A New Fast Recursive Matrix Multiplication Algorithm
A new recursive algorithm is proposed for multiplying matrices of order n = 2 q ( q > 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order n = 4 μ with μ = 2 q −1 ( q > 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorith...
Saved in:
| Published in: | Cybernetics and systems analysis Vol. 55; no. 4; pp. 547 - 551 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.07.2019
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1060-0396, 1573-8337 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A new recursive algorithm is proposed for multiplying matrices of order
n
= 2
q
(
q
> 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order
n
= 4
μ
with
μ
= 2
q
−1
(
q
> 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorithms, the new algorithm minimizes the multiplicative complexity equal to
W
m
≈ 0.932
n
2.807
multiplication operations at recursive level
d
= log
2
n
−3 by 7% and reduces the computation vector by three recursion steps. The multiplicative complexity of the algorithm is estimated. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1060-0396 1573-8337 |
| DOI: | 10.1007/s10559-019-00163-2 |