A New Fast Recursive Matrix Multiplication Algorithm

A new recursive algorithm is proposed for multiplying matrices of order n = 2 q ( q > 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order n = 4 μ with μ = 2 q −1 ( q > 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorith...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cybernetics and systems analysis Ročník 55; číslo 4; s. 547 - 551
Hlavný autor: Jelfimova, L. D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2019
Springer
Springer Nature B.V
Predmet:
ISSN:1060-0396, 1573-8337
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A new recursive algorithm is proposed for multiplying matrices of order n = 2 q ( q > 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order n = 4 μ with μ = 2 q −1 ( q > 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorithms, the new algorithm minimizes the multiplicative complexity equal to W m ≈ 0.932 n 2.807 multiplication operations at recursive level d = log 2 n −3 by 7% and reduces the computation vector by three recursion steps. The multiplicative complexity of the algorithm is estimated.
AbstractList A new recursive algorithm is proposed for multiplying matrices of order n = 2 q ( q > 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order n = 4 μ with μ = 2 q −1 ( q > 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorithms, the new algorithm minimizes the multiplicative complexity equal to W m ≈ 0.932 n 2.807 multiplication operations at recursive level d = log 2 n −3 by 7% and reduces the computation vector by three recursion steps. The multiplicative complexity of the algorithm is estimated.
A new recursive algorithm is proposed for multiplying matrices of order n = [2.sup.q] (q > 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order n = 4[mu] with [mu] = [2.sup.q-1] (q > 0). As compared with the well-known recursive Strassen's and Winograd-Strassen's algorithms, the new algorithm minimizes the multiplicative complexity equal to [W.sub.m] [approximately equal to] 0.932[n.sup.2.807] multiplication operations at recursive level d = [log.sub.2] n - 3 by 7% and reduces the computation vector by three recursion steps. The multiplicative complexity of the algorithm is estimated. Keywords: linear algebra, block-recursive Strassen's algorithm, block-recursive Winograd's-Strassen's algorithm, family of fast hybrid matrix multiplication algorithms.
A new recursive algorithm is proposed for multiplying matrices of order n = 2q (q > 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order n = 4μ with μ = 2q−1 (q > 0). As compared with the well-known recursive Strassen’s and Winograd–Strassen’s algorithms, the new algorithm minimizes the multiplicative complexity equal to Wm ≈ 0.932n2.807 multiplication operations at recursive level d = log2n−3 by 7% and reduces the computation vector by three recursion steps. The multiplicative complexity of the algorithm is estimated.
A new recursive algorithm is proposed for multiplying matrices of order n = [2.sup.q] (q > 1). This algorithm is based on a fast hybrid algorithm for multiplying matrices of order n = 4[mu] with [mu] = [2.sup.q-1] (q > 0). As compared with the well-known recursive Strassen's and Winograd-Strassen's algorithms, the new algorithm minimizes the multiplicative complexity equal to [W.sub.m] [approximately equal to] 0.932[n.sup.2.807] multiplication operations at recursive level d = [log.sub.2] n - 3 by 7% and reduces the computation vector by three recursion steps. The multiplicative complexity of the algorithm is estimated.
Audience Academic
Author Jelfimova, L. D.
Author_xml – sequence: 1
  givenname: L. D.
  surname: Jelfimova
  fullname: Jelfimova, L. D.
  email: larisaelf@gmail.com
  organization: V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine
BookMark eNp9kMtKxDAUhoMoqKMv4KrgykX1NJcmXQ7iDUaFUdchk8sY6bRjknp5e6MVRBcSQkL4v3Nyvl202fWdReigguMKgJ_EChhrSqjyhqomJd5AOxXjpBSE8M18hxpKIE29jXZjfAIAAlzsIDotbuxrca5iKuZWDyH6F1tcqxT8W3E9tMmvW69V8n1XTNtlH3x6XO2hLafaaPe_zwl6OD-7P70sZ7cXV6fTWalJg1NptabCESeEqRVVDSW15coIvTCMcmEoONUI5xZgmwVbGMw4aGM5s6biYBiZoMOx7jr0z4ONST71Q-hyS4lxLYDXOI83QcdjaqlaK33n-hSUzsvYldfZk_P5fcoaQTGltMnA0S8gZ5J9S0s1xCiv7ua_s3jM6tDHGKyT6-BXKrzLCuSnejmql1m9_FIvcYbEH0j79OUw_8y3_6NkRGPu0y1t-Bn5H-oD7giYpg
CitedBy_id crossref_primary_10_1007_s10559_021_00345_x
Cites_doi 10.1109/TC.1968.227420
10.1023/A:1016676318988
10.1007/s10559-010-9233-y
10.1007/s10559-011-9367-6
10.1016/0024-3795(71)90009-7
10.1007/BF02165411
10.1090/S0002-9904-1976-13988-2
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
ISR
JQ2
DOI 10.1007/s10559-019-00163-2
DatabaseName CrossRef
Gale In Context: Science
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-8337
EndPage 551
ExternalDocumentID A598424449
10_1007_s10559_019_00163_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
29F
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7WY
8FL
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
IAO
IJ-
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M0C
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
-Y2
.4S
1SB
2.D
28-
2P1
2VQ
5QI
642
8AO
8FE
8FG
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ABUWG
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARAPS
ARCSS
ATHPR
AZQEC
BBWZM
BENPR
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EDO
FRNLG
GNUQQ
H13
HCIFZ
HZ~
I-F
ICD
IHE
K6V
K7-
KOW
M7S
MK~
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
RNI
RZC
RZE
RZK
S0W
S1Z
S26
S28
SCLPG
SDD
T16
TEORI
UZXMN
VFIZW
ZWQNP
JQ2
ID FETCH-LOGICAL-c392t-ecc48f3f88d6a4a9436e7ad8cbd5478d40fa98ffb0e9b5bd2570cde75ed170d53
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478744300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1060-0396
IngestDate Thu Sep 18 00:02:04 EDT 2025
Sat Nov 29 10:00:28 EST 2025
Wed Nov 26 10:02:36 EST 2025
Tue Nov 18 22:33:12 EST 2025
Sat Nov 29 01:48:32 EST 2025
Fri Feb 21 02:41:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords family of fast hybrid matrix multiplication algorithms
block-recursive Strassen’s algorithm
linear algebra
block-recursive Winograd’s–Strassen’s algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-ecc48f3f88d6a4a9436e7ad8cbd5478d40fa98ffb0e9b5bd2570cde75ed170d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2268076283
PQPubID 48839
PageCount 5
ParticipantIDs proquest_journals_2268076283
gale_infotracacademiconefile_A598424449
gale_incontextgauss_ISR_A598424449
crossref_primary_10_1007_s10559_019_00163_2
crossref_citationtrail_10_1007_s10559_019_00163_2
springer_journals_10_1007_s10559_019_00163_2
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cybernetics and systems analysis
PublicationTitleAbbrev Cybern Syst Anal
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Laderman (CR4) 1976; 82
Jelfimova (CR6) 2010; 46
Winograd (CR1) 1968; C-18
Elfimova, Kapitonova (CR5) 2001; 37
Winograd (CR3) 1971; 4
Jelfimova (CR7) 2011; 47
Strassen (CR2) 1969; 13
JD Laderman (163_CR4) 1976; 82
V Strassen (163_CR2) 1969; 13
LD Jelfimova (163_CR6) 2010; 46
LD Jelfimova (163_CR7) 2011; 47
SA Winograd (163_CR1) 1968; C-18
S Winograd (163_CR3) 1971; 4
LD Elfimova (163_CR5) 2001; 37
References_xml – volume: C-18
  start-page: 693
  year: 1968
  end-page: 694
  ident: CR1
  article-title: A new algorithm for inner product
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.1968.227420
– volume: 37
  start-page: 109
  issue: 1
  year: 2001
  end-page: 121
  ident: CR5
  article-title: A fast algorithm for matrix multiplication and its efficient implementation on systolic arrays
  publication-title: Cybernetics and Systems Analysis
  doi: 10.1023/A:1016676318988
– volume: 46
  start-page: 563
  issue: 4
  year: 2010
  end-page: 573
  ident: CR6
  article-title: Fast hybrid matrix multiplication algorithms
  publication-title: Cybernetics and Systems Analysis
  doi: 10.1007/s10559-010-9233-y
– volume: 47
  start-page: 881
  issue: 6
  year: 2011
  end-page: 888
  ident: CR7
  article-title: New fast hybrid matrix multiplication algorithms
  publication-title: Cybernetics and Systems analysis
  doi: 10.1007/s10559-011-9367-6
– volume: 4
  start-page: 381
  year: 1971
  end-page: 388
  ident: CR3
  article-title: On multiplication of 2×2 matrices
  publication-title: Linear Algebra and Its Application
  doi: 10.1016/0024-3795(71)90009-7
– volume: 13
  start-page: 354
  year: 1969
  end-page: 356
  ident: CR2
  article-title: Gaussian elimination is not optimal
  publication-title: Numerische Mathematik
  doi: 10.1007/BF02165411
– volume: 82
  start-page: 126
  issue: 1
  year: 1976
  end-page: 128
  ident: CR4
  article-title: A noncommutative algorithm for multiplying 3×3 matrices using 23 multiplications
  publication-title: Bulletin of the American Mathematical Society
  doi: 10.1090/S0002-9904-1976-13988-2
– volume: 13
  start-page: 354
  year: 1969
  ident: 163_CR2
  publication-title: Numerische Mathematik
  doi: 10.1007/BF02165411
– volume: C-18
  start-page: 693
  year: 1968
  ident: 163_CR1
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.1968.227420
– volume: 4
  start-page: 381
  year: 1971
  ident: 163_CR3
  publication-title: Linear Algebra and Its Application
  doi: 10.1016/0024-3795(71)90009-7
– volume: 37
  start-page: 109
  issue: 1
  year: 2001
  ident: 163_CR5
  publication-title: Cybernetics and Systems Analysis
  doi: 10.1023/A:1016676318988
– volume: 82
  start-page: 126
  issue: 1
  year: 1976
  ident: 163_CR4
  publication-title: Bulletin of the American Mathematical Society
  doi: 10.1090/S0002-9904-1976-13988-2
– volume: 46
  start-page: 563
  issue: 4
  year: 2010
  ident: 163_CR6
  publication-title: Cybernetics and Systems Analysis
  doi: 10.1007/s10559-010-9233-y
– volume: 47
  start-page: 881
  issue: 6
  year: 2011
  ident: 163_CR7
  publication-title: Cybernetics and Systems analysis
  doi: 10.1007/s10559-011-9367-6
SSID ssj0003078
Score 2.1270335
Snippet A new recursive algorithm is proposed for multiplying matrices of order n = 2 q ( q > 1). This algorithm is based on a fast hybrid algorithm for multiplying...
A new recursive algorithm is proposed for multiplying matrices of order n = [2.sup.q] (q > 1). This algorithm is based on a fast hybrid algorithm for...
A new recursive algorithm is proposed for multiplying matrices of order n = 2q (q > 1). This algorithm is based on a fast hybrid algorithm for multiplying...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 547
SubjectTerms Algebra
Algorithms
Artificial Intelligence
Complexity
Control
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Multiplication
Processor Architectures
Software Engineering/Programming and Operating Systems
Systems Theory
Title A New Fast Recursive Matrix Multiplication Algorithm
URI https://link.springer.com/article/10.1007/s10559-019-00163-2
https://www.proquest.com/docview/2268076283
Volume 55
WOSCitedRecordID wos000478744300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: 7WY
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: M0C
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: BENPR
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: K7-
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: M7S
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: P5Z
  dateStart: 20000901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-8337
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003078
  issn: 1060-0396
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8x2MN44BvRAZWFJg3EIqWNndiPBVExQauqHYztxXJshyGxdmoC4s_nnDrlY2wSPMRSlEvir_uwffc7gE_MOfsxEeGyRNmAUpYgS6UWGS_DF3hDNXWZteQ06Xb5xYXo-aCwvPJ2r44kS0n9KNgNrV9c-uKFdkoUoOCdQ3XHXcKG_uB8Kn9x1k4C4OIwCCMR-1CZl7_xRB09F8p_nY6WSqe9-LbqLsGCNzJJazIrlmHGDldgvjNFaM1XYNkzdU52PfL03irQFkGhR9oqL0jfbcQ733bScSj-d6QzcT30e3ykdX05Gl8Vv36vwVn76NvhceDTKgQajaEiwDGgPIsyzk2sqBI0im2iDNepceBehoaZEjzL0tCKlKXG5bnTxibMmkYSGhatw-xwNLQbQJTRLDZMqDTOaNRUipX2EZp0sRKK6xo0qt6V2mOOu9QX1_IBLdl1k8RukmU3yWYN9qfv_JkgbvyXescNmnRQFkPnK3OpbvJcfh30ZYsJ7sL4qKjBZ0-UjfD3WvnQA2yEQ796QrlVDb70zJxLbA4PUWnwqAZfqsF-ePzvyn18HfkmfGiW88U5A2_BbDG-sdvwXt8WV_m4Du-S7z_qMHdw1O318e4kCbDshIeuTAZY9tjPeskK98Ag-NY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hhsT2sK1laN1gWNMkhiBSmtiJ_VihVSDaamoB8WY5tgNIXTs16cSfzzl12gHbJPaQp5wT-758tu9-BvjCXLIfEzEuS5QNKGUpmlRm0fBybMDbKtLVrSW9dDDgV1fiuy8KK-ps9_pIsvLUvxW7YfSLS198ME6JA3S8LyjOWA4xfzi6XPpf1NpFAVwSBmEsEl8q8-dvPJiOHjvlJ6ej1aTTffN_3X0Lr32QSToLrWjAmp004VV_idBaNKHhjbogXz3y9MEW0A5Bp0e6qijJ0G3Eu9x20nco_nekv0g99Ht8pDO-ns5uy5sf7-Ci--38-CTw1yoEGoOhMkAZUJ7HOecmUVQJGic2VYbrzDhwL0PDXAme51loRcYy4-6508amzJp2GhoWb8P6ZDqx74Eoo1limFBZktM4UopV8RGGdIkSiusWtGvuSu0xx93VF2O5Qkt2bJLIJlmxSUYtOFy2-blA3Pgn9WcnNOmgLCYuV-ZazYtCno6GssMEd2V8VLRg3xPlU_y9Vr70AAfh0K8eUO7UwpfemAuJw-EhTho8bsFRLezV67937sPzyPdg8-S835O908HZR3gZVbrjEoN3YL2cze0ubOhf5W0x-1Qp_D2vlvVv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8QJEYfFFDjKWJjTNTIhr3bdrd9vCgXiNyFgBremm4_kAT3yO1i_POd2e0d4AeJ4WGfdrrbTmem03bmNwCvBQX7CZXhtsT4hHNRoEqVHhUvYAPZNwPbVi3ZLyYTeXysDq5k8bfR7vMryS6ngVCaqmb73IXtK4lv6AnjNhgf9FmyBI3wHU6B9LRfP_q6sMUowV0yXJ4maabymDbz929cW5p-N9B_3JS2C9Do4e27vgoPovPJhp20rMGSr9bh_niB3Fqvw1pU9pq9jYjU7x4BHzI0hmxk6oYd0gE9xbyzMaH7_2TjLiQxnv2x4dnJdHbafPv-GL6Mdj5_2E1iuYXEopPUJDg3XIYsSOlyw43iWe4L46QtHYF-OZ4Go2QIZepVKUpH9e-s84Xwrl-kTmRPYLmaVv4pMOOsyJ1QpswDzwbGiNZvQlcvN8pI24P-nNPaRixyKolxpi9RlIlNGtmkWzbpQQ_eL9qcd0gcN1K_ognUBHFRUQzNibmoa713dKiHQklK7-OqB28iUZji762JKQk4CELFuka5MRcEHZW81jgcmeJiIrMebM0n_vL1vzv37P_IX8Ldg48jvb83-fQc7g1a0aF44Q1YbmYX_gWs2B_NaT3bbGX_F5t2_lM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+NEW+FAST+RECURSIVE+MATRIX+MULTIPLICATION+ALGORITHM&rft.jtitle=Cybernetics+and+systems+analysis&rft.au=Jelfimova%2C+L.D&rft.date=2019-07-01&rft.pub=Springer&rft.issn=1060-0396&rft.volume=55&rft.issue=4&rft.spage=547&rft_id=info:doi/10.1007%2Fs10559-019-00163-2&rft.externalDocID=A598424449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1060-0396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1060-0396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1060-0396&client=summon