Variational graph auto-encoders for miRNA-disease association prediction

•Variational graph auto-encoders are excellent for predicting miRNA-disease associations.•Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network.•Integrating different databases helps predict...

Full description

Saved in:
Bibliographic Details
Published in:Methods (San Diego, Calif.) Vol. 192; pp. 25 - 34
Main Authors: Ding, Yulian, Tian, Li-Ping, Lei, Xiujuan, Liao, Bo, Wu, Fang-Xiang
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.08.2021
Subjects:
ISSN:1046-2023, 1095-9130, 1095-9130
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Variational graph auto-encoders are excellent for predicting miRNA-disease associations.•Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network.•Integrating different databases helps predict novel miRNA-disease associations. Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies.
AbstractList •Variational graph auto-encoders are excellent for predicting miRNA-disease associations.•Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network.•Integrating different databases helps predict novel miRNA-disease associations. Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies.
Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies.
Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies.Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and in the development of numerous complex human diseases. Thus, exploring the relationships between miRNAs and diseases is helpful with understanding the mechanisms, the detection, diagnosis, and treatment of complex diseases. As the identification of miRNA-disease associations via traditional biological experiments is time-consuming and expensive, an effective computational prediction method is appealing. In this study, we present a deep learning framework with variational graph auto-encoder for miRNA-disease association prediction (VGAE-MDA). VGAE-MDA first gets the representations of miRNAs and diseases from the heterogeneous networks constructed by miRNA-miRNA similarity, disease-disease similarity, and known miRNA-disease associations. Then, VGAE-MDA constructs two sub-networks: miRNA-based network and disease-based network. Combining the representations based on the heterogeneous network, two variational graph auto-encoders (VGAE) are deployed for calculating the miRNA-disease association scores from two sub-networks, respectively. Lastly, VGAE-MDA obtains the final predicted association score for a miRNA-disease pair by integrating the scores from these two trained networks. Unlike the previous model, the VGAE-MDA can mitigate the effect of noises from random selection of negative samples. Besides, the use of graph convolutional neural (GCN) network can naturally incorporate the node features from the graph structure while the variational autoencoder (VAE) makes use of latent variables to predict associations from the perspective of data distribution. The experimental results show that VGAE-MDA outperforms the state-of-the-art approaches in miRNA-disease association prediction. Besides, the effectiveness of our model has been further demonstrated by case studies.
Author Liao, Bo
Ding, Yulian
Lei, Xiujuan
Wu, Fang-Xiang
Tian, Li-Ping
Author_xml – sequence: 1
  givenname: Yulian
  surname: Ding
  fullname: Ding, Yulian
  organization: Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
– sequence: 2
  givenname: Li-Ping
  surname: Tian
  fullname: Tian, Li-Ping
  organization: School of Information, Beijing Wuzi University, Beijing 101125, China
– sequence: 3
  givenname: Xiujuan
  surname: Lei
  fullname: Lei, Xiujuan
  organization: School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
– sequence: 4
  givenname: Bo
  surname: Liao
  fullname: Liao, Bo
  organization: School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
– sequence: 5
  givenname: Fang-Xiang
  surname: Wu
  fullname: Wu, Fang-Xiang
  email: faw341@mail.usask.ca
  organization: Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32798654$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKxDAUhoMo3p9AkC7dtJ5cmrYLFyLeQBRE3YY0OaMZ2mZMOsK8vZmLGxfiKgfyfYfD_x-Q7cEPSMgJhYIClefTYtHj-FEwYFBAXQCILbJPoSnzhnLYXs5C5umb75GDGKcAQFlV75I9zqqmlqXYJ3dvOjg9Oj_oLnsPevaR6fnocxyMtxhiNvEh693z42VuXUQdMdMxerN2sllA68xyPCI7E91FPN68h-T15vrl6i5_eLq9v7p8yA1v2JhjK2sJ1lopbdO2wNNNoA2XwoKpsLaat7WhIE3DqbBGWKaFtYxJqXXJkR-Ss_XeWfCfc4yj6l002HV6QD-PiglZyZLzEv6BclGVjIsmoacbdN72aNUsuF6HhfoJKgHNGjDBxxhwoowbVxmMQbtOUVDLUtRUrUpRy1IU1CqVklz-y_1Z_7d1sbYwpfnlMKhoXKolBR7QjMp696f_DSqtpr8
CitedBy_id crossref_primary_10_1016_j_neunet_2023_05_052
crossref_primary_10_1093_bib_bbad270
crossref_primary_10_3389_fonc_2022_987609
crossref_primary_10_1016_j_csbj_2023_09_019
crossref_primary_10_1186_s12859_024_05999_w
crossref_primary_10_1109_TCBB_2024_3351752
crossref_primary_10_1007_s11704_023_3610_y
crossref_primary_10_1186_s12859_022_04843_3
crossref_primary_10_1007_s12539_023_00602_x
crossref_primary_10_1016_j_ymeth_2021_05_001
crossref_primary_10_1038_s41598_022_20529_5
crossref_primary_10_3389_fmicb_2023_1325001
crossref_primary_10_1016_j_neucom_2020_12_061
crossref_primary_10_1080_19490976_2025_2552347
crossref_primary_10_1038_s41540_022_00247_4
crossref_primary_10_3390_biom13101514
crossref_primary_10_1093_bib_bbac292
crossref_primary_10_1093_bib_bbae231
crossref_primary_10_1016_j_ymeth_2023_01_006
crossref_primary_10_1109_TCBB_2022_3170843
crossref_primary_10_3390_molecules27144443
crossref_primary_10_1155_2023_8342104
crossref_primary_10_1093_bib_bbac298
crossref_primary_10_1016_j_compbiolchem_2023_107992
crossref_primary_10_1016_j_jmb_2025_169360
crossref_primary_10_1109_ACCESS_2022_3163270
crossref_primary_10_1016_j_ymeth_2024_07_007
crossref_primary_10_1016_j_eswa_2024_123560
crossref_primary_10_1109_TCBB_2021_3113122
crossref_primary_10_1016_j_artmed_2024_102775
crossref_primary_10_1038_s41598_024_78212_w
crossref_primary_10_1093_bib_bbae103
crossref_primary_10_3389_fgene_2021_690049
crossref_primary_10_1109_JBHI_2021_3088342
crossref_primary_10_1093_bib_bbad410
crossref_primary_10_7717_peerj_17396
crossref_primary_10_3390_molecules29010230
crossref_primary_10_1016_j_compbiomed_2023_107904
crossref_primary_10_1016_j_compbiomed_2024_108768
crossref_primary_10_1109_TCBB_2021_3106006
crossref_primary_10_1093_bib_bbab589
crossref_primary_10_3390_diseases13080245
crossref_primary_10_1093_bib_bbac159
crossref_primary_10_2139_ssrn_5110999
crossref_primary_10_1109_TCBB_2023_3235299
crossref_primary_10_1002_med_21847
crossref_primary_10_1016_j_ymeth_2021_10_008
crossref_primary_10_1016_j_csbj_2024_01_011
crossref_primary_10_1186_s12859_024_05757_y
crossref_primary_10_1021_acssynbio_4c00864
crossref_primary_10_1109_ACCESS_2022_3219988
crossref_primary_10_1016_j_ymeth_2021_04_010
crossref_primary_10_1109_TCBB_2024_3415058
crossref_primary_10_1093_bib_bbab340
crossref_primary_10_1186_s40537_025_01149_y
crossref_primary_10_1016_j_engappai_2025_111222
crossref_primary_10_1016_j_compbiomed_2022_106289
crossref_primary_10_1186_s12864_024_09967_9
crossref_primary_10_1109_TCYB_2020_3026652
Cites_doi 10.1093/neuonc/not001
10.1093/bioinformatics/btz158
10.3390/ijms20153648
10.1038/msb.2008.27
10.1093/bioinformatics/btv039
10.1609/aaai.v32i1.11604
10.1093/bioinformatics/btt677
10.1111/j.1469-185X.2008.00061.x
10.1093/bioinformatics/btz254
10.2174/1574893609666140804221135
10.1016/j.jbi.2018.05.005
10.1016/j.gde.2005.08.005
10.1109/TCBB.2016.2515608
10.1186/1752-0509-4-S1-S2
10.1093/bioinformatics/btt014
10.1038/srep43792
10.1371/journal.pcbi.1005912
10.1093/nar/gkn714
10.1371/journal.pcbi.1005455
10.1053/j.gastro.2007.05.022
10.4161/cc.6.17.4641
10.1038/srep05501
10.1093/bib/bbv033
10.1186/1471-2164-11-S4-S5
10.3389/fgene.2019.00385
10.1186/s12859-019-2640-9
10.1101/183863
10.1073/pnas.0605298103
10.1371/journal.pcbi.1007209
10.1016/j.jbi.2017.01.008
10.1371/journal.pcbi.1006418
10.1093/nar/gki033
10.1016/S0092-8674(03)00428-8
10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0
10.18632/oncotarget.15061
10.1093/bioinformatics/btq241
10.1126/science.1121566
10.1093/nar/gkj112
10.1039/c2mb25180a
10.1186/1752-0509-7-101
10.1093/bioinformatics/btz297
10.1109/ACCESS.2019.2957306
10.1093/bioinformatics/btz621
10.1093/nar/gkt1023
10.3390/cells8091012
10.1093/bioinformatics/bty333
10.1158/1078-0432.CCR-12-1407
10.1186/1758-907X-1-6
10.1093/bioinformatics/btu811
10.1038/onc.2012.468
10.1093/bioinformatics/btt426
10.1093/nar/gky1010
10.1109/TCBB.2016.2599866
10.1016/S0092-8674(04)00045-5
10.1177/1176934320919707
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ymeth.2020.08.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1095-9130
EndPage 34
ExternalDocumentID 32798654
10_1016_j_ymeth_2020_08_004
S104620232030164X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMG
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSU
SSZ
T5K
WUQ
XPP
Y6R
ZGI
ZMT
ZU3
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c392t-eb6860ddd66d9bb030010ac364d0c7e8da3b8c106c9314dc4d2a4dd2266aa53e3
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000668951700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1046-2023
1095-9130
IngestDate Sat Sep 27 18:44:48 EDT 2025
Thu Oct 02 10:23:01 EDT 2025
Thu Apr 03 07:06:40 EDT 2025
Tue Nov 18 21:39:51 EST 2025
Sat Nov 29 07:07:24 EST 2025
Fri Feb 23 02:46:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Variational autoencoder
Graph convolutional network
miRNA-disease association
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-eb6860ddd66d9bb030010ac364d0c7e8da3b8c106c9314dc4d2a4dd2266aa53e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32798654
PQID 2434752349
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2467653350
proquest_miscellaneous_2434752349
pubmed_primary_32798654
crossref_citationtrail_10_1016_j_ymeth_2020_08_004
crossref_primary_10_1016_j_ymeth_2020_08_004
elsevier_sciencedirect_doi_10_1016_j_ymeth_2020_08_004
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Methods (San Diego, Calif.)
PublicationTitleAlternate Methods
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References S. Rashid, S. Shah, Z. Bar-Joseph, R. Pandya, Dhaka: variational autoencoder for unmasking tumor heterogeneity from single cell genomic data, bioRxiv (2018) 183863.
Jiang, Hao, Wang, Juan, Zhang, Teng, Liu, Wang (b0105) 2010; 4
Zhao, Liu, Zhu, He, Duval, Richer, Huang, Jiang, Hao, Chen (b0085) 2015; 31
Y. Ding, F. Wang, X. Lei, B. Liao, F.-X. Wu, Deep belief network–Based Matrix Factorization Model for MicroRNA-Disease Associations Prediction, Evolutionary Bioinformatics 16 (2020) 1176934320919707.
Chen, Zhang, Li, Li, Liu, Chen (b0125) 2019; 10
Griffiths-Jones (b0045) 2006; 34
Zhao, Yang, Mu, Han, Shi, Chen, Deng, Zhang, Wang, Liu (b0065) 2013; 15
Peng, Hui, Li, Chen, Hao, Jiang, Shang, Wei (b0285) 2019
Bartel (b0005) 2004; 116
Ambros (b0010) 2003; 113
You, Huang, Zhu, Yan, Li, Wen, Chen (b0280) 2017; 13
J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv preprint arXiv:1312.6203 (2013).
Qin, Li, Zhao (b0095) 2016; 13
Taganov, Boldin, Chang, Baltimore (b0025) 2006; 103
Xuan, Sun, Wang, Zhang, Pan (b0170) 2019; 20
Chen, Yan (b0145) 2014; 4
Yang, Ren, Liu, He, Sun, Gao, Yao, Zhang, Miao, Cao (b0325) 2010
Miska (b0020) 2005; 15
Niu, Wang, Yan, Chen (b0165) 2019; 20
Wang, Wang, Lu, Song, Cui (b0215) 2010; 26
Meng, Henson, Wehbe–Janek, Ghoshal, Jacob, Patel (b0030) 2007; 133
Kliese, Gobrecht, Pachow, Andrae, Wilisch-Neumann, Kirches, Riek-Burchardt, Angenstein, Reifenberger, Riemenschneider (b0060) 2013; 32
Rampášek, Hidru, Smirnov, Haibe-Kains, Goldenberg (b0195) 2019; 35
Karp, Ambros (b0015) 2005; 310
Xuan, Han, Guo, Li, Li, Zhong, Zhang, Ding (b0140) 2015; 31
Li, Liu, Huang, Tang, Duan, Zhang, Yang (b0180) 2019; 7
Hua, Yun, Zhiqiang, Zou (b0050) 2014; 9
Kingma, Welling (b0265) 2014
Lynam-Lennon, Maher, Reynolds (b0070) 2009; 84
Keshava Prasad, Goel, Kandasamy, Keerthikumar, Kumar, Mathivanan, Telikicherla, Raju, Shafreen, Venugopal (b0090) 2008; 37
Chen, Huang (b0160) 2017; 13
Shi, Xu, Zhang, Xu, Li, Wang, Zhao, Jiang, Guo, Li (b0135) 2013; 7
Li, Qiu, Tu, Geng, Yang, Jiang, Cui (b0205) 2013; 42
Yu, Chen, Lu (b0320) 2017; 7
Huang, Hu, Chan, You (b0190) 2020; 36
Chen, Yan (b0225) 2013; 29
Defferrard, Bresson, Vandergheynst (b0230) 2016
T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint arXiv:1611.07308, 2016.
Zhang, Hu, Jiang, Song, Quan, Chen (b0185) 2019
Zeng, Zhang, Zou (b0100) 2016; 17
Chen, Liu, Yan (b0130) 2012; 8
Li, Zhang, Liu, Ning, Zhang, Zhou (b0295) 2020
Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
Chen, Xie, Wang, Zhao, You, Liu (b0300) 2018; 34
Jiang, Wang, Hao, Juan, Teng, Zhang, Li, Wang, Liu (b0210) 2009; 37
Li, Luo, Xiao, Liang, Ding (b0120) 2018; 82
Madhavan, Zucknick, Wallwiener, Cuk, Modugno, Scharpff, Schott, Heil, Turchinovich, Yang (b0055) 2012; 18
Taguchi (b0040) 2012
Atwood, Towsley (b0255) 2016
Bandyopadhyay, Mitra, Maulik, Zhang (b0220) 2010; 1
Wu, Jiang, Zhang, Li (b0275) 2008; 4
Mørk, Pletscher-Frankild, Palleja Caro, Gorodkin, Jensen (b0115) 2014; 30
Chen, Yin, Qu, Huang (b0315) 2018; 14
Niepert, Ahmed, Kutzkov (b0245) 2016
Xuan, Han, Guo, Guo, Li, Ding, Liu, Dai, Li, Teng (b0110) 2013; 8
Luo, Ding, Liang, Cao, Chen (b0150) 2016; 14
Carleton, Cleary, Linsley (b0035) 2007; 6
Huang, Shi, Gao, Cui, Zhang, Li, Zhou, Cui (b0075) 2018; 47
Zhao, Chen, Yin (b0305) 2019; 35
Luo, Xiao (b0175) 2017; 66
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv: 1609.02907 (2016).
Xie, Ding, Han, Wu (b0330) 2013; 29
Hamosh (b0080) 2004; 33
Xuan, Pan, Zhang, Liu, Sun (b0240) 2019; 8
Li, Rong, Chen, Yan, You (b0155) 2017; 8
Chen, Zhu, Yin (b0310) 2019; 15
Rampášek (10.1016/j.ymeth.2020.08.004_b0195) 2019; 35
You (10.1016/j.ymeth.2020.08.004_b0280) 2017; 13
Huang (10.1016/j.ymeth.2020.08.004_b0190) 2020; 36
Kliese (10.1016/j.ymeth.2020.08.004_b0060) 2013; 32
Zhao (10.1016/j.ymeth.2020.08.004_b0085) 2015; 31
Taguchi (10.1016/j.ymeth.2020.08.004_b0040) 2012
Xuan (10.1016/j.ymeth.2020.08.004_b0140) 2015; 31
10.1016/j.ymeth.2020.08.004_b0235
Li (10.1016/j.ymeth.2020.08.004_b0180) 2019; 7
Keshava Prasad (10.1016/j.ymeth.2020.08.004_b0090) 2008; 37
Yu (10.1016/j.ymeth.2020.08.004_b0320) 2017; 7
Lynam-Lennon (10.1016/j.ymeth.2020.08.004_b0070) 2009; 84
Zhao (10.1016/j.ymeth.2020.08.004_b0305) 2019; 35
Jiang (10.1016/j.ymeth.2020.08.004_b0210) 2009; 37
Peng (10.1016/j.ymeth.2020.08.004_b0285) 2019
Jiang (10.1016/j.ymeth.2020.08.004_b0105) 2010; 4
10.1016/j.ymeth.2020.08.004_b0270
Zhao (10.1016/j.ymeth.2020.08.004_b0065) 2013; 15
Luo (10.1016/j.ymeth.2020.08.004_b0175) 2017; 66
Bandyopadhyay (10.1016/j.ymeth.2020.08.004_b0220) 2010; 1
Chen (10.1016/j.ymeth.2020.08.004_b0300) 2018; 34
Chen (10.1016/j.ymeth.2020.08.004_b0130) 2012; 8
Li (10.1016/j.ymeth.2020.08.004_b0205) 2013; 42
Hua (10.1016/j.ymeth.2020.08.004_b0050) 2014; 9
Mørk (10.1016/j.ymeth.2020.08.004_b0115) 2014; 30
Niu (10.1016/j.ymeth.2020.08.004_b0165) 2019; 20
Xuan (10.1016/j.ymeth.2020.08.004_b0240) 2019; 8
Chen (10.1016/j.ymeth.2020.08.004_b0145) 2014; 4
Li (10.1016/j.ymeth.2020.08.004_b0155) 2017; 8
10.1016/j.ymeth.2020.08.004_b0260
Chen (10.1016/j.ymeth.2020.08.004_b0315) 2018; 14
Zeng (10.1016/j.ymeth.2020.08.004_b0100) 2016; 17
Zhang (10.1016/j.ymeth.2020.08.004_b0185) 2019
Huang (10.1016/j.ymeth.2020.08.004_b0075) 2018; 47
Chen (10.1016/j.ymeth.2020.08.004_b0160) 2017; 13
Xie (10.1016/j.ymeth.2020.08.004_b0330) 2013; 29
Chen (10.1016/j.ymeth.2020.08.004_b0125) 2019; 10
Chen (10.1016/j.ymeth.2020.08.004_b0310) 2019; 15
Luo (10.1016/j.ymeth.2020.08.004_b0150) 2016; 14
Yang (10.1016/j.ymeth.2020.08.004_b0325) 2010
Griffiths-Jones (10.1016/j.ymeth.2020.08.004_b0045) 2006; 34
Xuan (10.1016/j.ymeth.2020.08.004_b0110) 2013; 8
Defferrard (10.1016/j.ymeth.2020.08.004_b0230) 2016
Hamosh (10.1016/j.ymeth.2020.08.004_b0080) 2004; 33
Wu (10.1016/j.ymeth.2020.08.004_b0275) 2008; 4
Li (10.1016/j.ymeth.2020.08.004_b0295) 2020
Ambros (10.1016/j.ymeth.2020.08.004_b0010) 2003; 113
Karp (10.1016/j.ymeth.2020.08.004_b0015) 2005; 310
Chen (10.1016/j.ymeth.2020.08.004_b0225) 2013; 29
Niepert (10.1016/j.ymeth.2020.08.004_b0245) 2016
10.1016/j.ymeth.2020.08.004_b0250
Kingma (10.1016/j.ymeth.2020.08.004_b0265) 2014
Xuan (10.1016/j.ymeth.2020.08.004_b0170) 2019; 20
Atwood (10.1016/j.ymeth.2020.08.004_b0255) 2016
10.1016/j.ymeth.2020.08.004_b0290
Li (10.1016/j.ymeth.2020.08.004_b0120) 2018; 82
Wang (10.1016/j.ymeth.2020.08.004_b0215) 2010; 26
Shi (10.1016/j.ymeth.2020.08.004_b0135) 2013; 7
Bartel (10.1016/j.ymeth.2020.08.004_b0005) 2004; 116
Meng (10.1016/j.ymeth.2020.08.004_b0030) 2007; 133
10.1016/j.ymeth.2020.08.004_b0200
Carleton (10.1016/j.ymeth.2020.08.004_b0035) 2007; 6
Qin (10.1016/j.ymeth.2020.08.004_b0095) 2016; 13
Taganov (10.1016/j.ymeth.2020.08.004_b0025) 2006; 103
Miska (10.1016/j.ymeth.2020.08.004_b0020) 2005; 15
Madhavan (10.1016/j.ymeth.2020.08.004_b0055) 2012; 18
References_xml – volume: 35
  start-page: 4730
  year: 2019
  end-page: 4738
  ident: b0305
  article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations
  publication-title: Bioinformatics
– volume: 31
  start-page: 1226
  year: 2015
  end-page: 1234
  ident: b0085
  article-title: Identifying cancer-related microRNAs based on gene expression data
  publication-title: Bioinformatics
– volume: 6
  start-page: 2127
  year: 2007
  end-page: 2132
  ident: b0035
  article-title: MicroRNAs and cell cycle regulation
  publication-title: Cell Cycle
– volume: 32
  start-page: 4712
  year: 2013
  ident: b0060
  article-title: miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells
  publication-title: Oncogene
– year: 2014
  ident: b0265
  article-title: Stochastic gradient VB and the variational auto-encoder
  publication-title: Second International Conference on Learning Representations
– volume: 17
  start-page: 193
  year: 2016
  end-page: 203
  ident: b0100
  article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks
  publication-title: Briefings Bioinf.
– volume: 133
  start-page: 647
  year: 2007
  end-page: 658
  ident: b0030
  article-title: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer
  publication-title: Gastroenterology
– volume: 31
  start-page: 1805
  year: 2015
  end-page: 1815
  ident: b0140
  article-title: Prediction of potential disease-associated microRNAs based on random walk
  publication-title: Bioinformatics
– volume: 29
  start-page: 638
  year: 2013
  end-page: 644
  ident: b0330
  article-title: miRCancer: a microRNA–cancer association database constructed by text mining on literature
  publication-title: Bioinformatics
– volume: 18
  start-page: 5972
  year: 2012
  end-page: 5982
  ident: b0055
  article-title: Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer
  publication-title: Clin. Cancer Res.
– start-page: 2014
  year: 2016
  end-page: 2023
  ident: b0245
  article-title: Learning convolutional neural networks for graphs
  publication-title: Int. Conf. Mach. Learn.
– reference: T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint arXiv:1611.07308, 2016.
– reference: S. Rashid, S. Shah, Z. Bar-Joseph, R. Pandya, Dhaka: variational autoencoder for unmasking tumor heterogeneity from single cell genomic data, bioRxiv (2018) 183863.
– volume: 34
  start-page: 3178
  year: 2018
  end-page: 3186
  ident: b0300
  article-title: BNPMDA: bipartite network projection for MiRNA–disease association prediction
  publication-title: Bioinformatics
– volume: 20
  start-page: 3648
  year: 2019
  ident: b0170
  article-title: Inferring the disease-associated miRNAs based on network representation learning and convolutional neural networks
  publication-title: Int. J. Mol. Sci.
– start-page: 177
  year: 2019
  end-page: 182
  ident: b0185
  article-title: Predicting Disease-related RNA Associations based on Graph Convolutional Attention Network
  publication-title: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– volume: 84
  start-page: 55
  year: 2009
  end-page: 71
  ident: b0070
  article-title: The roles of microRNA in cancer and apoptosis
  publication-title: Biol. Rev.
– volume: 13
  start-page: 1027
  year: 2016
  end-page: 1035
  ident: b0095
  article-title: Identifying disease associated miRNAs based on protein domains
  publication-title: IEEE/ACM Transf. Comput. Biol. Bioinf.
– volume: 13
  year: 2017
  ident: b0280
  article-title: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
– volume: 14
  year: 2018
  ident: b0315
  article-title: MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
– volume: 7
  start-page: 43792
  year: 2017
  ident: b0320
  article-title: Large-scale prediction of microRNA-disease associations by combinatorial prioritization algorithm
  publication-title: Sci. Rep.
– volume: 4
  start-page: S2
  year: 2010
  ident: b0105
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Syst. Biol.
– volume: 8
  start-page: 1012
  year: 2019
  ident: b0240
  article-title: Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations
  publication-title: Cells
– volume: 36
  start-page: 851
  year: 2020
  end-page: 858
  ident: b0190
  article-title: Graph convolution for predicting associations between miRNA and drug resistance
  publication-title: Bioinformatics
– volume: 113
  start-page: 673
  year: 2003
  end-page: 676
  ident: b0010
  article-title: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing
  publication-title: Cell
– start-page: 3844
  year: 2016
  end-page: 3852
  ident: b0230
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in neural information processing systems
– volume: 82
  start-page: 169
  year: 2018
  end-page: 177
  ident: b0120
  article-title: Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity
  publication-title: J. Biomed. Inform.
– start-page: S5
  year: 2010
  ident: b0325
  article-title: dbDEMC: a database of differentially expressed miRNAs in human cancers
  publication-title: BMC Genom.
– volume: 20
  start-page: 59
  year: 2019
  ident: b0165
  article-title: Integrating random walk and binary regression to identify novel miRNA-disease association
  publication-title: BMC Bioinf.
– volume: 42
  start-page: D1070
  year: 2013
  end-page: D1074
  ident: b0205
  article-title: HMDD v2. 0: a database for experimentally supported human microRNA and disease associations
  publication-title: Nucleic Acids Res.
– reference: J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv preprint arXiv:1312.6203 (2013).
– volume: 34
  start-page: D140
  year: 2006
  end-page: D144
  ident: b0045
  article-title: miRBase: microRNA sequences, targets and gene nomenclature
  publication-title: Nucl. Acids Res.
– start-page: 1993
  year: 2016
  end-page: 2001
  ident: b0255
  article-title: Diffusion-convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 37
  start-page: D98
  year: 2009
  end-page: D104
  ident: b0210
  article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 563
  year: 2005
  end-page: 568
  ident: b0020
  article-title: How microRNAs control cell division, differentiation and death
  publication-title: Curr. Opin. Genet. Dev.
– volume: 103
  start-page: 12481
  year: 2006
  end-page: 12486
  ident: b0025
  article-title: NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses
  publication-title: Proc. Natl. Acad. Sci.
– year: 2020
  ident: b0295
  article-title: Neural Inductive Matrix Completion with Graph Convolutional Networks for miRNA-disease association prediction
  publication-title: Bioinformatics
– volume: 47
  start-page: D1013
  year: 2018
  end-page: D1017
  ident: b0075
  article-title: HMDD v3. 0: a database for experimentally supported human microRNA–disease associations
  publication-title: Nucleic Acids Res.
– volume: 15
  year: 2019
  ident: b0310
  article-title: Ensemble of decision tree reveals potential miRNA-disease associations
  publication-title: PLoS Comput. Biol.
– volume: 10
  start-page: 385
  year: 2019
  ident: b0125
  article-title: Bipartite Heterogeneous Network Method Based on Co-neighbour for MiRNA–Disease Association Prediction
  publication-title: Front. Genet.
– volume: 14
  start-page: 1468
  year: 2016
  end-page: 1475
  ident: b0150
  article-title: Collective prediction of disease-associated miRNAs based on transduction learning
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 7
  start-page: 101
  year: 2013
  ident: b0135
  article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
  publication-title: BMC Syst. Biol.
– volume: 33
  start-page: D514
  year: 2004
  end-page: D517
  ident: b0080
  article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
  publication-title: Nucleic Acids Res.
– volume: 4
  start-page: 5501
  year: 2014
  ident: b0145
  article-title: Semi-supervised learning for potential human microRNA-disease associations inference
  publication-title: Sci. Rep.
– volume: 1
  start-page: 6
  year: 2010
  ident: b0220
  article-title: Development of the human cancer microRNA network
  publication-title: Silence
– volume: 9
  start-page: 453
  year: 2014
  end-page: 462
  ident: b0050
  article-title: A discussion of micrornas in cancers
  publication-title: Curr. Bioinform.
– volume: 35
  start-page: 3743
  year: 2019
  end-page: 3751
  ident: b0195
  article-title: VAE: improving drug response prediction via modeling of drug perturbation effects
  publication-title: Bioinformatics
– volume: 116
  start-page: 281
  year: 2004
  end-page: 297
  ident: b0005
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
– volume: 30
  start-page: 392
  year: 2014
  end-page: 397
  ident: b0115
  article-title: Protein-driven inference of miRNA–disease associations
  publication-title: Bioinformatics
– reference: Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
– volume: 8
  year: 2013
  ident: b0110
  article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors
  publication-title: PLoS One
– reference: Y. Ding, F. Wang, X. Lei, B. Liao, F.-X. Wu, Deep belief network–Based Matrix Factorization Model for MicroRNA-Disease Associations Prediction, Evolutionary Bioinformatics 16 (2020) 1176934320919707.
– volume: 29
  start-page: 2617
  year: 2013
  end-page: 2624
  ident: b0225
  article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles
  publication-title: Bioinformatics
– volume: 7
  start-page: 176317
  year: 2019
  end-page: 176328
  ident: b0180
  article-title: MV-GCN: multi-view graph convolutional networks for link prediction
  publication-title: IEEE Access
– year: 2019
  ident: b0285
  article-title: A learning-based framework for miRNA-disease association identification using neural networks
  publication-title: Bioinformatics
– volume: 310
  start-page: 1288
  year: 2005
  end-page: 1289
  ident: b0015
  article-title: Encountering microRNAs in cell fate signaling
  publication-title: Science
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv: 1609.02907 (2016).
– volume: 66
  start-page: 194
  year: 2017
  end-page: 203
  ident: b0175
  article-title: A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network
  publication-title: J. Biomed. Inform.
– volume: 15
  start-page: 707
  year: 2013
  end-page: 717
  ident: b0065
  article-title: MiR-106a is an independent prognostic marker in patients with glioblastoma
  publication-title: Neuro-oncology
– start-page: 441
  year: 2012
  end-page: 446
  ident: b0040
  article-title: Inference of target gene regulation via miRNAs during cell senescence by using the MiRaGE server
  publication-title: Int. Conf. Intell. Comput.
– volume: 8
  start-page: 2792
  year: 2012
  end-page: 2798
  ident: b0130
  article-title: RWRMDA: predicting novel human microRNA–disease associations
  publication-title: Mol. BioSyst.
– volume: 13
  year: 2017
  ident: b0160
  article-title: LRSSLMDA: Laplacian regularized sparse subspace learning for MiRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
– volume: 26
  start-page: 1644
  year: 2010
  end-page: 1650
  ident: b0215
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
– volume: 37
  start-page: D767
  year: 2008
  end-page: D772
  ident: b0090
  article-title: Human protein reference database—2009 update
  publication-title: Nucl. Acids Res.
– volume: 8
  start-page: 21187
  year: 2017
  ident: b0155
  article-title: MCMDA: Matrix completion for MiRNA-disease association prediction
  publication-title: Oncotarget
– volume: 4
  year: 2008
  ident: b0275
  article-title: Network-based global inference of human disease genes
  publication-title: Mol. Syst. Biol.
– volume: 15
  start-page: 707
  issue: 6
  year: 2013
  ident: 10.1016/j.ymeth.2020.08.004_b0065
  article-title: MiR-106a is an independent prognostic marker in patients with glioblastoma
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/not001
– volume: 35
  start-page: 3743
  issue: 19
  year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0195
  article-title: VAE: improving drug response prediction via modeling of drug perturbation effects
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz158
– start-page: 441
  year: 2012
  ident: 10.1016/j.ymeth.2020.08.004_b0040
  article-title: Inference of target gene regulation via miRNAs during cell senescence by using the MiRaGE server
  publication-title: Int. Conf. Intell. Comput.
– volume: 20
  start-page: 3648
  issue: 15
  year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0170
  article-title: Inferring the disease-associated miRNAs based on network representation learning and convolutional neural networks
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20153648
– volume: 4
  issue: 1
  year: 2008
  ident: 10.1016/j.ymeth.2020.08.004_b0275
  article-title: Network-based global inference of human disease genes
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2008.27
– volume: 31
  start-page: 1805
  issue: 11
  year: 2015
  ident: 10.1016/j.ymeth.2020.08.004_b0140
  article-title: Prediction of potential disease-associated microRNAs based on random walk
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv039
– ident: 10.1016/j.ymeth.2020.08.004_b0260
  doi: 10.1609/aaai.v32i1.11604
– year: 2014
  ident: 10.1016/j.ymeth.2020.08.004_b0265
  article-title: Stochastic gradient VB and the variational auto-encoder
– start-page: 1993
  year: 2016
  ident: 10.1016/j.ymeth.2020.08.004_b0255
  article-title: Diffusion-convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 392
  issue: 3
  year: 2014
  ident: 10.1016/j.ymeth.2020.08.004_b0115
  article-title: Protein-driven inference of miRNA–disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt677
– volume: 84
  start-page: 55
  issue: 1
  year: 2009
  ident: 10.1016/j.ymeth.2020.08.004_b0070
  article-title: The roles of microRNA in cancer and apoptosis
  publication-title: Biol. Rev.
  doi: 10.1111/j.1469-185X.2008.00061.x
– year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0285
  article-title: A learning-based framework for miRNA-disease association identification using neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz254
– volume: 9
  start-page: 453
  issue: 5
  year: 2014
  ident: 10.1016/j.ymeth.2020.08.004_b0050
  article-title: A discussion of micrornas in cancers
  publication-title: Curr. Bioinform.
  doi: 10.2174/1574893609666140804221135
– volume: 82
  start-page: 169
  year: 2018
  ident: 10.1016/j.ymeth.2020.08.004_b0120
  article-title: Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.05.005
– volume: 15
  start-page: 563
  issue: 5
  year: 2005
  ident: 10.1016/j.ymeth.2020.08.004_b0020
  article-title: How microRNAs control cell division, differentiation and death
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2005.08.005
– volume: 37
  start-page: D767
  issue: suppl_1
  year: 2008
  ident: 10.1016/j.ymeth.2020.08.004_b0090
  article-title: Human protein reference database—2009 update
  publication-title: Nucl. Acids Res.
– volume: 13
  start-page: 1027
  issue: 6
  year: 2016
  ident: 10.1016/j.ymeth.2020.08.004_b0095
  article-title: Identifying disease associated miRNAs based on protein domains
  publication-title: IEEE/ACM Transf. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2016.2515608
– volume: 4
  start-page: S2
  issue: 1
  year: 2010
  ident: 10.1016/j.ymeth.2020.08.004_b0105
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 29
  start-page: 638
  issue: 5
  year: 2013
  ident: 10.1016/j.ymeth.2020.08.004_b0330
  article-title: miRCancer: a microRNA–cancer association database constructed by text mining on literature
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt014
– volume: 7
  start-page: 43792
  year: 2017
  ident: 10.1016/j.ymeth.2020.08.004_b0320
  article-title: Large-scale prediction of microRNA-disease associations by combinatorial prioritization algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/srep43792
– volume: 13
  issue: 12
  year: 2017
  ident: 10.1016/j.ymeth.2020.08.004_b0160
  article-title: LRSSLMDA: Laplacian regularized sparse subspace learning for MiRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005912
– volume: 37
  start-page: D98
  issue: Database
  year: 2009
  ident: 10.1016/j.ymeth.2020.08.004_b0210
  article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn714
– volume: 13
  issue: 3
  year: 2017
  ident: 10.1016/j.ymeth.2020.08.004_b0280
  article-title: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005455
– volume: 133
  start-page: 647
  issue: 2
  year: 2007
  ident: 10.1016/j.ymeth.2020.08.004_b0030
  article-title: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2007.05.022
– volume: 6
  start-page: 2127
  issue: 17
  year: 2007
  ident: 10.1016/j.ymeth.2020.08.004_b0035
  article-title: MicroRNAs and cell cycle regulation
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.17.4641
– volume: 4
  start-page: 5501
  year: 2014
  ident: 10.1016/j.ymeth.2020.08.004_b0145
  article-title: Semi-supervised learning for potential human microRNA-disease associations inference
  publication-title: Sci. Rep.
  doi: 10.1038/srep05501
– volume: 17
  start-page: 193
  issue: 2
  year: 2016
  ident: 10.1016/j.ymeth.2020.08.004_b0100
  article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbv033
– start-page: S5
  year: 2010
  ident: 10.1016/j.ymeth.2020.08.004_b0325
  article-title: dbDEMC: a database of differentially expressed miRNAs in human cancers
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-11-S4-S5
– start-page: 177
  year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0185
  article-title: Predicting Disease-related RNA Associations based on Graph Convolutional Attention Network
– volume: 10
  start-page: 385
  year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0125
  article-title: Bipartite Heterogeneous Network Method Based on Co-neighbour for MiRNA–Disease Association Prediction
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00385
– volume: 20
  start-page: 59
  issue: 1
  year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0165
  article-title: Integrating random walk and binary regression to identify novel miRNA-disease association
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-019-2640-9
– ident: 10.1016/j.ymeth.2020.08.004_b0200
  doi: 10.1101/183863
– ident: 10.1016/j.ymeth.2020.08.004_b0250
– volume: 103
  start-page: 12481
  issue: 33
  year: 2006
  ident: 10.1016/j.ymeth.2020.08.004_b0025
  article-title: NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0605298103
– volume: 15
  issue: 7
  year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0310
  article-title: Ensemble of decision tree reveals potential miRNA-disease associations
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007209
– volume: 66
  start-page: 194
  year: 2017
  ident: 10.1016/j.ymeth.2020.08.004_b0175
  article-title: A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2017.01.008
– volume: 14
  issue: 8
  year: 2018
  ident: 10.1016/j.ymeth.2020.08.004_b0315
  article-title: MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006418
– volume: 33
  start-page: D514
  issue: Database issue
  year: 2004
  ident: 10.1016/j.ymeth.2020.08.004_b0080
  article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki033
– start-page: 2014
  year: 2016
  ident: 10.1016/j.ymeth.2020.08.004_b0245
  article-title: Learning convolutional neural networks for graphs
  publication-title: Int. Conf. Mach. Learn.
– year: 2020
  ident: 10.1016/j.ymeth.2020.08.004_b0295
  article-title: Neural Inductive Matrix Completion with Graph Convolutional Networks for miRNA-disease association prediction
  publication-title: Bioinformatics
– volume: 113
  start-page: 673
  issue: 6
  year: 2003
  ident: 10.1016/j.ymeth.2020.08.004_b0010
  article-title: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00428-8
– volume: 8
  issue: 8
  year: 2013
  ident: 10.1016/j.ymeth.2020.08.004_b0110
  article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors
  publication-title: PLoS One
  doi: 10.1371/annotation/28592478-72f5-4937-919b-b2342d6ceda0
– volume: 8
  start-page: 21187
  issue: 13
  year: 2017
  ident: 10.1016/j.ymeth.2020.08.004_b0155
  article-title: MCMDA: Matrix completion for MiRNA-disease association prediction
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15061
– volume: 26
  start-page: 1644
  issue: 13
  year: 2010
  ident: 10.1016/j.ymeth.2020.08.004_b0215
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 310
  start-page: 1288
  issue: 5752
  year: 2005
  ident: 10.1016/j.ymeth.2020.08.004_b0015
  article-title: Encountering microRNAs in cell fate signaling
  publication-title: Science
  doi: 10.1126/science.1121566
– volume: 34
  start-page: D140
  issue: 90001
  year: 2006
  ident: 10.1016/j.ymeth.2020.08.004_b0045
  article-title: miRBase: microRNA sequences, targets and gene nomenclature
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkj112
– volume: 8
  start-page: 2792
  issue: 10
  year: 2012
  ident: 10.1016/j.ymeth.2020.08.004_b0130
  article-title: RWRMDA: predicting novel human microRNA–disease associations
  publication-title: Mol. BioSyst.
  doi: 10.1039/c2mb25180a
– volume: 7
  start-page: 101
  issue: 1
  year: 2013
  ident: 10.1016/j.ymeth.2020.08.004_b0135
  article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-7-101
– volume: 35
  start-page: 4730
  issue: 22
  year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0305
  article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz297
– volume: 7
  start-page: 176317
  year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0180
  article-title: MV-GCN: multi-view graph convolutional networks for link prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957306
– start-page: 3844
  year: 2016
  ident: 10.1016/j.ymeth.2020.08.004_b0230
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in neural information processing systems
– volume: 36
  start-page: 851
  issue: 3
  year: 2020
  ident: 10.1016/j.ymeth.2020.08.004_b0190
  article-title: Graph convolution for predicting associations between miRNA and drug resistance
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz621
– volume: 42
  start-page: D1070
  issue: D1
  year: 2013
  ident: 10.1016/j.ymeth.2020.08.004_b0205
  article-title: HMDD v2. 0: a database for experimentally supported human microRNA and disease associations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1023
– ident: 10.1016/j.ymeth.2020.08.004_b0270
– volume: 8
  start-page: 1012
  issue: 9
  year: 2019
  ident: 10.1016/j.ymeth.2020.08.004_b0240
  article-title: Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations
  publication-title: Cells
  doi: 10.3390/cells8091012
– volume: 34
  start-page: 3178
  issue: 18
  year: 2018
  ident: 10.1016/j.ymeth.2020.08.004_b0300
  article-title: BNPMDA: bipartite network projection for MiRNA–disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty333
– volume: 18
  start-page: 5972
  issue: 21
  year: 2012
  ident: 10.1016/j.ymeth.2020.08.004_b0055
  article-title: Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-1407
– volume: 1
  start-page: 6
  issue: 1
  year: 2010
  ident: 10.1016/j.ymeth.2020.08.004_b0220
  article-title: Development of the human cancer microRNA network
  publication-title: Silence
  doi: 10.1186/1758-907X-1-6
– volume: 31
  start-page: 1226
  issue: 8
  year: 2015
  ident: 10.1016/j.ymeth.2020.08.004_b0085
  article-title: Identifying cancer-related microRNAs based on gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu811
– volume: 32
  start-page: 4712
  issue: 39
  year: 2013
  ident: 10.1016/j.ymeth.2020.08.004_b0060
  article-title: miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells
  publication-title: Oncogene
  doi: 10.1038/onc.2012.468
– volume: 29
  start-page: 2617
  issue: 20
  year: 2013
  ident: 10.1016/j.ymeth.2020.08.004_b0225
  article-title: Novel human lncRNA–disease association inference based on lncRNA expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt426
– volume: 47
  start-page: D1013
  issue: D1
  year: 2018
  ident: 10.1016/j.ymeth.2020.08.004_b0075
  article-title: HMDD v3. 0: a database for experimentally supported human microRNA–disease associations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1010
– volume: 14
  start-page: 1468
  issue: 6
  year: 2016
  ident: 10.1016/j.ymeth.2020.08.004_b0150
  article-title: Collective prediction of disease-associated miRNAs based on transduction learning
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2016.2599866
– volume: 116
  start-page: 281
  issue: 2
  year: 2004
  ident: 10.1016/j.ymeth.2020.08.004_b0005
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– ident: 10.1016/j.ymeth.2020.08.004_b0235
– ident: 10.1016/j.ymeth.2020.08.004_b0290
  doi: 10.1177/1176934320919707
SSID ssj0001278
Score 2.5864606
Snippet •Variational graph auto-encoders are excellent for predicting miRNA-disease associations.•Graph convolutional networks obtain good representations for miRNAs...
Cumulative experimental studies have demonstrated the critical roles of microRNAs (miRNAs) in the diverse fundamental and important biological processes, and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms Algorithms
case studies
Computational Biology
Deep learning
Graph convolutional network
human diseases
Humans
microRNA
MicroRNAs - genetics
miRNA-disease association
Neural Networks, Computer
prediction
Variational autoencoder
Title Variational graph auto-encoders for miRNA-disease association prediction
URI https://dx.doi.org/10.1016/j.ymeth.2020.08.004
https://www.ncbi.nlm.nih.gov/pubmed/32798654
https://www.proquest.com/docview/2434752349
https://www.proquest.com/docview/2467653350
Volume 192
WOSCitedRecordID wos000668951700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZYhwQvCDZ-lB9TkNBeSqrEcez4sWydBprKBB0qT5GTy1CqLS1rg7b_nrPjpKmmVeOBl6hK4zT1fTn7zp_vI-QDMOWLNPHwFY_AZdQTrmQQIZbPJYTggwgqsQkxGkWTiTy1XNWFkRMQRRFdX8v5fzU1nkNj662z_2Du5qZ4Aj-j0fGIZsfjvQz_A6PfOsNnylH3VLmcubpgpSYtG17hZf5tNHDt4kxPrUykawZAnjbWqrWejM60SdB-R4dwmGe_qhSr3tnVb2UTDq1Eys_yooW7cW53OOTuaT1UGhKQoRJM8nJatqhBuTL3_jRrZySo3_DhaieKMberZdnXvKykvXmfhq7NXVp_GbZG3uqbWz69Si9M-zdaUxsjeuqZoquVavF6Be3R1_jo7OQkHg8n4_35b1eLi-lFeKu0skW2qQhl1CHbg8_DyZdmyPapqPZM2gevy1MZIuCt371rCnNXiGKmKuOn5ImNMZxBhY1n5EFW7JDdQaGWs8sbZ98xrF-znLJDHh3Uin-75LgFHcdAx1mDjoPQcdag47Sg46yg85ycHQ3HB8euVdpwU5wfL90s4RH3AIBzkEmCjh_DdJUGnIGXiiwCFSRR6ns8lYHPIGVAFQPAqTtXKgyy4AXpFLMie0WccwhpwCKgPgcmABRo-kCCHkGmIKnqElp3XpzaMvRaDeUirvmG09j0eKx7PNYaqR7rko9No3lVhWXz5by2SmwnktUEMUZMbW74vrZhjH2v185Ukc3KRUxZwIT-Z3LTNVxwDJ9Cr0teVgBonjagQkY8ZK_v0foNebx6rd6SzvKqzN6Rh-mfZb642iNbYhLtWQT_BTdMsl8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+graph+auto-encoders+for+miRNA-disease+association+prediction&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Ding%2C+Yulian&rft.au=Tian%2C+Li-Ping&rft.au=Lei%2C+Xiujuan&rft.au=Liao%2C+Bo&rft.date=2021-08-01&rft.issn=1046-2023&rft.volume=192+p.25-34&rft.spage=25&rft.epage=34&rft_id=info:doi/10.1016%2Fj.ymeth.2020.08.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon