49.62824
– start-page: 1079
  year: 1982
  ident: ref2
  article-title: A 500-800 bps adaptive vector quantization vocoder using a perceptually motivated distance measure
  publication-title: Conf Rec IEEE GLOBECOM
– ident: ref26
  doi: 10.1109/29.17498
– ident: ref24
  doi: 10.1109/TCOM.1980.1094577
– start-page: 389
  year: 1992
  ident: ref6
  article-title: Neural network approach for adaptive vector quantization of images
  publication-title: Proc Int Conf Acoustics Speech and Signal Processing
– ident: ref1
  doi: 10.1007/978-1-4615-3626-0
– ident: ref4
  doi: 10.1109/DCC.1994.305926
– ident: ref27
  doi: 10.1109/TCOMM.1994.577050
– volume: 139
  start-page: 9
  year: 1992
  ident: ref16
  article-title: image sequence coding using adaptive tree-structured vector quantisation with multipath searching
  publication-title: IEE Proceedings I - Communications Speech and Vision
  doi: 10.1049/ip-i-2.1992.0002
– ident: ref8
  doi: 10.1109/TCOM.1986.1096600
– year: 1988
  ident: ref25
  publication-title: Self-Organization and Associative Memory
  doi: 10.1007/978-3-662-00784-6
– year: 1996
  ident: ref17
  publication-title: Adaptive vector quantization for the coding of nonstationary sources
– ident: ref28
  doi: 10.1145/5684.5688
– ident: ref15
  doi: 10.1109/76.285621
– ident: ref13
  doi: 10.1109/ICASSP.1990.116022
– start-page: 133
  year: 1985
  ident: ref5
  article-title: Adaptive vector quantization by progressive codevector replacement
  publication-title: ?roc Int Conf Acoustics Speech and Signal Processing
– ident: ref7
  doi: 10.1109/DCC.1997.582055
– year: 1991
  ident: ref3
  publication-title: Neural network implementation of adaptive vector quantization for image compression
– ident: ref9
  doi: 10.1109/26.1481
– ident: ref30
  doi: 10.1109/TIT.1970.1054423
– year: 1997
  ident: ref18
  publication-title: A survey of adaptive vector quantization?Part I A unifying structure
– ident: ref22
  doi: 10.1109/18.490546
– year: 1997
  ident: ref19
  publication-title: A survey of adaptive vector quantization?Part II Classification and comparison of algorithms
– ident: ref23
  doi: 10.1109/18.508836
– year: 1971
  ident: ref20
  publication-title: Rate Distortion Theory
– ident: ref21
  doi: 10.1109/TIT.1975.1055439
– ident: ref10
  doi: 10.1109/ICIP.1994.413388
SSID ssj0014516
Score 1.6761975
Snippet In this paper, we describe a new adaptive-vector-quantization (AVQ) algorithm designed for the coding of non-stationary sources. This new algorithm,...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1410
SubjectTerms Algorithm design and analysis
Applied sciences
Costs
Exact sciences and technology
Hardware
Image coding
Image processing
Image sequences
Information, signal and communications theory
Pixel
Random processes
Rate distortion theory
Rate-distortion
Signal processing
Software algorithms
Telecommunications and information theory
Title Generalized threshold replenishment: an adaptive vector quantization algorithm for the coding of nonstationary sources
URI https://ieeexplore.ieee.org/document/718482
https://www.ncbi.nlm.nih.gov/pubmed/18276208
https://www.proquest.com/docview/27550066
https://www.proquest.com/docview/28322608
https://www.proquest.com/docview/734183804
Volume 7
WOSCitedRecordID wos000076029400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014516
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RxIEeeCy0TcvDQhy4BJzHrh1uqCrigBAHQHuLHGdcVqKbbZJdCX49Y8e7gASVestjElsez8w3HnsG4LCIJZIXYMKCjHFI_oYOlUxUKEwRY6ZRKFcO6O5SXF3J4TC79nm23VkYRHSbz_DYXrpYflnpqV0qOyE9mkrSt5-EGHRHtRYBA1tv1gU2-yIUhPp9EqGIZycyOe4-fGN6XC0VuxNSNTQYpqti8THMdObmfP2_OroBax5VsrNuGmzCEo57sO4RJvPy2_Tg86v0g1sw8zmnR09E1BJTGxuLYjVOyBSNmnvbyClTY6ZKNbFqkc3cGj_7OyV--AOcTD38rupRe_-HEf6l3yDTlTWIrDJs7NCnW26sH1kXKGi24fb8183Pi9DXYQg1oac2NHGpBI9UgtxkqKWI-yZF8mBRCtKOmvdVxJO-yURcFDQpolIUxtBtWpq0JIT4BZapPfwGLFJ2bZQEXxEOG6SlTMiZT5BQAi-RoGkAR3MW5donKbe1Mh5y56zwLJdJ3o1uAAcL0kmXmeM9op7lzoJg_nT3DdsXrwneEL6LAtifT4OcpM2GUNQYq2mTx4I8OkJp_6CwKnLAZQDsAwpBwEEmkqcBfO2m2Ev_ZUzGicvv73b7B6y6E5FuK-EOLLf1FHdhRc_aUVPvkVQM5Z6TimduiA4L
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-hggQ8MNYBCzBmTTzsJa3z0dnhDSGmIUq1h4H2FjnOeYs0mi5JK8Ffz9lxOyZtSLzl4xJbPvvud3f2HcD7IpZIVoAJC1LGIdkbOlQyUaEwRYyZRqFcOaAfUzGbyfPz7NTn2XZnYRDRbT7Dkb10sfyy1kvrKhuTHE0lyduHtnCWP6y1CRnYirMutDkRoSDc79MIRTwby2TUf3pL-bhqKnYvpGppOExfx-J-oOkUzvHWf3X1OTzzuJJ97CfCNjzA-RC2PMZkfgW3Q3j6VwLCHVj5rNPVbyLqiK2tjUaxBhekjKr20jbygak5U6VaWMHIVs7Lz66XxBF_hJOpq4u6qbrLn4wQMP0Gma6tSmS1YXOHP53DsfnF-lBB-wK-H38--3QS-koMoSb81IUmLpXgkUqQmwy1FPHEpEg2LEpB8lHziYp4MjGZiIuCpkVUisIYuk1Lk5aEEV_CgNrDXWCRst5RWvqKkNhRWsqEzPkECSfwEgmcBnC4ZlGufZpyWy3jKnfmCs9ymeT96AZwsCFd9Lk57iIaWu5sCNZP926xffOaAA4hvCiA_fU0yGm92SCKmmO9bPNYkE1HOO0fFFZIHnEZALuHQhB0kInkaQCv-il2038Zk3ri8vWd3d6Hxydn36b59Mvs6xt44s5Huo2Fb2HQNUvcg0d61VVt886tjT84ZhBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+threshold+replenishment%3A+an+adaptive+vector+quantization+algorithm+for+the+coding+of+nonstationary+sources&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Fowler%2C+J+E&rft.date=1998-10-01&rft.issn=1057-7149&rft.volume=7&rft.issue=10&rft.spage=1410&rft.epage=1424&rft_id=info:doi/10.1109%2F83.718482&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon