Variational graph auto-encoders for miRNA-disease association prediction
•Variational graph auto-encoders are excellent for predicting miRNA-disease associations.•Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network.•Integrating different databases helps predict...
Saved in:
| Published in: | Methods (San Diego, Calif.) Vol. 192; pp. 25 - 34 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
01.08.2021
|
| Subjects: | |
| ISSN: | 1046-2023, 1095-9130, 1095-9130 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Variational graph auto-encoders are excellent for predicting miRNA-disease associations.•Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network.•Integrating different databases helps predict novel miRNA-disease associations.
Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies. |
|---|---|
| AbstractList | •Variational graph auto-encoders are excellent for predicting miRNA-disease associations.•Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network.•Integrating different databases helps predict novel miRNA-disease associations.
Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies. Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies. Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies.Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies. |
| Author | Liao, Bo Ding, Yulian Lei, Xiujuan Wu, Fang-Xiang Tian, Li-Ping |
| Author_xml | – sequence: 1 givenname: Yulian surname: Ding fullname: Ding, Yulian organization: Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada – sequence: 2 givenname: Li-Ping surname: Tian fullname: Tian, Li-Ping organization: School of Information, Beijing Wuzi University, Beijing 101125, China – sequence: 3 givenname: Xiujuan surname: Lei fullname: Lei, Xiujuan organization: School of Computer Science, Shaanxi Normal University, Xi’an 710119, China – sequence: 4 givenname: Bo surname: Liao fullname: Liao, Bo organization: School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China – sequence: 5 givenname: Fang-Xiang surname: Wu fullname: Wu, Fang-Xiang email: faw341@mail.usask.ca organization: Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32798654$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctKxDAUhoMo3p9AkC7dtJ5cmrYLFyLeQBRE3YY0OaMZ2mZMOsK8vZmLGxfiKgfyfYfD_x-Q7cEPSMgJhYIClefTYtHj-FEwYFBAXQCILbJPoSnzhnLYXs5C5umb75GDGKcAQFlV75I9zqqmlqXYJ3dvOjg9Oj_oLnsPevaR6fnocxyMtxhiNvEh693z42VuXUQdMdMxerN2sllA68xyPCI7E91FPN68h-T15vrl6i5_eLq9v7p8yA1v2JhjK2sJ1lopbdO2wNNNoA2XwoKpsLaat7WhIE3DqbBGWKaFtYxJqXXJkR-Ss_XeWfCfc4yj6l002HV6QD-PiglZyZLzEv6BclGVjIsmoacbdN72aNUsuF6HhfoJKgHNGjDBxxhwoowbVxmMQbtOUVDLUtRUrUpRy1IU1CqVklz-y_1Z_7d1sbYwpfnlMKhoXKolBR7QjMp696f_DSqtpr8 |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2023_05_052 crossref_primary_10_1093_bib_bbad270 crossref_primary_10_3389_fonc_2022_987609 crossref_primary_10_1016_j_csbj_2023_09_019 crossref_primary_10_1186_s12859_024_05999_w crossref_primary_10_1109_TCBB_2024_3351752 crossref_primary_10_1007_s11704_023_3610_y crossref_primary_10_1186_s12859_022_04843_3 crossref_primary_10_1007_s12539_023_00602_x crossref_primary_10_1016_j_ymeth_2021_05_001 crossref_primary_10_1038_s41598_022_20529_5 crossref_primary_10_3389_fmicb_2023_1325001 crossref_primary_10_1016_j_neucom_2020_12_061 crossref_primary_10_1080_19490976_2025_2552347 crossref_primary_10_1038_s41540_022_00247_4 crossref_primary_10_3390_biom13101514 crossref_primary_10_1093_bib_bbac292 crossref_primary_10_1093_bib_bbae231 crossref_primary_10_1016_j_ymeth_2023_01_006 crossref_primary_10_1109_TCBB_2022_3170843 crossref_primary_10_3390_molecules27144443 crossref_primary_10_1155_2023_8342104 crossref_primary_10_1093_bib_bbac298 crossref_primary_10_1016_j_compbiolchem_2023_107992 crossref_primary_10_1016_j_jmb_2025_169360 crossref_primary_10_1109_ACCESS_2022_3163270 crossref_primary_10_1016_j_ymeth_2024_07_007 crossref_primary_10_1016_j_eswa_2024_123560 crossref_primary_10_1109_TCBB_2021_3113122 crossref_primary_10_1016_j_artmed_2024_102775 crossref_primary_10_1038_s41598_024_78212_w crossref_primary_10_1093_bib_bbae103 crossref_primary_10_3389_fgene_2021_690049 crossref_primary_10_1109_JBHI_2021_3088342 crossref_primary_10_1093_bib_bbad410 crossref_primary_10_7717_peerj_17396 crossref_primary_10_3390_molecules29010230 crossref_primary_10_1016_j_compbiomed_2023_107904 crossref_primary_10_1016_j_compbiomed_2024_108768 crossref_primary_10_1109_TCBB_2021_3106006 crossref_primary_10_1093_bib_bbab589 crossref_primary_10_3390_diseases13080245 crossref_primary_10_1093_bib_bbac159 crossref_primary_10_2139_ssrn_5110999 crossref_primary_10_1109_TCBB_2023_3235299 crossref_primary_10_1002_med_21847 crossref_primary_10_1016_j_ymeth_2021_10_008 crossref_primary_10_1016_j_csbj_2024_01_011 crossref_primary_10_1186_s12859_024_05757_y crossref_primary_10_1021_acssynbio_4c00864 crossref_primary_10_1109_ACCESS_2022_3219988 crossref_primary_10_1016_j_ymeth_2021_04_010 crossref_primary_10_1109_TCBB_2024_3415058 crossref_primary_10_1093_bib_bbab340 crossref_primary_10_1186_s40537_025_01149_y crossref_primary_10_1016_j_engappai_2025_111222 crossref_primary_10_1016_j_compbiomed_2022_106289 crossref_primary_10_1186_s12864_024_09967_9 crossref_primary_10_1109_TCYB_2020_3026652 |
| Cites_doi | 10.1093/neuonc/not001 10.1093/bioinformatics/btz158 10.3390/ijms20153648 10.1038/msb.2008.27 10.1093/bioinformatics/btv039 10.1609/aaai.v32i1.11604 10.1093/bioinformatics/btt677 10.1111/j.1469-185X.2008.00061.x 10.1093/bioinformatics/btz254 10.2174/1574893609666140804221135 10.1016/j.jbi.2018.05.005 10.1016/j.gde.2005.08.005 10.1109/TCBB.2016.2515608 10.1186/1752-0509-4-S1-S2 10.1093/bioinformatics/btt014 10.1038/srep43792 10.1371/journal.pcbi.1005912 10.1093/nar/gkn714 10.1371/journal.pcbi.1005455 10.1053/j.gastro.2007.05.022 10.4161/cc.6.17.4641 10.1038/srep05501 10.1093/bib/bbv033 10.1186/1471-2164-11-S4-S5 10.3389/fgene.2019.00385 10.1186/s12859-019-2640-9 10.1101/183863 10.1073/pnas.0605298103 10.1371/journal.pcbi.1007209 10.1016/j.jbi.2017.01.008 10.1371/journal.pcbi.1006418 10.1093/nar/gki033 10.1016/S0092-8674(03)00428-8 10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0 10.18632/oncotarget.15061 10.1093/bioinformatics/btq241 10.1126/science.1121566 10.1093/nar/gkj112 10.1039/c2mb25180a 10.1186/1752-0509-7-101 10.1093/bioinformatics/btz297 10.1109/ACCESS.2019.2957306 10.1093/bioinformatics/btz621 10.1093/nar/gkt1023 10.3390/cells8091012 10.1093/bioinformatics/bty333 10.1158/1078-0432.CCR-12-1407 10.1186/1758-907X-1-6 10.1093/bioinformatics/btu811 10.1038/onc.2012.468 10.1093/bioinformatics/btt426 10.1093/nar/gky1010 10.1109/TCBB.2016.2599866 10.1016/S0092-8674(04)00045-5 10.1177/1176934320919707 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.ymeth.2020.08.004 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1095-9130 |
| EndPage | 34 |
| ExternalDocumentID | 32798654 10_1016_j_ymeth_2020_08_004 S104620232030164X |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMG HVGLF HZ~ IHE J1W K-O KOM LG5 LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SIN SPCBC SSU SSZ T5K WUQ XPP Y6R ZGI ZMT ZU3 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c392t-eb6860ddd66d9bb030010ac364d0c7e8da3b8c106c9314dc4d2a4dd2266aa53e3 |
| ISICitedReferencesCount | 79 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000668951700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1046-2023 1095-9130 |
| IngestDate | Sat Sep 27 18:44:48 EDT 2025 Thu Oct 02 10:23:01 EDT 2025 Thu Apr 03 07:06:40 EDT 2025 Tue Nov 18 21:39:51 EST 2025 Sat Nov 29 07:07:24 EST 2025 Fri Feb 23 02:46:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Variational autoencoder Graph convolutional network miRNA-disease association |
| Language | English |
| License | Copyright © 2020 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c392t-eb6860ddd66d9bb030010ac364d0c7e8da3b8c106c9314dc4d2a4dd2266aa53e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 32798654 |
| PQID | 2434752349 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2467653350 proquest_miscellaneous_2434752349 pubmed_primary_32798654 crossref_citationtrail_10_1016_j_ymeth_2020_08_004 crossref_primary_10_1016_j_ymeth_2020_08_004 elsevier_sciencedirect_doi_10_1016_j_ymeth_2020_08_004 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 20210801 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Methods (San Diego, Calif.) |
| PublicationTitleAlternate | Methods |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | S. Rashid, S. Shah, Z. Bar-Joseph, R. Pandya, Dhaka: variational autoencoder for unmasking tumor heterogeneity from single cell genomic data, bioRxiv (2018) 183863. Jiang, Hao, Wang, Juan, Zhang, Teng, Liu, Wang (b0105) 2010; 4 Zhao, Liu, Zhu, He, Duval, Richer, Huang, Jiang, Hao, Chen (b0085) 2015; 31 Y. Ding, F. Wang, X. Lei, B. Liao, F.-X. Wu, Deep belief network–Based Matrix Factorization Model for MicroRNA-Disease Associations Prediction, Evolutionary Bioinformatics 16 (2020) 1176934320919707. Chen, Zhang, Li, Li, Liu, Chen (b0125) 2019; 10 Griffiths-Jones (b0045) 2006; 34 Zhao, Yang, Mu, Han, Shi, Chen, Deng, Zhang, Wang, Liu (b0065) 2013; 15 Peng, Hui, Li, Chen, Hao, Jiang, Shang, Wei (b0285) 2019 Bartel (b0005) 2004; 116 Ambros (b0010) 2003; 113 You, Huang, Zhu, Yan, Li, Wen, Chen (b0280) 2017; 13 J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv preprint arXiv:1312.6203 (2013). Qin, Li, Zhao (b0095) 2016; 13 Taganov, Boldin, Chang, Baltimore (b0025) 2006; 103 Xuan, Sun, Wang, Zhang, Pan (b0170) 2019; 20 Chen, Yan (b0145) 2014; 4 Yang, Ren, Liu, He, Sun, Gao, Yao, Zhang, Miao, Cao (b0325) 2010 Miska (b0020) 2005; 15 Niu, Wang, Yan, Chen (b0165) 2019; 20 Wang, Wang, Lu, Song, Cui (b0215) 2010; 26 Meng, Henson, Wehbe–Janek, Ghoshal, Jacob, Patel (b0030) 2007; 133 Kliese, Gobrecht, Pachow, Andrae, Wilisch-Neumann, Kirches, Riek-Burchardt, Angenstein, Reifenberger, Riemenschneider (b0060) 2013; 32 Rampášek, Hidru, Smirnov, Haibe-Kains, Goldenberg (b0195) 2019; 35 Karp, Ambros (b0015) 2005; 310 Xuan, Han, Guo, Li, Li, Zhong, Zhang, Ding (b0140) 2015; 31 Li, Liu, Huang, Tang, Duan, Zhang, Yang (b0180) 2019; 7 Hua, Yun, Zhiqiang, Zou (b0050) 2014; 9 Kingma, Welling (b0265) 2014 Lynam-Lennon, Maher, Reynolds (b0070) 2009; 84 Keshava Prasad, Goel, Kandasamy, Keerthikumar, Kumar, Mathivanan, Telikicherla, Raju, Shafreen, Venugopal (b0090) 2008; 37 Chen, Huang (b0160) 2017; 13 Shi, Xu, Zhang, Xu, Li, Wang, Zhao, Jiang, Guo, Li (b0135) 2013; 7 Li, Qiu, Tu, Geng, Yang, Jiang, Cui (b0205) 2013; 42 Yu, Chen, Lu (b0320) 2017; 7 Huang, Hu, Chan, You (b0190) 2020; 36 Chen, Yan (b0225) 2013; 29 Defferrard, Bresson, Vandergheynst (b0230) 2016 T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint arXiv:1611.07308, 2016. Zhang, Hu, Jiang, Song, Quan, Chen (b0185) 2019 Zeng, Zhang, Zou (b0100) 2016; 17 Chen, Liu, Yan (b0130) 2012; 8 Li, Zhang, Liu, Ning, Zhang, Zhou (b0295) 2020 Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, Thirty-Second AAAI Conference on Artificial Intelligence, 2018. Chen, Xie, Wang, Zhao, You, Liu (b0300) 2018; 34 Jiang, Wang, Hao, Juan, Teng, Zhang, Li, Wang, Liu (b0210) 2009; 37 Li, Luo, Xiao, Liang, Ding (b0120) 2018; 82 Madhavan, Zucknick, Wallwiener, Cuk, Modugno, Scharpff, Schott, Heil, Turchinovich, Yang (b0055) 2012; 18 Taguchi (b0040) 2012 Atwood, Towsley (b0255) 2016 Bandyopadhyay, Mitra, Maulik, Zhang (b0220) 2010; 1 Wu, Jiang, Zhang, Li (b0275) 2008; 4 Mørk, Pletscher-Frankild, Palleja Caro, Gorodkin, Jensen (b0115) 2014; 30 Chen, Yin, Qu, Huang (b0315) 2018; 14 Niepert, Ahmed, Kutzkov (b0245) 2016 Xuan, Han, Guo, Guo, Li, Ding, Liu, Dai, Li, Teng (b0110) 2013; 8 Luo, Ding, Liang, Cao, Chen (b0150) 2016; 14 Carleton, Cleary, Linsley (b0035) 2007; 6 Huang, Shi, Gao, Cui, Zhang, Li, Zhou, Cui (b0075) 2018; 47 Zhao, Chen, Yin (b0305) 2019; 35 Luo, Xiao (b0175) 2017; 66 T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv: 1609.02907 (2016). Xie, Ding, Han, Wu (b0330) 2013; 29 Hamosh (b0080) 2004; 33 Xuan, Pan, Zhang, Liu, Sun (b0240) 2019; 8 Li, Rong, Chen, Yan, You (b0155) 2017; 8 Chen, Zhu, Yin (b0310) 2019; 15 Rampášek (10.1016/j.ymeth.2020.08.004_b0195) 2019; 35 You (10.1016/j.ymeth.2020.08.004_b0280) 2017; 13 Huang (10.1016/j.ymeth.2020.08.004_b0190) 2020; 36 Kliese (10.1016/j.ymeth.2020.08.004_b0060) 2013; 32 Zhao (10.1016/j.ymeth.2020.08.004_b0085) 2015; 31 Taguchi (10.1016/j.ymeth.2020.08.004_b0040) 2012 Xuan (10.1016/j.ymeth.2020.08.004_b0140) 2015; 31 10.1016/j.ymeth.2020.08.004_b0235 Li (10.1016/j.ymeth.2020.08.004_b0180) 2019; 7 Keshava Prasad (10.1016/j.ymeth.2020.08.004_b0090) 2008; 37 Yu (10.1016/j.ymeth.2020.08.004_b0320) 2017; 7 Lynam-Lennon (10.1016/j.ymeth.2020.08.004_b0070) 2009; 84 Zhao (10.1016/j.ymeth.2020.08.004_b0305) 2019; 35 Jiang (10.1016/j.ymeth.2020.08.004_b0210) 2009; 37 Peng (10.1016/j.ymeth.2020.08.004_b0285) 2019 Jiang (10.1016/j.ymeth.2020.08.004_b0105) 2010; 4 10.1016/j.ymeth.2020.08.004_b0270 Zhao (10.1016/j.ymeth.2020.08.004_b0065) 2013; 15 Luo (10.1016/j.ymeth.2020.08.004_b0175) 2017; 66 Bandyopadhyay (10.1016/j.ymeth.2020.08.004_b0220) 2010; 1 Chen (10.1016/j.ymeth.2020.08.004_b0300) 2018; 34 Chen (10.1016/j.ymeth.2020.08.004_b0130) 2012; 8 Li (10.1016/j.ymeth.2020.08.004_b0205) 2013; 42 Hua (10.1016/j.ymeth.2020.08.004_b0050) 2014; 9 Mørk (10.1016/j.ymeth.2020.08.004_b0115) 2014; 30 Niu (10.1016/j.ymeth.2020.08.004_b0165) 2019; 20 Xuan (10.1016/j.ymeth.2020.08.004_b0240) 2019; 8 Chen (10.1016/j.ymeth.2020.08.004_b0145) 2014; 4 Li (10.1016/j.ymeth.2020.08.004_b0155) 2017; 8 10.1016/j.ymeth.2020.08.004_b0260 Chen (10.1016/j.ymeth.2020.08.004_b0315) 2018; 14 Zeng (10.1016/j.ymeth.2020.08.004_b0100) 2016; 17 Zhang (10.1016/j.ymeth.2020.08.004_b0185) 2019 Huang (10.1016/j.ymeth.2020.08.004_b0075) 2018; 47 Chen (10.1016/j.ymeth.2020.08.004_b0160) 2017; 13 Xie (10.1016/j.ymeth.2020.08.004_b0330) 2013; 29 Chen (10.1016/j.ymeth.2020.08.004_b0125) 2019; 10 Chen (10.1016/j.ymeth.2020.08.004_b0310) 2019; 15 Luo (10.1016/j.ymeth.2020.08.004_b0150) 2016; 14 Yang (10.1016/j.ymeth.2020.08.004_b0325) 2010 Griffiths-Jones (10.1016/j.ymeth.2020.08.004_b0045) 2006; 34 Xuan (10.1016/j.ymeth.2020.08.004_b0110) 2013; 8 Defferrard (10.1016/j.ymeth.2020.08.004_b0230) 2016 Hamosh (10.1016/j.ymeth.2020.08.004_b0080) 2004; 33 Wu (10.1016/j.ymeth.2020.08.004_b0275) 2008; 4 Li (10.1016/j.ymeth.2020.08.004_b0295) 2020 Ambros (10.1016/j.ymeth.2020.08.004_b0010) 2003; 113 Karp (10.1016/j.ymeth.2020.08.004_b0015) 2005; 310 Chen (10.1016/j.ymeth.2020.08.004_b0225) 2013; 29 Niepert (10.1016/j.ymeth.2020.08.004_b0245) 2016 10.1016/j.ymeth.2020.08.004_b0250 Kingma (10.1016/j.ymeth.2020.08.004_b0265) 2014 Xuan (10.1016/j.ymeth.2020.08.004_b0170) 2019; 20 Atwood (10.1016/j.ymeth.2020.08.004_b0255) 2016 10.1016/j.ymeth.2020.08.004_b0290 Li (10.1016/j.ymeth.2020.08.004_b0120) 2018; 82 Wang (10.1016/j.ymeth.2020.08.004_b0215) 2010; 26 Shi (10.1016/j.ymeth.2020.08.004_b0135) 2013; 7 Bartel (10.1016/j.ymeth.2020.08.004_b0005) 2004; 116 Meng (10.1016/j.ymeth.2020.08.004_b0030) 2007; 133 10.1016/j.ymeth.2020.08.004_b0200 Carleton (10.1016/j.ymeth.2020.08.004_b0035) 2007; 6 Qin (10.1016/j.ymeth.2020.08.004_b0095) 2016; 13 Taganov (10.1016/j.ymeth.2020.08.004_b0025) 2006; 103 Miska (10.1016/j.ymeth.2020.08.004_b0020) 2005; 15 Madhavan (10.1016/j.ymeth.2020.08.004_b0055) 2012; 18 |
| References_xml | – volume: 35 start-page: 4730 year: 2019 end-page: 4738 ident: b0305 article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations publication-title: Bioinformatics – volume: 31 start-page: 1226 year: 2015 end-page: 1234 ident: b0085 article-title: Identifying cancer-related microRNAs based on gene expression data publication-title: Bioinformatics – volume: 6 start-page: 2127 year: 2007 end-page: 2132 ident: b0035 article-title: MicroRNAs and cell cycle regulation publication-title: Cell Cycle – volume: 32 start-page: 4712 year: 2013 ident: b0060 article-title: miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells publication-title: Oncogene – year: 2014 ident: b0265 article-title: Stochastic gradient VB and the variational auto-encoder publication-title: Second International Conference on Learning Representations – volume: 17 start-page: 193 year: 2016 end-page: 203 ident: b0100 article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks publication-title: Briefings Bioinf. – volume: 133 start-page: 647 year: 2007 end-page: 658 ident: b0030 article-title: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer publication-title: Gastroenterology – volume: 31 start-page: 1805 year: 2015 end-page: 1815 ident: b0140 article-title: Prediction of potential disease-associated microRNAs based on random walk publication-title: Bioinformatics – volume: 29 start-page: 638 year: 2013 end-page: 644 ident: b0330 article-title: miRCancer: a microRNA–cancer association database constructed by text mining on literature publication-title: Bioinformatics – volume: 18 start-page: 5972 year: 2012 end-page: 5982 ident: b0055 article-title: Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer publication-title: Clin. Cancer Res. – start-page: 2014 year: 2016 end-page: 2023 ident: b0245 article-title: Learning convolutional neural networks for graphs publication-title: Int. Conf. Mach. Learn. – reference: T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint arXiv:1611.07308, 2016. – reference: S. Rashid, S. Shah, Z. Bar-Joseph, R. Pandya, Dhaka: variational autoencoder for unmasking tumor heterogeneity from single cell genomic data, bioRxiv (2018) 183863. – volume: 34 start-page: 3178 year: 2018 end-page: 3186 ident: b0300 article-title: BNPMDA: bipartite network projection for MiRNA–disease association prediction publication-title: Bioinformatics – volume: 20 start-page: 3648 year: 2019 ident: b0170 article-title: Inferring the disease-associated miRNAs based on network representation learning and convolutional neural networks publication-title: Int. J. Mol. Sci. – start-page: 177 year: 2019 end-page: 182 ident: b0185 article-title: Predicting Disease-related RNA Associations based on Graph Convolutional Attention Network publication-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – volume: 84 start-page: 55 year: 2009 end-page: 71 ident: b0070 article-title: The roles of microRNA in cancer and apoptosis publication-title: Biol. Rev. – volume: 13 start-page: 1027 year: 2016 end-page: 1035 ident: b0095 article-title: Identifying disease associated miRNAs based on protein domains publication-title: IEEE/ACM Transf. Comput. Biol. Bioinf. – volume: 13 year: 2017 ident: b0280 article-title: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction publication-title: PLoS Comput. Biol. – volume: 14 year: 2018 ident: b0315 article-title: MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction publication-title: PLoS Comput. Biol. – volume: 7 start-page: 43792 year: 2017 ident: b0320 article-title: Large-scale prediction of microRNA-disease associations by combinatorial prioritization algorithm publication-title: Sci. Rep. – volume: 4 start-page: S2 year: 2010 ident: b0105 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Syst. Biol. – volume: 8 start-page: 1012 year: 2019 ident: b0240 article-title: Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations publication-title: Cells – volume: 36 start-page: 851 year: 2020 end-page: 858 ident: b0190 article-title: Graph convolution for predicting associations between miRNA and drug resistance publication-title: Bioinformatics – volume: 113 start-page: 673 year: 2003 end-page: 676 ident: b0010 article-title: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing publication-title: Cell – start-page: 3844 year: 2016 end-page: 3852 ident: b0230 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in neural information processing systems – volume: 82 start-page: 169 year: 2018 end-page: 177 ident: b0120 article-title: Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity publication-title: J. Biomed. Inform. – start-page: S5 year: 2010 ident: b0325 article-title: dbDEMC: a database of differentially expressed miRNAs in human cancers publication-title: BMC Genom. – volume: 20 start-page: 59 year: 2019 ident: b0165 article-title: Integrating random walk and binary regression to identify novel miRNA-disease association publication-title: BMC Bioinf. – volume: 42 start-page: D1070 year: 2013 end-page: D1074 ident: b0205 article-title: HMDD v2. 0: a database for experimentally supported human microRNA and disease associations publication-title: Nucleic Acids Res. – reference: J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv preprint arXiv:1312.6203 (2013). – volume: 34 start-page: D140 year: 2006 end-page: D144 ident: b0045 article-title: miRBase: microRNA sequences, targets and gene nomenclature publication-title: Nucl. Acids Res. – start-page: 1993 year: 2016 end-page: 2001 ident: b0255 article-title: Diffusion-convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 37 start-page: D98 year: 2009 end-page: D104 ident: b0210 article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease publication-title: Nucleic Acids Res. – volume: 15 start-page: 563 year: 2005 end-page: 568 ident: b0020 article-title: How microRNAs control cell division, differentiation and death publication-title: Curr. Opin. Genet. Dev. – volume: 103 start-page: 12481 year: 2006 end-page: 12486 ident: b0025 article-title: NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses publication-title: Proc. Natl. Acad. Sci. – year: 2020 ident: b0295 article-title: Neural Inductive Matrix Completion with Graph Convolutional Networks for miRNA-disease association prediction publication-title: Bioinformatics – volume: 47 start-page: D1013 year: 2018 end-page: D1017 ident: b0075 article-title: HMDD v3. 0: a database for experimentally supported human microRNA–disease associations publication-title: Nucleic Acids Res. – volume: 15 year: 2019 ident: b0310 article-title: Ensemble of decision tree reveals potential miRNA-disease associations publication-title: PLoS Comput. Biol. – volume: 10 start-page: 385 year: 2019 ident: b0125 article-title: Bipartite Heterogeneous Network Method Based on Co-neighbour for MiRNA–Disease Association Prediction publication-title: Front. Genet. – volume: 14 start-page: 1468 year: 2016 end-page: 1475 ident: b0150 article-title: Collective prediction of disease-associated miRNAs based on transduction learning publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 7 start-page: 101 year: 2013 ident: b0135 article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes publication-title: BMC Syst. Biol. – volume: 33 start-page: D514 year: 2004 end-page: D517 ident: b0080 article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders publication-title: Nucleic Acids Res. – volume: 4 start-page: 5501 year: 2014 ident: b0145 article-title: Semi-supervised learning for potential human microRNA-disease associations inference publication-title: Sci. Rep. – volume: 1 start-page: 6 year: 2010 ident: b0220 article-title: Development of the human cancer microRNA network publication-title: Silence – volume: 9 start-page: 453 year: 2014 end-page: 462 ident: b0050 article-title: A discussion of micrornas in cancers publication-title: Curr. Bioinform. – volume: 35 start-page: 3743 year: 2019 end-page: 3751 ident: b0195 article-title: VAE: improving drug response prediction via modeling of drug perturbation effects publication-title: Bioinformatics – volume: 116 start-page: 281 year: 2004 end-page: 297 ident: b0005 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell – volume: 30 start-page: 392 year: 2014 end-page: 397 ident: b0115 article-title: Protein-driven inference of miRNA–disease associations publication-title: Bioinformatics – reference: Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, Thirty-Second AAAI Conference on Artificial Intelligence, 2018. – volume: 8 year: 2013 ident: b0110 article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors publication-title: PLoS One – reference: Y. Ding, F. Wang, X. Lei, B. Liao, F.-X. Wu, Deep belief network–Based Matrix Factorization Model for MicroRNA-Disease Associations Prediction, Evolutionary Bioinformatics 16 (2020) 1176934320919707. – volume: 29 start-page: 2617 year: 2013 end-page: 2624 ident: b0225 article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles publication-title: Bioinformatics – volume: 7 start-page: 176317 year: 2019 end-page: 176328 ident: b0180 article-title: MV-GCN: multi-view graph convolutional networks for link prediction publication-title: IEEE Access – year: 2019 ident: b0285 article-title: A learning-based framework for miRNA-disease association identification using neural networks publication-title: Bioinformatics – volume: 310 start-page: 1288 year: 2005 end-page: 1289 ident: b0015 article-title: Encountering microRNAs in cell fate signaling publication-title: Science – reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv: 1609.02907 (2016). – volume: 66 start-page: 194 year: 2017 end-page: 203 ident: b0175 article-title: A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network publication-title: J. Biomed. Inform. – volume: 15 start-page: 707 year: 2013 end-page: 717 ident: b0065 article-title: MiR-106a is an independent prognostic marker in patients with glioblastoma publication-title: Neuro-oncology – start-page: 441 year: 2012 end-page: 446 ident: b0040 article-title: Inference of target gene regulation via miRNAs during cell senescence by using the MiRaGE server publication-title: Int. Conf. Intell. Comput. – volume: 8 start-page: 2792 year: 2012 end-page: 2798 ident: b0130 article-title: RWRMDA: predicting novel human microRNA–disease associations publication-title: Mol. BioSyst. – volume: 13 year: 2017 ident: b0160 article-title: LRSSLMDA: Laplacian regularized sparse subspace learning for MiRNA-disease association prediction publication-title: PLoS Comput. Biol. – volume: 26 start-page: 1644 year: 2010 end-page: 1650 ident: b0215 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics – volume: 37 start-page: D767 year: 2008 end-page: D772 ident: b0090 article-title: Human protein reference database—2009 update publication-title: Nucl. Acids Res. – volume: 8 start-page: 21187 year: 2017 ident: b0155 article-title: MCMDA: Matrix completion for MiRNA-disease association prediction publication-title: Oncotarget – volume: 4 year: 2008 ident: b0275 article-title: Network-based global inference of human disease genes publication-title: Mol. Syst. Biol. – volume: 15 start-page: 707 issue: 6 year: 2013 ident: 10.1016/j.ymeth.2020.08.004_b0065 article-title: MiR-106a is an independent prognostic marker in patients with glioblastoma publication-title: Neuro-oncology doi: 10.1093/neuonc/not001 – volume: 35 start-page: 3743 issue: 19 year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0195 article-title: VAE: improving drug response prediction via modeling of drug perturbation effects publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz158 – start-page: 441 year: 2012 ident: 10.1016/j.ymeth.2020.08.004_b0040 article-title: Inference of target gene regulation via miRNAs during cell senescence by using the MiRaGE server publication-title: Int. Conf. Intell. Comput. – volume: 20 start-page: 3648 issue: 15 year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0170 article-title: Inferring the disease-associated miRNAs based on network representation learning and convolutional neural networks publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20153648 – volume: 4 issue: 1 year: 2008 ident: 10.1016/j.ymeth.2020.08.004_b0275 article-title: Network-based global inference of human disease genes publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2008.27 – volume: 31 start-page: 1805 issue: 11 year: 2015 ident: 10.1016/j.ymeth.2020.08.004_b0140 article-title: Prediction of potential disease-associated microRNAs based on random walk publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv039 – ident: 10.1016/j.ymeth.2020.08.004_b0260 doi: 10.1609/aaai.v32i1.11604 – year: 2014 ident: 10.1016/j.ymeth.2020.08.004_b0265 article-title: Stochastic gradient VB and the variational auto-encoder – start-page: 1993 year: 2016 ident: 10.1016/j.ymeth.2020.08.004_b0255 article-title: Diffusion-convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 start-page: 392 issue: 3 year: 2014 ident: 10.1016/j.ymeth.2020.08.004_b0115 article-title: Protein-driven inference of miRNA–disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt677 – volume: 84 start-page: 55 issue: 1 year: 2009 ident: 10.1016/j.ymeth.2020.08.004_b0070 article-title: The roles of microRNA in cancer and apoptosis publication-title: Biol. Rev. doi: 10.1111/j.1469-185X.2008.00061.x – year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0285 article-title: A learning-based framework for miRNA-disease association identification using neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz254 – volume: 9 start-page: 453 issue: 5 year: 2014 ident: 10.1016/j.ymeth.2020.08.004_b0050 article-title: A discussion of micrornas in cancers publication-title: Curr. Bioinform. doi: 10.2174/1574893609666140804221135 – volume: 82 start-page: 169 year: 2018 ident: 10.1016/j.ymeth.2020.08.004_b0120 article-title: Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.05.005 – volume: 15 start-page: 563 issue: 5 year: 2005 ident: 10.1016/j.ymeth.2020.08.004_b0020 article-title: How microRNAs control cell division, differentiation and death publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2005.08.005 – volume: 37 start-page: D767 issue: suppl_1 year: 2008 ident: 10.1016/j.ymeth.2020.08.004_b0090 article-title: Human protein reference database—2009 update publication-title: Nucl. Acids Res. – volume: 13 start-page: 1027 issue: 6 year: 2016 ident: 10.1016/j.ymeth.2020.08.004_b0095 article-title: Identifying disease associated miRNAs based on protein domains publication-title: IEEE/ACM Transf. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2016.2515608 – volume: 4 start-page: S2 issue: 1 year: 2010 ident: 10.1016/j.ymeth.2020.08.004_b0105 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-4-S1-S2 – volume: 29 start-page: 638 issue: 5 year: 2013 ident: 10.1016/j.ymeth.2020.08.004_b0330 article-title: miRCancer: a microRNA–cancer association database constructed by text mining on literature publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt014 – volume: 7 start-page: 43792 year: 2017 ident: 10.1016/j.ymeth.2020.08.004_b0320 article-title: Large-scale prediction of microRNA-disease associations by combinatorial prioritization algorithm publication-title: Sci. Rep. doi: 10.1038/srep43792 – volume: 13 issue: 12 year: 2017 ident: 10.1016/j.ymeth.2020.08.004_b0160 article-title: LRSSLMDA: Laplacian regularized sparse subspace learning for MiRNA-disease association prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005912 – volume: 37 start-page: D98 issue: Database year: 2009 ident: 10.1016/j.ymeth.2020.08.004_b0210 article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn714 – volume: 13 issue: 3 year: 2017 ident: 10.1016/j.ymeth.2020.08.004_b0280 article-title: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005455 – volume: 133 start-page: 647 issue: 2 year: 2007 ident: 10.1016/j.ymeth.2020.08.004_b0030 article-title: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.05.022 – volume: 6 start-page: 2127 issue: 17 year: 2007 ident: 10.1016/j.ymeth.2020.08.004_b0035 article-title: MicroRNAs and cell cycle regulation publication-title: Cell Cycle doi: 10.4161/cc.6.17.4641 – volume: 4 start-page: 5501 year: 2014 ident: 10.1016/j.ymeth.2020.08.004_b0145 article-title: Semi-supervised learning for potential human microRNA-disease associations inference publication-title: Sci. Rep. doi: 10.1038/srep05501 – volume: 17 start-page: 193 issue: 2 year: 2016 ident: 10.1016/j.ymeth.2020.08.004_b0100 article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks publication-title: Briefings Bioinf. doi: 10.1093/bib/bbv033 – start-page: S5 year: 2010 ident: 10.1016/j.ymeth.2020.08.004_b0325 article-title: dbDEMC: a database of differentially expressed miRNAs in human cancers publication-title: BMC Genom. doi: 10.1186/1471-2164-11-S4-S5 – start-page: 177 year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0185 article-title: Predicting Disease-related RNA Associations based on Graph Convolutional Attention Network – volume: 10 start-page: 385 year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0125 article-title: Bipartite Heterogeneous Network Method Based on Co-neighbour for MiRNA–Disease Association Prediction publication-title: Front. Genet. doi: 10.3389/fgene.2019.00385 – volume: 20 start-page: 59 issue: 1 year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0165 article-title: Integrating random walk and binary regression to identify novel miRNA-disease association publication-title: BMC Bioinf. doi: 10.1186/s12859-019-2640-9 – ident: 10.1016/j.ymeth.2020.08.004_b0200 doi: 10.1101/183863 – ident: 10.1016/j.ymeth.2020.08.004_b0250 – volume: 103 start-page: 12481 issue: 33 year: 2006 ident: 10.1016/j.ymeth.2020.08.004_b0025 article-title: NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0605298103 – volume: 15 issue: 7 year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0310 article-title: Ensemble of decision tree reveals potential miRNA-disease associations publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007209 – volume: 66 start-page: 194 year: 2017 ident: 10.1016/j.ymeth.2020.08.004_b0175 article-title: A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2017.01.008 – volume: 14 issue: 8 year: 2018 ident: 10.1016/j.ymeth.2020.08.004_b0315 article-title: MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006418 – volume: 33 start-page: D514 issue: Database issue year: 2004 ident: 10.1016/j.ymeth.2020.08.004_b0080 article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki033 – start-page: 2014 year: 2016 ident: 10.1016/j.ymeth.2020.08.004_b0245 article-title: Learning convolutional neural networks for graphs publication-title: Int. Conf. Mach. Learn. – year: 2020 ident: 10.1016/j.ymeth.2020.08.004_b0295 article-title: Neural Inductive Matrix Completion with Graph Convolutional Networks for miRNA-disease association prediction publication-title: Bioinformatics – volume: 113 start-page: 673 issue: 6 year: 2003 ident: 10.1016/j.ymeth.2020.08.004_b0010 article-title: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing publication-title: Cell doi: 10.1016/S0092-8674(03)00428-8 – volume: 8 issue: 8 year: 2013 ident: 10.1016/j.ymeth.2020.08.004_b0110 article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors publication-title: PLoS One doi: 10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0 – volume: 8 start-page: 21187 issue: 13 year: 2017 ident: 10.1016/j.ymeth.2020.08.004_b0155 article-title: MCMDA: Matrix completion for MiRNA-disease association prediction publication-title: Oncotarget doi: 10.18632/oncotarget.15061 – volume: 26 start-page: 1644 issue: 13 year: 2010 ident: 10.1016/j.ymeth.2020.08.004_b0215 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 310 start-page: 1288 issue: 5752 year: 2005 ident: 10.1016/j.ymeth.2020.08.004_b0015 article-title: Encountering microRNAs in cell fate signaling publication-title: Science doi: 10.1126/science.1121566 – volume: 34 start-page: D140 issue: 90001 year: 2006 ident: 10.1016/j.ymeth.2020.08.004_b0045 article-title: miRBase: microRNA sequences, targets and gene nomenclature publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkj112 – volume: 8 start-page: 2792 issue: 10 year: 2012 ident: 10.1016/j.ymeth.2020.08.004_b0130 article-title: RWRMDA: predicting novel human microRNA–disease associations publication-title: Mol. BioSyst. doi: 10.1039/c2mb25180a – volume: 7 start-page: 101 issue: 1 year: 2013 ident: 10.1016/j.ymeth.2020.08.004_b0135 article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-7-101 – volume: 35 start-page: 4730 issue: 22 year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0305 article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz297 – volume: 7 start-page: 176317 year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0180 article-title: MV-GCN: multi-view graph convolutional networks for link prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957306 – start-page: 3844 year: 2016 ident: 10.1016/j.ymeth.2020.08.004_b0230 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in neural information processing systems – volume: 36 start-page: 851 issue: 3 year: 2020 ident: 10.1016/j.ymeth.2020.08.004_b0190 article-title: Graph convolution for predicting associations between miRNA and drug resistance publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz621 – volume: 42 start-page: D1070 issue: D1 year: 2013 ident: 10.1016/j.ymeth.2020.08.004_b0205 article-title: HMDD v2. 0: a database for experimentally supported human microRNA and disease associations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1023 – ident: 10.1016/j.ymeth.2020.08.004_b0270 – volume: 8 start-page: 1012 issue: 9 year: 2019 ident: 10.1016/j.ymeth.2020.08.004_b0240 article-title: Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations publication-title: Cells doi: 10.3390/cells8091012 – volume: 34 start-page: 3178 issue: 18 year: 2018 ident: 10.1016/j.ymeth.2020.08.004_b0300 article-title: BNPMDA: bipartite network projection for MiRNA–disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty333 – volume: 18 start-page: 5972 issue: 21 year: 2012 ident: 10.1016/j.ymeth.2020.08.004_b0055 article-title: Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-1407 – volume: 1 start-page: 6 issue: 1 year: 2010 ident: 10.1016/j.ymeth.2020.08.004_b0220 article-title: Development of the human cancer microRNA network publication-title: Silence doi: 10.1186/1758-907X-1-6 – volume: 31 start-page: 1226 issue: 8 year: 2015 ident: 10.1016/j.ymeth.2020.08.004_b0085 article-title: Identifying cancer-related microRNAs based on gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu811 – volume: 32 start-page: 4712 issue: 39 year: 2013 ident: 10.1016/j.ymeth.2020.08.004_b0060 article-title: miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells publication-title: Oncogene doi: 10.1038/onc.2012.468 – volume: 29 start-page: 2617 issue: 20 year: 2013 ident: 10.1016/j.ymeth.2020.08.004_b0225 article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt426 – volume: 47 start-page: D1013 issue: D1 year: 2018 ident: 10.1016/j.ymeth.2020.08.004_b0075 article-title: HMDD v3. 0: a database for experimentally supported human microRNA–disease associations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1010 – volume: 14 start-page: 1468 issue: 6 year: 2016 ident: 10.1016/j.ymeth.2020.08.004_b0150 article-title: Collective prediction of disease-associated miRNAs based on transduction learning publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2016.2599866 – volume: 116 start-page: 281 issue: 2 year: 2004 ident: 10.1016/j.ymeth.2020.08.004_b0005 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – ident: 10.1016/j.ymeth.2020.08.004_b0235 – ident: 10.1016/j.ymeth.2020.08.004_b0290 doi: 10.1177/1176934320919707 |
| SSID | ssj0001278 |
| Score | 2.5864606 |
| Snippet | •Variational graph auto-encoders are excellent for predicting miRNA-disease associations.•Graph convolutional networks obtain good representations for miRNAs... Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 25 |
| SubjectTerms | Algorithms case studies Computational Biology Deep learning Graph convolutional network human diseases Humans microRNA MicroRNAs - genetics miRNA-disease association Neural Networks, Computer prediction Variational autoencoder |
| Title | Variational graph auto-encoders for miRNA-disease association prediction |
| URI | https://dx.doi.org/10.1016/j.ymeth.2020.08.004 https://www.ncbi.nlm.nih.gov/pubmed/32798654 https://www.proquest.com/docview/2434752349 https://www.proquest.com/docview/2467653350 |
| Volume | 192 |
| WOSCitedRecordID | wos000668951700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZYhwQvCDZ-lB9TkNBeSqrEcez4sWydBprKBB0qT5GTy1CqLS1rg7b_nrPjpKmmVeOBl6hK4zT1fTn7zp_vI-QDMOWLNPHwFY_AZdQTrmQQIZbPJYTggwgqsQkxGkWTiTy1XNWFkRMQRRFdX8v5fzU1nkNj662z_2Du5qZ4Aj-j0fGIZsfjvQz_A6PfOsNnylH3VLmcubpgpSYtG17hZf5tNHDt4kxPrUykawZAnjbWqrWejM60SdB-R4dwmGe_qhSr3tnVb2UTDq1Eys_yooW7cW53OOTuaT1UGhKQoRJM8nJatqhBuTL3_jRrZySo3_DhaieKMberZdnXvKykvXmfhq7NXVp_GbZG3uqbWz69Si9M-zdaUxsjeuqZoquVavF6Be3R1_jo7OQkHg8n4_35b1eLi-lFeKu0skW2qQhl1CHbg8_DyZdmyPapqPZM2gevy1MZIuCt371rCnNXiGKmKuOn5ImNMZxBhY1n5EFW7JDdQaGWs8sbZ98xrF-znLJDHh3Uin-75LgFHcdAx1mDjoPQcdag47Sg46yg85ycHQ3HB8euVdpwU5wfL90s4RH3AIBzkEmCjh_DdJUGnIGXiiwCFSRR6ns8lYHPIGVAFQPAqTtXKgyy4AXpFLMie0WccwhpwCKgPgcmABRo-kCCHkGmIKnqElp3XpzaMvRaDeUirvmG09j0eKx7PNYaqR7rko9No3lVhWXz5by2SmwnktUEMUZMbW74vrZhjH2v185Ukc3KRUxZwIT-Z3LTNVxwDJ9Cr0teVgBonjagQkY8ZK_v0foNebx6rd6SzvKqzN6Rh-mfZb642iNbYhLtWQT_BTdMsl8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+graph+auto-encoders+for+miRNA-disease+association+prediction&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Ding%2C+Yulian&rft.au=Tian%2C+Li-Ping&rft.au=Lei%2C+Xiujuan&rft.au=Liao%2C+Bo&rft.date=2021-08-01&rft.issn=1046-2023&rft.volume=192+p.25-34&rft.spage=25&rft.epage=34&rft_id=info:doi/10.1016%2Fj.ymeth.2020.08.004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon |