Genome-wide association mapping reveals key genomic regions for physiological and yield-related traits under salinity stress in wheat (Triticum aestivum L.)

A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiologica...

Full description

Saved in:
Bibliographic Details
Published in:Genomics (San Diego, Calif.) Vol. 113; no. 5; pp. 3198 - 3215
Main Authors: Chaurasia, Shiksha, Singh, Amit Kumar, Kumar, Arvind, Songachan, L.S., Yadav, Mahesh C., Kumar, Sundeep, Kumari, Jyoti, Bansal, Ruchi, Sharma, Parbodh Chander, Singh, Kuldeep
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.09.2021
Subjects:
ISSN:0888-7543, 1089-8646, 1089-8646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na+ and K+, and the Na+/K+ ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R2 ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na+ and K+ content, and the Na+/K+ ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat. •Fifty consistent genomic regions were demarcated for 13 morpho-physiological traits using six multi-locus GWAS models.•Four highly consistent QTNs/genomic regions, one each for flag leaf Na+ content (Q.Na-6AL), flag leaf K+ content (Q.K-1AS), above ground biomass (Q.STI-BM-1BL) and Na+/K+ Ratio (Q.NaK-1BS) were identified.•Wheat chromosome 5B harbored the maximum number of genomic regions for yield contributing traits.•The identified QTN regions contained some important stress responsive candidate genes encoding for cytochrome 450 (CYP) family protein, detoxification protein, auxin responsive protein, MYB family transcription factor and peptidylprolyl isomerase (PPI).•ISIS EM-BLASSO is the most efficient model for multi-trait mapping of reproductive stage salinity tolerance.
AbstractList A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na+ and K+, and the Na+/K+ ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R2 ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na+ and K+ content, and the Na+/K+ ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat.A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na+ and K+, and the Na+/K+ ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R2 ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na+ and K+ content, and the Na+/K+ ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat.
A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na and K , and the Na /K ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R  ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na and K content, and the Na /K ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat.
A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na+ and K+, and the Na+/K+ ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R2 ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na+ and K+ content, and the Na+/K+ ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat. •Fifty consistent genomic regions were demarcated for 13 morpho-physiological traits using six multi-locus GWAS models.•Four highly consistent QTNs/genomic regions, one each for flag leaf Na+ content (Q.Na-6AL), flag leaf K+ content (Q.K-1AS), above ground biomass (Q.STI-BM-1BL) and Na+/K+ Ratio (Q.NaK-1BS) were identified.•Wheat chromosome 5B harbored the maximum number of genomic regions for yield contributing traits.•The identified QTN regions contained some important stress responsive candidate genes encoding for cytochrome 450 (CYP) family protein, detoxification protein, auxin responsive protein, MYB family transcription factor and peptidylprolyl isomerase (PPI).•ISIS EM-BLASSO is the most efficient model for multi-trait mapping of reproductive stage salinity tolerance.
A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na⁺ and K⁺, and the Na⁺/K⁺ ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R² ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na⁺ and K⁺ content, and the Na⁺/K⁺ ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat.
Author Bansal, Ruchi
Songachan, L.S.
Singh, Amit Kumar
Kumar, Arvind
Sharma, Parbodh Chander
Kumari, Jyoti
Singh, Kuldeep
Chaurasia, Shiksha
Yadav, Mahesh C.
Kumar, Sundeep
Author_xml – sequence: 1
  givenname: Shiksha
  surname: Chaurasia
  fullname: Chaurasia, Shiksha
  organization: Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
– sequence: 2
  givenname: Amit Kumar
  surname: Singh
  fullname: Singh, Amit Kumar
  email: amit.singh5@icar.gov.in
  organization: Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
– sequence: 3
  givenname: Arvind
  surname: Kumar
  fullname: Kumar, Arvind
  organization: ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
– sequence: 4
  givenname: L.S.
  surname: Songachan
  fullname: Songachan, L.S.
  organization: Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
– sequence: 5
  givenname: Mahesh C.
  surname: Yadav
  fullname: Yadav, Mahesh C.
  organization: Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
– sequence: 6
  givenname: Sundeep
  surname: Kumar
  fullname: Kumar, Sundeep
  organization: Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
– sequence: 7
  givenname: Jyoti
  surname: Kumari
  fullname: Kumari, Jyoti
  organization: Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
– sequence: 8
  givenname: Ruchi
  surname: Bansal
  fullname: Bansal, Ruchi
  organization: Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
– sequence: 9
  givenname: Parbodh Chander
  surname: Sharma
  fullname: Sharma, Parbodh Chander
  organization: ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
– sequence: 10
  givenname: Kuldeep
  surname: Singh
  fullname: Singh, Kuldeep
  organization: ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34293475$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFJ0BCXpZFgh3nx1mwQBUUpJHYlLXl2DfTOyT2YHumyrv0YfF0CgsWdGXLOt-91ncuyJnzDgh5y1nJGW8_bMtlA86XFat4ybqS8foFWXEm-0K2dXtGVkxKWXRNLc7JRYxbxlgvZPWKnIu66kXdNSvycJNHzFDcowWqY_QGdULv6Kx3O3QbGuAAeor0Jyz0uG5Gk982GYl09IHu7paIfvIbNHqi2lm6IEy2CDDpBJamoDFFuncWAo16QodpoTEFiJGio_d3oBO9ug2Y0OxnqiEmPOTLunz_mrwc825483Rekh9fPt9efy3W32--XX9aF0b0VSpA1qyrrBZysBZ6zfpu5C3jTEA3yIYPjRy6WlszajMMbZPxfqhBj7bnIFotLsnVae4u-F_7_AE1YzQwTdqB30dVtaJteNOL9nm0aRrOeSVZRt89ofthBqt2AWcdFvWn_AyIE2CCjzHA-BfhTB0Vq616VKyOihXrVFacU_0_KYPp0dmx6umZ7MdTFnKbB4SgokFwBiwGMElZj__N_wb4P8aQ
CitedBy_id crossref_primary_10_1007_s10722_021_01310_5
crossref_primary_10_1111_tpj_16042
crossref_primary_10_1007_s42976_022_00326_6
crossref_primary_10_3389_fpls_2023_1148658
crossref_primary_10_1007_s11105_025_01574_6
crossref_primary_10_3389_fgene_2022_980319
crossref_primary_10_3390_agriculture12111765
crossref_primary_10_3389_fgene_2022_811924
crossref_primary_10_1186_s12870_024_04810_5
crossref_primary_10_1007_s00344_022_10826_8
crossref_primary_10_1007_s12298_021_01112_0
crossref_primary_10_1038_s41598_022_18149_0
crossref_primary_10_1016_j_plgene_2024_100478
crossref_primary_10_1007_s11103_024_01489_y
crossref_primary_10_1186_s12870_022_03936_8
crossref_primary_10_3389_fgene_2021_782366
crossref_primary_10_1111_jac_12756
crossref_primary_10_3389_fpls_2022_847435
crossref_primary_10_1261_rna_080294_124
crossref_primary_10_3389_fpls_2023_1166728
crossref_primary_10_3390_jox13030026
crossref_primary_10_3390_plants12183330
crossref_primary_10_3389_fpls_2023_1252777
Cites_doi 10.1007/s40502-017-0319-7
10.1104/pp.106.086538
10.1111/pbi.12635
10.1007/s00122-018-3146-y
10.1038/sj.emboj.7600121
10.1046/j.1365-294X.2003.01833.x
10.1007/s10681-019-2533-z
10.1007/s00122-013-2139-0
10.1007/s00122-004-1902-7
10.1038/s41598-017-15726-6
10.1146/annurev.arplant.59.032607.092911
10.1038/hdy.2017.8
10.1111/pce.12898
10.1093/bioinformatics/bti610
10.1007/s10681-006-9247-8
10.1371/journal.pone.0205452
10.1155/2014/701596
10.1007/s00122-010-1357-y
10.1007/s13258-017-0523-x
10.4161/psb.25377
10.1093/bioinformatics/btv428
10.1071/CP09093
10.1104/pp.108.118117
10.1016/j.tplants.2015.06.008
10.1186/s12870-020-2270-4
10.1186/s12870-018-1476-1
10.1111/j.1365-294X.2005.02553.x
10.3389/fpls.2018.00734
10.3390/ijms19030647
10.1038/s41437-017-0007-4
10.3389/fphys.2017.00509
10.1007/s12284-010-9053-8
10.3389/fgene.2020.572975
10.1038/srep19444
10.1038/nbt.2120
10.1086/302959
10.3835/plantgenome2015.03.0013
10.1111/pbi.12690
10.3389/fpls.2015.00797
10.1186/s12870-020-02799-1
10.1111/nph.13519
10.1007/s11105-014-0726-0
10.3389/fpls.2020.549743
10.1007/s11032-013-9851-y
10.1007/BF00223692
10.1093/jhered/esi060
10.1016/j.plantsci.2020.110624
10.1093/bib/bbw145
10.3389/fpls.2018.01464
10.1016/j.ygeno.2020.08.006
10.1104/pp.104.057307
10.1016/j.cj.2016.06.003
10.1016/j.sjbs.2019.10.003
10.1038/35072085
10.3390/ijms21093156
10.1186/s12284-019-0349-z
10.1242/dev.01955
10.1556/0806.44.2016.009
10.1039/C1EE01029H
10.1111/jac.12178
10.1093/aob/mcg058
10.1093/jxb/err431
10.1007/BF02539518
10.1093/jxb/erj100
10.1038/s41588-019-0496-6
10.1371/journal.pcbi.1005357
10.1080/07352689.2014.875291
10.1016/j.jare.2019.10.013
10.1038/s41598-020-69442-9
10.1007/s12892-015-0064-2
10.1007/s10681-011-0463-5
10.1371/journal.pone.0213407
10.1111/ppa.13191
10.1071/EA01111
10.1186/s12870-019-1781-3
10.2307/2529707
10.18637/jss.v025.i01
10.3389/fpls.2019.01280
10.56093/ijas.v88i10.84255
10.1186/1471-2229-11-34
10.1371/journal.pone.0200669
10.1016/bs.adgen.2018.12.001
10.1016/j.bbrc.2017.07.150
10.1186/s12864-019-5992-7
10.1371/journal.pone.0182857
10.1016/j.cj.2017.08.005
10.1111/j.1757-837X.2012.00138.x
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ygeno.2021.07.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1089-8646
EndPage 3215
ExternalDocumentID 34293475
10_1016_j_ygeno_2021_07_014
S0888754321002925
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYOK
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAWUL
BKOJK
BLXMC
CAG
COF
CS3
DIK
DM4
DOVZS
DU5
E3Z
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLW
HVGLF
HZ~
IHE
IXB
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TN5
TR2
VH1
WUQ
X7M
XPP
XSW
ZA5
ZGI
ZMT
ZU3
ZXP
~G-
~KM
9DU
AAFWJ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c392t-e84072da38bdde9a097f160103e7b851b58b74adcfacbb658409b4eafd91e36a3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688447400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-7543
1089-8646
IngestDate Sun Sep 28 11:37:28 EDT 2025
Sun Sep 28 03:07:15 EDT 2025
Wed Feb 19 02:26:59 EST 2025
Sat Nov 29 07:09:59 EST 2025
Tue Nov 18 21:46:49 EST 2025
Fri Feb 23 02:38:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Association mapping
Bread wheat
Multi-locus GWAS
Salinity
Language English
License This article is made available under the Elsevier license.
Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-e84072da38bdde9a097f160103e7b851b58b74adcfacbb658409b4eafd91e36a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.ygeno.2021.07.014
PMID 34293475
PQID 2555111280
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2636515936
proquest_miscellaneous_2555111280
pubmed_primary_34293475
crossref_primary_10_1016_j_ygeno_2021_07_014
crossref_citationtrail_10_1016_j_ygeno_2021_07_014
elsevier_sciencedirect_doi_10_1016_j_ygeno_2021_07_014
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genomics (San Diego, Calif.)
PublicationTitleAlternate Genomics
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ma, Zhou, Huo, Zhou, Wang, Jia (bb0290) 2007; 153
Singh, Singh, Kumar, Chaurasia, Yadav, Kumar, Wankhede (bb0445) 2018
Pritchard, Stephens, Rosenberg, Donnelly (bb0380) 2000; 67
Liu, Hu, Li, Liu, Wu, Wang, Huang (bb0285) 2020; 20
Kiani, Arzani, Mirmohammady Maibody (bib546) 2021; 144
Asif, Schilling, Tilbrook, Brien, Dowling, Rabie, Short, Trittermann, Garcia, Barrett-Lennard, Berger (bb0030) 2018; 131
Yu, Ni, Chen, Y. (bb0530) 2017; 491
Asaoka, Uemura, Nishida, Fujiwara, Ueda, Nakano (bb0020) 2013; 8
Munns, Gilliham (bb0325) 2015; 208
Rana, Ram, Nehra, Sharma (bb0405) 2016; 44
Oyiga, Sharma, Shen, Baum, Ogbonnaya, Léon, Ballvora (bb0350) 2016; 202
Vogel (bb0480) 1955
Rodríguez, Alvarado, Pacheco, Burgueño (bb0425) 2018
Doyle, Doyle (bb0100) 1990; 12
De León, Escoppinichi, Geraldo, Castellanos, Mujeeb-Kazi, Röder (bb0095) 2011; 181
Kumar, Sharma, Lata, Devi, Kulshrestha, Krishnamurthy, Singh, Yadav (bb0245) 2018; 88
Shewry, Lafiandra, Bedo (bb0435) 2012; 4
Mauricio (bb0295) 2001; 2
Wen, Zhang, Ni, Huang, Zhang, Feng, Wang, Dunwell, Zhang, Wu (bb0515) 2018; 19
Wei, Simko (bb0510) 2021
Bilgrami, Ramandi, Shariati, Razavi, Tavakol, Fakheri, Nezhad, Ghaderian (bb0050) 2020; 10
Genc, Oldach, Gogel, Wallwork, McDonald, Smith (bb0155) 2013; 32
Pitman, Läuchli (bb0370) 2002
Wang, Yuan, Qin, Shi, Xia, Liu (bb0495) 2020; 18
Galili (bb0145) 2015
Goel, Singh, Singh, Grewal, Dwivedi, Alqarawi, Abdallah, Ahmad, Singh (bb0165) 2019; 14
Azadi, Mardi, Hervan, Mohammadi, Moradi, Tabatabaee, Pirseyedi, Ebrahimi, Fayaz, Kazemi, Ashkani (bb0040) 2015; 33
Harrell (bb0185) 2014
Kaler, Purcell (bb0225) 2019; 20
Davenport, James, Zakrisson-Plogander, Tester, Munns (bb0085) 2005; 137
Sun, Zhang, Yan, Zhang, Dong, Cui, Chen (bb0460) 2017; 15
Chaurasia, Singh, Songachan, Sharma, Bhardwaj, Singh (bb0065) 2020; 112
Guo, Jiang, Hu, Sun, Fan, Zhang (bb0180) 2018; 6
Wang, Feng, Ren, Huang, Zhou, Wen, Zhang, Dunwell, Xu, Zhang (bb0505) 2016; 6
Munns, Tester (bb0320) 2008; 59
Cui, Zhang, Zhou (bb0080) 2018; 9
Ilyas, Amjid, Saleem, Khan, Wattoo, Rana, Maqsood, Zahid, Shah, Anwar, Ahmad, Shaheen, Riaz, Ansari (bib549) 2020; 27
Munns, James, Xu, Athman, Conn, Jordans, Byrt, Hare, Tyerman, Tester, Plett, Gilliham (bb0330) 2012; 30
Yadav, Yashveer, Solanki, Singh (bb0490) 2018; 23
Alqudah, Sallam, Baenziger, Börner (bb0015) 2020; 22
Abhinandan, Skori, Stanic, Hickerson, Jamshed, Samuel (bb0005) 2018; 9
Hu, Zheng, Luo, Teng, Li, Li, Li (bb0195) 2021; 21
Fernandez (bb0130) 1992; 28
Philipp, Weichert, Bohra, Weschke, Schulthess, Weber (bb0365) 2018; 13
Zhang, Tamba (bb0545) 2018
Ruan, Ma, Wang, Fu, Xin, Liu, Wang, Tong, Wang, Chen (bb0430) 2011; 11
Tamba, Ni, Zhang (bb0465) 2017; 13
Hasan, Hafiz, Siddiqui, Khatun, Islam, Mamun (bb0190) 2015; 18
Mckay, Richards, Mitchell-Olds (bb0305) 2003; 12
Raman, Stodart, Cavanagh, Mackay, Morell, Milgate, Martin (bb0400) 2010; 61
Edwards, Shavrukov, Ramsey, Tester, Langridge, Schnurbusch (bb0110) 2008
Quarrie, Steed, Calestani, Semikhodskii, Lebreton, Chinoy, Steele, Pljevljakusić, Waterman, Weyen, Schondelmaier (bb0385) 2005; 110
Liu, Chen, Zhao, Wang, Shen, Zhu, Dai, Qiu, Yang, Xing, Pang (bb0280) 2019; 12
Evanno, Regnaut, Goudet (bb0115) 2005; 14
Wicke, Smeets, Dornburg, Vashev, Gaiser, Turkenburg, Faaij (bb0520) 2011; 4
Oyiga, Sharma, Baum, Ogbonnaya, Léon, Ballvora (bb0355) 2018; 41
Gahlaut, Jaiswal, Tyagi, Singh, Sareen, Balyan, Gupta (bb0140) 2017; 12
Singh, Chaurasia, Kumar, Singh, Kumari, Yadav, Singh, Gaba, Jacob (bb0450) 2018; 18
Juliana, Poland, Huerta-Espino, Shrestha, Crossa, Crespo-Herrera, Toledo, Govindan, Mondal, Kumar, Bhavani (bb0215) 2019; 51
Assaha, Ueda, Saneoka, Al-Yahyai, Yaish (bb0035) 2017; 8
Kushiro, Okamoto, Nakabayashi, Yamagishi, Kitamura, Asami, Hirai, Koshiba, Kamiya, Nambara (bb0250) 2004; 23
Ren, Wen, Dunwell, Zhang (bb0415) 2018; 120
Shokat, Sehgal, Vikram, Liu, Singh (bb0440) 2020; 9
Gupta, Huang (bb0170) 2014
Devi, Ram, Rana, Malik, Pande, Singh (bb0090) 2019; 215
Julkowska, Testerink (bb0220) 2015; 20
Kumar, Kumari, Bhusal, Pradhan, Budhlakoti, Mishra, Chauhan, Kumar, Singh, Reynold, Singh, Singh, Sareen (bb0255) 2020; 11
Keisham, Mukherjee, Bhatla (bb0235) 2018; 19
Jafari-Shabestari, Corke, Qualset (bb0200) 1995; 42
Long, Dolstra, Malosetti (bib547) 2013; 126
Farooq, Hussain, Siddique (bb0120) 2014; 33
Zhang, Feng, Ni, Wen, Niu, Tamba, Yue, Song, Zhang (bb0540) 2017; 118
Thomson, de Ocampo, Egdane, Rahman, Sajise, Dante (bb0475) 2010; 3
Collins, Tardieu, Tuberosa (bb0075) 2008; 147
R Core Team: R (bb0410) 2016
PBTools, version 1.4 (bb0360) 2014
Ogbonnaya, Huang, Steadman, Emebiri, Dreccer, Lagudah, Munns (bb0345) 2008
Khan, Shirazi, Khan, Mujtaba, Islam, Mumtaz, Shereen, Ansari, Ashraf (bb0240) 2009; 41
Bainsla, Phuke, He, Gupta, Bishnoi, Sharma, Ataei, Dreisigacker, Juliana, Singh (bb0045) 2020
Rengasamy (bb0420) 2002; 42
Voss-Fels, Frisch, Qian, Kontowski, Friedt, Gottwald, Snowdon (bb0485) 2015; 8
Lee, Park, Jung, Lee, Yoon, You, Kim, Kim, Ahn, Cho (bb0270) 2015; 6
Qaseem, Qureshi, Shaheen, Shafqat (bb0390) 2019; 14
Tester, Davenport (bb0470) 2003; 91
Gupta, Kulwal, Jaiswal (bb0175) 2019; 104
Hussain, Lucas, Ozturk (bib548) 2017; 7
Yang, Dai, Zhang (bb0525) 2012; 63
Pradhan, Kumar, Singh, Budhlakoti, Mishra, Chauhan, Mittal, Grover, Kumar, Gangwar, Kumar (bb0375) 2020; 11
Narjesi, Mardi, Hervan, Azadi, Naghavi, Ebrahimi, Zali (bb0335) 2015; 33
Allen, Winfield, Burridge, Downie, Benbow, Barker, Wilkinson, Coghill, Waterfall, Davassi, Scopes (bb0010) 2017; 15
Munns, James, Läuchli (bb0315) 2006; 57
Songa, Yanga, Fana, Zhangb, Sui (bb0455) 2020; 300
Li, Wen, Liu, Zhang, Cao, He, Zhang (bb0275) 2019; 19
Wang, Ma, Li, Li, Yang (bb0500) 2017; 39
Borojevic, Borojevic (bb0055) 2005; 96
Genc, Oldach, Verbyla, Lott, Hassan, Tester, Wallwork, McDonald (bb0150) 2010; 121
Dubcovsky, Santa Maria, Epstein, Luo, Dvořák (bb0105) 1996; 92
Genc, Taylor, Lyons, Li, Cheong, Appelbee, Oldach, Sutton (bb0160) 2019; 10
Nagpal, Ellis, Weber, Ploense, Barkawi, Guilfoyle, Hagen, Alonso, Cohen, Farmer, Ecker (bb0340) 2005; 132
Xu, Li, Yang, Xu (bb0535) 2017; 5
Kassambara, Mundt (bb0230) 2016
Federer, Raghavarao (bb0125) 1975
Lê, Josse, Husson (bb0260) 2008; 25
James, Davenport, Munns (bb0210) 2006; 142
Conesa, Götz, García-Gómez, Terol, Talón, Robles (bb0070) 2005; 21
Oyiga (10.1016/j.ygeno.2021.07.014_bb0355) 2018; 41
Khan (10.1016/j.ygeno.2021.07.014_bb0240) 2009; 41
Abhinandan (10.1016/j.ygeno.2021.07.014_bb0005) 2018; 9
Nagpal (10.1016/j.ygeno.2021.07.014_bb0340) 2005; 132
Wang (10.1016/j.ygeno.2021.07.014_bb0500) 2017; 39
Farooq (10.1016/j.ygeno.2021.07.014_bb0120) 2014; 33
Rana (10.1016/j.ygeno.2021.07.014_bb0405) 2016; 44
Doyle (10.1016/j.ygeno.2021.07.014_bb0100) 1990; 12
Devi (10.1016/j.ygeno.2021.07.014_bb0090) 2019; 215
Wang (10.1016/j.ygeno.2021.07.014_bb0495) 2020; 18
Keisham (10.1016/j.ygeno.2021.07.014_bb0235) 2018; 19
Wang (10.1016/j.ygeno.2021.07.014_bb0505) 2016; 6
Asaoka (10.1016/j.ygeno.2021.07.014_bb0020) 2013; 8
Wei (10.1016/j.ygeno.2021.07.014_bb0510)
Kiani (10.1016/j.ygeno.2021.07.014_bib546) 2021; 144
Galili (10.1016/j.ygeno.2021.07.014_bb0145) 2015
Asif (10.1016/j.ygeno.2021.07.014_bb0030) 2018; 131
Lee (10.1016/j.ygeno.2021.07.014_bb0270) 2015; 6
Gahlaut (10.1016/j.ygeno.2021.07.014_bb0140) 2017; 12
Raman (10.1016/j.ygeno.2021.07.014_bb0400) 2010; 61
Vogel (10.1016/j.ygeno.2021.07.014_bb0480) 1955
De León (10.1016/j.ygeno.2021.07.014_bb0095) 2011; 181
Liu (10.1016/j.ygeno.2021.07.014_bb0280) 2019; 12
Pitman (10.1016/j.ygeno.2021.07.014_bb0370) 2002
Hu (10.1016/j.ygeno.2021.07.014_bb0195) 2021; 21
Munns (10.1016/j.ygeno.2021.07.014_bb0315) 2006; 57
Juliana (10.1016/j.ygeno.2021.07.014_bb0215) 2019; 51
Julkowska (10.1016/j.ygeno.2021.07.014_bb0220) 2015; 20
Shokat (10.1016/j.ygeno.2021.07.014_bb0440) 2020; 9
Fernandez (10.1016/j.ygeno.2021.07.014_bb0130) 1992; 28
Voss-Fels (10.1016/j.ygeno.2021.07.014_bb0485) 2015; 8
Edwards (10.1016/j.ygeno.2021.07.014_bb0110) 2008
Singh (10.1016/j.ygeno.2021.07.014_bb0445) 2018
Dubcovsky (10.1016/j.ygeno.2021.07.014_bb0105) 1996; 92
Quarrie (10.1016/j.ygeno.2021.07.014_bb0385) 2005; 110
Shewry (10.1016/j.ygeno.2021.07.014_bb0435) 2012; 4
Philipp (10.1016/j.ygeno.2021.07.014_bb0365) 2018; 13
Ilyas (10.1016/j.ygeno.2021.07.014_bib549) 2020; 27
Genc (10.1016/j.ygeno.2021.07.014_bb0150) 2010; 121
Zhang (10.1016/j.ygeno.2021.07.014_bb0540) 2017; 118
Davenport (10.1016/j.ygeno.2021.07.014_bb0085) 2005; 137
Genc (10.1016/j.ygeno.2021.07.014_bb0160) 2019; 10
Lê (10.1016/j.ygeno.2021.07.014_bb0260) 2008; 25
Kushiro (10.1016/j.ygeno.2021.07.014_bb0250) 2004; 23
Songa (10.1016/j.ygeno.2021.07.014_bb0455) 2020; 300
Collins (10.1016/j.ygeno.2021.07.014_bb0075) 2008; 147
Harrell (10.1016/j.ygeno.2021.07.014_bb0185)
Long (10.1016/j.ygeno.2021.07.014_bib547) 2013; 126
Chaurasia (10.1016/j.ygeno.2021.07.014_bb0065) 2020; 112
Genc (10.1016/j.ygeno.2021.07.014_bb0155) 2013; 32
Ogbonnaya (10.1016/j.ygeno.2021.07.014_bb0345) 2008
PBTools, version 1.4 (10.1016/j.ygeno.2021.07.014_bb0360) 2014
Bainsla (10.1016/j.ygeno.2021.07.014_bb0045) 2020
Thomson (10.1016/j.ygeno.2021.07.014_bb0475) 2010; 3
Conesa (10.1016/j.ygeno.2021.07.014_bb0070) 2005; 21
Li (10.1016/j.ygeno.2021.07.014_bb0275) 2019; 19
Ruan (10.1016/j.ygeno.2021.07.014_bb0430) 2011; 11
Gupta (10.1016/j.ygeno.2021.07.014_bb0170) 2014
Wicke (10.1016/j.ygeno.2021.07.014_bb0520) 2011; 4
Rengasamy (10.1016/j.ygeno.2021.07.014_bb0420) 2002; 42
Munns (10.1016/j.ygeno.2021.07.014_bb0320) 2008; 59
Pradhan (10.1016/j.ygeno.2021.07.014_bb0375) 2020; 11
Ren (10.1016/j.ygeno.2021.07.014_bb0415) 2018; 120
Pritchard (10.1016/j.ygeno.2021.07.014_bb0380) 2000; 67
Assaha (10.1016/j.ygeno.2021.07.014_bb0035) 2017; 8
Allen (10.1016/j.ygeno.2021.07.014_bb0010) 2017; 15
Kassambara (10.1016/j.ygeno.2021.07.014_bb0230)
Gupta (10.1016/j.ygeno.2021.07.014_bb0175) 2019; 104
Sun (10.1016/j.ygeno.2021.07.014_bb0460) 2017; 15
Mckay (10.1016/j.ygeno.2021.07.014_bb0305) 2003; 12
Goel (10.1016/j.ygeno.2021.07.014_bb0165) 2019; 14
Hussain (10.1016/j.ygeno.2021.07.014_bib548) 2017; 7
Azadi (10.1016/j.ygeno.2021.07.014_bb0040) 2015; 33
Xu (10.1016/j.ygeno.2021.07.014_bb0535) 2017; 5
Jafari-Shabestari (10.1016/j.ygeno.2021.07.014_bb0200) 1995; 42
Wen (10.1016/j.ygeno.2021.07.014_bb0515) 2018; 19
Hasan (10.1016/j.ygeno.2021.07.014_bb0190) 2015; 18
Tester (10.1016/j.ygeno.2021.07.014_bb0470) 2003; 91
Guo (10.1016/j.ygeno.2021.07.014_bb0180) 2018; 6
James (10.1016/j.ygeno.2021.07.014_bb0210) 2006; 142
Rodríguez (10.1016/j.ygeno.2021.07.014_bb0425) 2018
Yadav (10.1016/j.ygeno.2021.07.014_bb0490) 2018; 23
Kaler (10.1016/j.ygeno.2021.07.014_bb0225) 2019; 20
Oyiga (10.1016/j.ygeno.2021.07.014_bb0350) 2016; 202
Ma (10.1016/j.ygeno.2021.07.014_bb0290) 2007; 153
Yu (10.1016/j.ygeno.2021.07.014_bb0530) 2017; 491
Kumar (10.1016/j.ygeno.2021.07.014_bb0245) 2018; 88
Yang (10.1016/j.ygeno.2021.07.014_bb0525) 2012; 63
Liu (10.1016/j.ygeno.2021.07.014_bb0285) 2020; 20
Narjesi (10.1016/j.ygeno.2021.07.014_bb0335) 2015; 33
R Core Team: R (10.1016/j.ygeno.2021.07.014_bb0410) 2016
Federer (10.1016/j.ygeno.2021.07.014_bb0125) 1975
Munns (10.1016/j.ygeno.2021.07.014_bb0330) 2012; 30
Mauricio (10.1016/j.ygeno.2021.07.014_bb0295) 2001; 2
Singh (10.1016/j.ygeno.2021.07.014_bb0450) 2018; 18
Evanno (10.1016/j.ygeno.2021.07.014_bb0115) 2005; 14
Kumar (10.1016/j.ygeno.2021.07.014_bb0255) 2020; 11
Qaseem (10.1016/j.ygeno.2021.07.014_bb0390) 2019; 14
Tamba (10.1016/j.ygeno.2021.07.014_bb0465) 2017; 13
Alqudah (10.1016/j.ygeno.2021.07.014_bb0015) 2020; 22
Bilgrami (10.1016/j.ygeno.2021.07.014_bb0050) 2020; 10
Munns (10.1016/j.ygeno.2021.07.014_bb0325) 2015; 208
Cui (10.1016/j.ygeno.2021.07.014_bb0080) 2018; 9
Borojevic (10.1016/j.ygeno.2021.07.014_bb0055) 2005; 96
Zhang (10.1016/j.ygeno.2021.07.014_bb0545) 2018
References_xml – year: 2018
  ident: bb0445
  article-title: Genomics technologies for improving salt tolerance in wheat
  publication-title: Engineering Practices for Management of Soil Salinity Agricultural, Physiological, and Adaptive Approaches
– volume: 126
  start-page: 2335
  year: 2013
  end-page: 2351
  ident: bib547
  article-title: Association mapping of salt tolerance in barley (Hordeum vulgare L.)
  publication-title: Theor. Appl. Genet.
– volume: 8
  year: 2013
  ident: bb0020
  article-title: New insights into the role of
  publication-title: Plant Signal. Behav.
– volume: 121
  start-page: 877
  year: 2010
  end-page: 894
  ident: bb0150
  article-title: Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress
  publication-title: Theor. Appl. Genet.
– volume: 300
  start-page: 110624
  year: 2020
  ident: bb0455
  article-title: TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat
  publication-title: Plant Sci.
– volume: 104
  start-page: 75
  year: 2019
  end-page: 154
  ident: bb0175
  article-title: Association mapping in plants in the post-GWAS genomics era
  publication-title: Adv. Genet.
– volume: 14
  year: 2019
  ident: bb0165
  article-title: Analysis of genetic control and QTL mapping of essential wheat grain quality traits in a recombinant inbred population
  publication-title: PLoS One
– year: 2016
  ident: bb0230
  article-title: factoextra: Extract and Visualize the Results of Multivariate Data Analyses
– year: 1955
  ident: bb0480
  article-title: A Text-Book of Quantitative Inorganic Analysis: Theory and Practice
– volume: 27
  start-page: 341
  year: 2020
  end-page: 351
  ident: bib549
  article-title: Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/Frontana recombinant inbred lines (RILs) population of wheat (Triticum aestivum) under salt stress condition
  publication-title: Saudi J. Biol. Sci.
– volume: 14
  year: 2019
  ident: bb0390
  article-title: Genome-wide association analyses for yield and yield-related traits in bread wheat (
  publication-title: PLoS One
– volume: 147
  start-page: 469
  year: 2008
  end-page: 486
  ident: bb0075
  article-title: Quantitative trait loci and crop performance under abiotic stress: where do we stand?
  publication-title: Plant Physiol.
– volume: 491
  start-page: 642
  year: 2017
  end-page: 648
  ident: bb0530
  article-title: The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 22
  start-page: 119
  year: 2020
  end-page: 135
  ident: bb0015
  article-title: GWAS: fast-forwarding gene identification and characterization in temperate cereals: lessons from barley–a review
  publication-title: J. Adv. Res.
– year: 2008
  ident: bb0110
  article-title: Identification of a QTL on chromosome 7AS for sodium exclusion in bread wheat
  publication-title: 11th International Wheat Genetics Symposium Proceedings
– volume: 12
  year: 2017
  ident: bb0140
  article-title: QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments
  publication-title: PLoS One
– volume: 120
  start-page: 208
  year: 2018
  end-page: 218
  ident: bb0415
  article-title: pKWmEB: integration of Kruskal–Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study
  publication-title: Heredity
– year: 2020
  ident: bb0045
  article-title: Genome-wide association study for spot blotch resistance in afghan wheat germplasm
  publication-title: Plant Pathol.
– volume: 11
  start-page: 34
  year: 2011
  ident: bb0430
  article-title: Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (
  publication-title: BMC Plant Biol.
– volume: 41
  start-page: 919
  year: 2018
  end-page: 935
  ident: bb0355
  article-title: Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat
  publication-title: Plant Cell Environ.
– volume: 28
  start-page: 13
  year: 1992
  end-page: 16
  ident: bb0130
  article-title: Effective selection criteria for assessing plant stress tolerance
  publication-title: Crop Sci.
– volume: 39
  start-page: 581
  year: 2017
  end-page: 591
  ident: bb0500
  article-title: Transcriptome analysis reveals sunflower cytochrome P450 CYP93A1 responses to high salinity treatment at the seedling stage
  publication-title: Gene Genom.
– volume: 112
  start-page: 4608
  year: 2020
  end-page: 4621
  ident: bb0065
  article-title: Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (
  publication-title: Genomics
– volume: 9
  start-page: 1464
  year: 2018
  ident: bb0080
  article-title: The application of multi-locus GWAS for the detection of salt-tolerance loci in rice
  publication-title: Front. Plant Sci.
– volume: 61
  start-page: 222
  year: 2010
  end-page: 229
  ident: bb0400
  article-title: Molecular diversity and genetic structure of modern and traditional landrace cultivars of wheat (
  publication-title: Crop Pasture Sci.
– volume: 23
  start-page: 1647
  year: 2004
  end-page: 1656
  ident: bb0250
  article-title: The
  publication-title: EMBO J.
– start-page: 3
  year: 2002
  end-page: 20
  ident: bb0370
  article-title: Global impact of salinity and agricultural ecosystems
  publication-title: Salinity: Environment – Plants – Molecules
– volume: 91
  start-page: 503
  year: 2003
  end-page: 527
  ident: bb0470
  article-title: Na
  publication-title: Ann. Bot.
– volume: 20
  start-page: 618
  year: 2019
  ident: bb0225
  article-title: Estimation of a significance threshold for genome-wide association studies
  publication-title: BMC Genomics
– year: 2021
  ident: bb0510
  article-title: R package "corrplot": Visualization of a Correlation Matrix
– volume: 6
  start-page: 797
  year: 2015
  ident: bb0270
  article-title: OsCYP21-4, a novel Golgi-resident cyclophilin, increases oxidative stress tolerance in rice
  publication-title: Front. Plant Sci.
– volume: 118
  start-page: 517
  year: 2017
  end-page: 524
  ident: bb0540
  article-title: pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies
  publication-title: Heredity
– volume: 18
  start-page: 333
  year: 2015
  end-page: 340
  ident: bb0190
  article-title: Evaluation of wheat genotypes for salt tolerance based on some physiological traits
  publication-title: J. Crop. Sci. Biotechnol.
– volume: 30
  start-page: 360
  year: 2012
  end-page: 364
  ident: bb0330
  article-title: Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene
  publication-title: Nat. Biotechnol.
– volume: 12
  start-page: 88
  year: 2019
  ident: bb0280
  article-title: Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study
  publication-title: Rice
– volume: 63
  start-page: 2541
  year: 2012
  end-page: 2556
  ident: bb0525
  article-title: A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice
  publication-title: J. Exp. Bot.
– volume: 88
  start-page: 1624
  year: 2018
  end-page: 1632
  ident: bb0245
  article-title: Impact of water deficit (salt and drought) stress on physiological, biochemical and yield attributes on wheat (
  publication-title: Indian J. Agric. Sci.
– volume: 215
  start-page: 210
  year: 2019
  ident: bb0090
  article-title: QTL mapping for salt tolerance associated traits in wheat (
  publication-title: Euphytica
– volume: 15
  start-page: 953
  year: 2017
  end-page: 969
  ident: bb0460
  article-title: Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the yellow and Huai Valley of China
  publication-title: Plant Biotechnol. J.
– volume: 19
  start-page: 647
  year: 2018
  ident: bb0235
  article-title: Mechanisms of sodium transport in plants—progresses and challenges
  publication-title: Int. J. Mol. Sci.
– volume: 41
  start-page: 633
  year: 2009
  end-page: 638
  ident: bb0240
  article-title: Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (
  publication-title: Pak. J. Bot.
– volume: 13
  year: 2018
  ident: bb0365
  article-title: Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat
  publication-title: PLoS One
– year: 2014
  ident: bb0185
  article-title: Hmisc: A Package of Miscellaneous R Functions
– volume: 3
  start-page: 148
  year: 2010
  end-page: 160
  ident: bb0475
  article-title: Characterizing the Saltol quantitative trait locus for salinity tolerance in rice
  publication-title: Rice
– volume: 18
  start-page: 249
  year: 2018
  ident: bb0450
  article-title: Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat
  publication-title: BMC Plant Biol.
– year: 2014
  ident: bb0360
  article-title: Biometrics and Breeding Informatics, PBGB Division
– volume: 11
  start-page: 572975
  year: 2020
  ident: bb0375
  article-title: Identification of QTLs/defense genes effective at seedling stage against prevailing races of wheat stripe rust in India
  publication-title: Front. Genet.
– year: 2016
  ident: bb0410
  article-title: A Language and Environment for Statistical Computing
– volume: 92
  start-page: 448
  year: 1996
  end-page: 454
  ident: bb0105
  article-title: Mapping of the K+/Na+ discrimination locus Kna1 in wheat
  publication-title: Theor. Appl. Genet.
– volume: 33
  start-page: 102
  year: 2015
  end-page: 120
  ident: bb0040
  article-title: QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (
  publication-title: Plant Mol. Biol. Report.
– volume: 5
  start-page: 175
  year: 2017
  end-page: 184
  ident: bb0535
  article-title: Genetic mapping of quantitative trait loci in crops
  publication-title: Crop J.
– volume: 132
  start-page: 4107
  year: 2005
  end-page: 4118
  ident: bb0340
  article-title: Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation
  publication-title: Development
– volume: 12
  start-page: 1137
  year: 2003
  end-page: 1151
  ident: bb0305
  article-title: Genetics of drought adaptation in
  publication-title: Mol. Ecol.
– volume: 15
  start-page: 390
  year: 2017
  end-page: 401
  ident: bb0010
  article-title: Characterization of a Wheat Breeders’ Array suitable for high throughput SNP genotyping of global accessions of hexaploid bread wheat (
  publication-title: Plant Biotechnol. J.
– volume: 131
  start-page: 2179
  year: 2018
  end-page: 2196
  ident: bb0030
  article-title: Mapping of novel salt tolerance QTL in an Excalibur× Kukri doubled haploid wheat population
  publication-title: Theor. Appl. Genet.
– volume: 8
  start-page: 1
  year: 2015
  end-page: 3
  ident: bb0485
  article-title: Subgenomic diversity patterns caused by directional selection in bread wheat gene pools
  publication-title: Plant Genom.
– volume: 2
  start-page: 370
  year: 2001
  end-page: 381
  ident: bb0295
  article-title: Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology
  publication-title: Nat. Rev. Genet.
– volume: 25
  start-page: 1
  year: 2008
  end-page: 18
  ident: bb0260
  article-title: FactoMineR: a package for multivariate analysis
  publication-title: J. Stat. Softw.
– volume: 12
  start-page: 13
  year: 1990
  end-page: 15
  ident: bb0100
  article-title: Isolation of plant DNA from fresh tissue
  publication-title: Focus
– volume: 21
  start-page: 27
  year: 2021
  ident: bb0195
  article-title: Genome-wide association study of yield and related traits in common wheat under salt-stress conditions
  publication-title: BMC Plant Biol.
– volume: 23
  start-page: 57
  year: 2018
  end-page: 64
  ident: bb0490
  article-title: Phenotyping and microsatellite marker analysis of HD 2851 (salt sensitive) × Kharchia 65 (salt tolerant) F2 population for salinity tolerance
  publication-title: Indian J. Plant Physiol.
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  ident: bb0320
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
– volume: 9
  start-page: 734
  year: 2018
  ident: bb0005
  article-title: Abiotic stress signaling in wheat–an inclusive overview of hormonal interactions during abiotic stress responses in wheat
  publication-title: Front. Plant Sci.
– volume: 11
  start-page: 549743
  year: 2020
  ident: bb0255
  article-title: Genome-wide association study reveals genomic regions associated with ten agronomical traits in wheat under late-sown conditions
  publication-title: Front. Plant Sci.
– volume: 14
  start-page: 2611
  year: 2005
  end-page: 2620
  ident: bb0115
  article-title: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study
  publication-title: Mol. Ecol.
– volume: 57
  start-page: 1025
  year: 2006
  end-page: 1043
  ident: bb0315
  article-title: Approaches to increasing the salt tolerance of wheat and other cereals
  publication-title: J. Exp. Bot.
– volume: 4
  start-page: 2669
  year: 2011
  end-page: 2681
  ident: bb0520
  article-title: The global technical and economic potential of bioenergy from salt-affected soils
  publication-title: Energy Environ. Sc
– start-page: 341784
  year: 2018
  ident: bb0545
  article-title: A fast mrMLM algorithm for multi-locus genome-wide association studies
  publication-title: bioRxiv
– volume: 153
  start-page: 109
  year: 2007
  end-page: 117
  ident: bb0290
  article-title: Genetic analysis of salt tolerance in a recombinant inbred population of wheat (
  publication-title: Euphytica
– volume: 110
  start-page: 865
  year: 2005
  end-page: 880
  ident: bb0385
  article-title: A high-density genetic map of hexaploid wheat (
  publication-title: Theor. Appl. Genet.
– volume: 142
  start-page: 1537
  year: 2006
  end-page: 1547
  ident: bb0210
  article-title: Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2
  publication-title: Plant Physiol.
– year: 2008
  ident: bb0345
  article-title: Mapping Quantitative Trait Loci Associated with Salinity Tolerance in Synthetic Derived Backcrossed Bread Lines
– volume: 4
  start-page: 136
  year: 2012
  ident: bb0435
  article-title: Improving the nutritional quality and health benefits of wheat
  publication-title: Qual. Assur. Saf. Crop. Foods
– year: 2015
  ident: bb0145
  article-title: Dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering
  publication-title: Bioinformatics
– volume: 137
  start-page: 807
  year: 2005
  end-page: 818
  ident: bb0085
  article-title: Control of sodium transport in durum wheat
  publication-title: Plant Physiol.
– year: 2014
  ident: bb0170
  article-title: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization
  publication-title: Int. J. Genom.
– volume: 33
  start-page: 331
  year: 2014
  end-page: 349
  ident: bb0120
  article-title: Drought stress in wheat during flowering and grain-filling periods
  publication-title: CRC Crit. Rev. Plant Sci.
– volume: 20
  start-page: 586
  year: 2015
  end-page: 594
  ident: bb0220
  article-title: Tuning plant signaling and growth to survive salt
  publication-title: Trends Plant Sci.
– volume: 19
  start-page: 168
  year: 2019
  ident: bb0275
  article-title: Genetic architecture of grain yield in bread wheat based on genome-wide association studies
  publication-title: BMC Plant Biol.
– volume: 144
  start-page: 619
  year: 2021
  end-page: 639
  ident: bib546
  article-title: Morpho-physiological and gene expression responses of wheat by
  publication-title: Plant Cell Tiss. Organ. Cult.
– volume: 33
  start-page: 2030
  year: 2015
  end-page: 2040
  ident: bb0335
  article-title: Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (
  publication-title: Biol. Reprod.
– year: 2018
  ident: bb0425
  article-title: ACBD-R. Augmented Complete Block Design with R for Windows. CIMMYT; El Batan, Mexico, Version 4.0
– volume: 19
  start-page: 700
  year: 2018
  end-page: 712
  ident: bb0515
  article-title: Methodological implementation of mixed linear models in multi-locus genome-wide association studies
  publication-title: Brief. Bioinform.
– volume: 42
  start-page: 147
  year: 1995
  end-page: 156
  ident: bb0200
  article-title: Field evaluation to salinity stress in Iranian hexaploid wheat landrace accessions
  publication-title: Genet. Resour. Crop. Evol.
– volume: 7
  start-page: 15662
  year: 2017
  ident: bib548
  article-title: Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat
  publication-title: Sci. Rep.
– volume: 10
  start-page: 14034
  year: 2020
  ident: bb0050
  article-title: Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study
  publication-title: Sci. Rep.
– volume: 9
  start-page: 3156
  year: 2020
  ident: bb0440
  article-title: Molecular markers associated with agro-physiological traits under terminal drought conditions in bread wheat
  publication-title: Int. J. Mol. Sci.
– volume: 6
  start-page: 181
  year: 2018
  end-page: 190
  ident: bb0180
  article-title: Function of the auxin-responsive gene TaSAUR75 under salt and drought stress
  publication-title: Crop J.
– volume: 32
  start-page: 39
  year: 2013
  end-page: 59
  ident: bb0155
  article-title: Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels
  publication-title: Mol. Breed.
– volume: 13
  year: 2017
  ident: bb0465
  article-title: Iterative sure independence screening EM-Bayesian LASSO algorithm for multilocus genome-wide association studies
  publication-title: PLoS Comput. Biol.
– volume: 202
  start-page: 472
  year: 2016
  end-page: 485
  ident: bb0350
  article-title: Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach
  publication-title: J. Agron. Crop Sci.
– volume: 21
  start-page: 3674
  year: 2005
  end-page: 3676
  ident: bb0070
  article-title: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research
  publication-title: Bioinformatics
– volume: 208
  start-page: 668
  year: 2015
  end-page: 673
  ident: bb0325
  article-title: Salinity tolerance of crops – what is the cost?
  publication-title: New Phytol.
– volume: 8
  start-page: 509
  year: 2017
  ident: bb0035
  article-title: The role of Na+ and K+ transporters in salt stress adaptation in glycophytes
  publication-title: Front. Physiol.
– volume: 18
  start-page: 791
  year: 2020
  end-page: 804
  ident: bb0495
  article-title: TaCYP 81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging
  publication-title: Plant Bioethanol. J.
– volume: 67
  start-page: 170
  year: 2000
  end-page: 181
  ident: bb0380
  article-title: Association mapping in structured populations
  publication-title: Am. J. Hum. Genet.
– volume: 20
  start-page: 196
  year: 2020
  ident: bb0285
  article-title: Genetic mapping and genomic selection for maize stalk strength
  publication-title: BMC Plant Biol.
– start-page: 29
  year: 1975
  end-page: 35
  ident: bb0125
  article-title: On augmented designs
  publication-title: Biometrics
– volume: 42
  start-page: 351
  year: 2002
  end-page: 361
  ident: bb0420
  article-title: Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview
  publication-title: Aust. J. Exp. Agr.
– volume: 181
  start-page: 371
  year: 2011
  end-page: 383
  ident: bb0095
  article-title: Quantitative trait loci associated with salinity tolerance in field grown bread wheat
  publication-title: Euphytica
– volume: 10
  start-page: 1280
  year: 2019
  ident: bb0160
  article-title: Bread wheat with high salinity and sodicity tolerance
  publication-title: Front. Plant Sci.
– volume: 51
  start-page: 1530
  year: 2019
  end-page: 1539
  ident: bb0215
  article-title: Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics
  publication-title: Nat. Genet.
– volume: 96
  start-page: 455
  year: 2005
  end-page: 4559
  ident: bb0055
  article-title: The transfer and history of “reduced height genes”(Rht) in wheat from Japan to Europe
  publication-title: J. Hered.
– volume: 44
  start-page: 404
  year: 2016
  end-page: 413
  ident: bb0405
  article-title: Expression of genes related to Na
  publication-title: Cereal Res. Commun.
– volume: 6
  start-page: 19444
  year: 2016
  ident: bb0505
  article-title: Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology
  publication-title: Sci. Rep.
– volume: 23
  start-page: 57
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0490
  article-title: Phenotyping and microsatellite marker analysis of HD 2851 (salt sensitive) × Kharchia 65 (salt tolerant) F2 population for salinity tolerance
  publication-title: Indian J. Plant Physiol.
  doi: 10.1007/s40502-017-0319-7
– volume: 142
  start-page: 1537
  year: 2006
  ident: 10.1016/j.ygeno.2021.07.014_bb0210
  article-title: Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.086538
– volume: 15
  start-page: 390
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bb0010
  article-title: Characterization of a Wheat Breeders’ Array suitable for high throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum)
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12635
– volume: 131
  start-page: 2179
  issue: 10
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0030
  article-title: Mapping of novel salt tolerance QTL in an Excalibur× Kukri doubled haploid wheat population
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-018-3146-y
– volume: 23
  start-page: 1647
  issue: 7
  year: 2004
  ident: 10.1016/j.ygeno.2021.07.014_bb0250
  article-title: The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600121
– volume: 28
  start-page: 13
  year: 1992
  ident: 10.1016/j.ygeno.2021.07.014_bb0130
  article-title: Effective selection criteria for assessing plant stress tolerance
  publication-title: Crop Sci.
– volume: 12
  start-page: 1137
  issue: 5
  year: 2003
  ident: 10.1016/j.ygeno.2021.07.014_bb0305
  article-title: Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits
  publication-title: Mol. Ecol.
  doi: 10.1046/j.1365-294X.2003.01833.x
– volume: 215
  start-page: 210
  issue: 12
  year: 2019
  ident: 10.1016/j.ygeno.2021.07.014_bb0090
  article-title: QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.)
  publication-title: Euphytica
  doi: 10.1007/s10681-019-2533-z
– volume: 126
  start-page: 2335
  year: 2013
  ident: 10.1016/j.ygeno.2021.07.014_bib547
  article-title: Association mapping of salt tolerance in barley (Hordeum vulgare L.)
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-013-2139-0
– volume: 110
  start-page: 865
  year: 2005
  ident: 10.1016/j.ygeno.2021.07.014_bb0385
  article-title: A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese spring × SQ1 and its use to compare QTLs for grain yield across a range of environments
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-004-1902-7
– volume: 7
  start-page: 15662
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bib548
  article-title: Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15726-6
– volume: 59
  start-page: 651
  year: 2008
  ident: 10.1016/j.ygeno.2021.07.014_bb0320
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 118
  start-page: 517
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bb0540
  article-title: pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies
  publication-title: Heredity
  doi: 10.1038/hdy.2017.8
– volume: 18
  start-page: 791
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0495
  article-title: TaCYP 81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging
  publication-title: Plant Bioethanol. J.
– volume: 41
  start-page: 919
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0355
  article-title: Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12898
– volume: 21
  start-page: 3674
  year: 2005
  ident: 10.1016/j.ygeno.2021.07.014_bb0070
  article-title: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti610
– volume: 153
  start-page: 109
  year: 2007
  ident: 10.1016/j.ygeno.2021.07.014_bb0290
  article-title: Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.)
  publication-title: Euphytica
  doi: 10.1007/s10681-006-9247-8
– volume: 13
  issue: 10
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0365
  article-title: Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0205452
– year: 2014
  ident: 10.1016/j.ygeno.2021.07.014_bb0170
  article-title: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization
  publication-title: Int. J. Genom.
  doi: 10.1155/2014/701596
– volume: 121
  start-page: 877
  year: 2010
  ident: 10.1016/j.ygeno.2021.07.014_bb0150
  article-title: Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-010-1357-y
– year: 2014
  ident: 10.1016/j.ygeno.2021.07.014_bb0360
– volume: 39
  start-page: 581
  issue: 6
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bb0500
  article-title: Transcriptome analysis reveals sunflower cytochrome P450 CYP93A1 responses to high salinity treatment at the seedling stage
  publication-title: Gene Genom.
  doi: 10.1007/s13258-017-0523-x
– volume: 8
  issue: 9
  year: 2013
  ident: 10.1016/j.ygeno.2021.07.014_bb0020
  article-title: New insights into the role of Arabidopsis RABA1 GTPases in salinity stress tolerance
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.25377
– year: 2015
  ident: 10.1016/j.ygeno.2021.07.014_bb0145
  article-title: Dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv428
– volume: 61
  start-page: 222
  year: 2010
  ident: 10.1016/j.ygeno.2021.07.014_bb0400
  article-title: Molecular diversity and genetic structure of modern and traditional landrace cultivars of wheat (Triticum aestivum L.)
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP09093
– volume: 147
  start-page: 469
  issue: 2
  year: 2008
  ident: 10.1016/j.ygeno.2021.07.014_bb0075
  article-title: Quantitative trait loci and crop performance under abiotic stress: where do we stand?
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.118117
– volume: 20
  start-page: 586
  year: 2015
  ident: 10.1016/j.ygeno.2021.07.014_bb0220
  article-title: Tuning plant signaling and growth to survive salt
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.06.008
– year: 1955
  ident: 10.1016/j.ygeno.2021.07.014_bb0480
– volume: 20
  start-page: 196
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0285
  article-title: Genetic mapping and genomic selection for maize stalk strength
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-2270-4
– volume: 18
  start-page: 249
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0450
  article-title: Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1476-1
– volume: 14
  start-page: 2611
  year: 2005
  ident: 10.1016/j.ygeno.2021.07.014_bb0115
  article-title: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2005.02553.x
– volume: 9
  start-page: 734
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0005
  article-title: Abiotic stress signaling in wheat–an inclusive overview of hormonal interactions during abiotic stress responses in wheat
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00734
– volume: 19
  start-page: 647
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0235
  article-title: Mechanisms of sodium transport in plants—progresses and challenges
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19030647
– volume: 120
  start-page: 208
  issue: 3
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0415
  article-title: pKWmEB: integration of Kruskal–Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study
  publication-title: Heredity
  doi: 10.1038/s41437-017-0007-4
– ident: 10.1016/j.ygeno.2021.07.014_bb0510
– volume: 8
  start-page: 509
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bb0035
  article-title: The role of Na+ and K+ transporters in salt stress adaptation in glycophytes
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00509
– volume: 3
  start-page: 148
  year: 2010
  ident: 10.1016/j.ygeno.2021.07.014_bb0475
  article-title: Characterizing the Saltol quantitative trait locus for salinity tolerance in rice
  publication-title: Rice
  doi: 10.1007/s12284-010-9053-8
– volume: 11
  start-page: 572975
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0375
  article-title: Identification of QTLs/defense genes effective at seedling stage against prevailing races of wheat stripe rust in India
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.572975
– year: 2016
  ident: 10.1016/j.ygeno.2021.07.014_bb0410
– volume: 6
  start-page: 19444
  year: 2016
  ident: 10.1016/j.ygeno.2021.07.014_bb0505
  article-title: Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology
  publication-title: Sci. Rep.
  doi: 10.1038/srep19444
– volume: 30
  start-page: 360
  issue: 4
  year: 2012
  ident: 10.1016/j.ygeno.2021.07.014_bb0330
  article-title: Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2120
– volume: 67
  start-page: 170
  year: 2000
  ident: 10.1016/j.ygeno.2021.07.014_bb0380
  article-title: Association mapping in structured populations
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/302959
– volume: 8
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.ygeno.2021.07.014_bb0485
  article-title: Subgenomic diversity patterns caused by directional selection in bread wheat gene pools
  publication-title: Plant Genom.
  doi: 10.3835/plantgenome2015.03.0013
– volume: 15
  start-page: 953
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bb0460
  article-title: Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the yellow and Huai Valley of China
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12690
– volume: 6
  start-page: 797
  year: 2015
  ident: 10.1016/j.ygeno.2021.07.014_bb0270
  article-title: OsCYP21-4, a novel Golgi-resident cyclophilin, increases oxidative stress tolerance in rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00797
– volume: 41
  start-page: 633
  issue: 2
  year: 2009
  ident: 10.1016/j.ygeno.2021.07.014_bb0240
  article-title: Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.)
  publication-title: Pak. J. Bot.
– volume: 21
  start-page: 27
  year: 2021
  ident: 10.1016/j.ygeno.2021.07.014_bb0195
  article-title: Genome-wide association study of yield and related traits in common wheat under salt-stress conditions
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-02799-1
– volume: 208
  start-page: 668
  year: 2015
  ident: 10.1016/j.ygeno.2021.07.014_bb0325
  article-title: Salinity tolerance of crops – what is the cost?
  publication-title: New Phytol.
  doi: 10.1111/nph.13519
– volume: 33
  start-page: 102
  issue: 1
  year: 2015
  ident: 10.1016/j.ygeno.2021.07.014_bb0040
  article-title: QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.)
  publication-title: Plant Mol. Biol. Report.
  doi: 10.1007/s11105-014-0726-0
– volume: 11
  start-page: 549743
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0255
  article-title: Genome-wide association study reveals genomic regions associated with ten agronomical traits in wheat under late-sown conditions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.549743
– volume: 32
  start-page: 39
  year: 2013
  ident: 10.1016/j.ygeno.2021.07.014_bb0155
  article-title: Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-013-9851-y
– volume: 92
  start-page: 448
  year: 1996
  ident: 10.1016/j.ygeno.2021.07.014_bb0105
  article-title: Mapping of the K+/Na+ discrimination locus Kna1 in wheat
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00223692
– volume: 96
  start-page: 455
  issue: 4
  year: 2005
  ident: 10.1016/j.ygeno.2021.07.014_bb0055
  article-title: The transfer and history of “reduced height genes”(Rht) in wheat from Japan to Europe
  publication-title: J. Hered.
  doi: 10.1093/jhered/esi060
– start-page: 3
  year: 2002
  ident: 10.1016/j.ygeno.2021.07.014_bb0370
  article-title: Global impact of salinity and agricultural ecosystems
– volume: 300
  start-page: 110624
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0455
  article-title: TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2020.110624
– ident: 10.1016/j.ygeno.2021.07.014_bb0185
– year: 2008
  ident: 10.1016/j.ygeno.2021.07.014_bb0345
– volume: 19
  start-page: 700
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0515
  article-title: Methodological implementation of mixed linear models in multi-locus genome-wide association studies
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbw145
– volume: 9
  start-page: 1464
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0080
  article-title: The application of multi-locus GWAS for the detection of salt-tolerance loci in rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01464
– year: 2008
  ident: 10.1016/j.ygeno.2021.07.014_bb0110
  article-title: Identification of a QTL on chromosome 7AS for sodium exclusion in bread wheat
– volume: 112
  start-page: 4608
  issue: 6
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0065
  article-title: Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.)
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.08.006
– volume: 137
  start-page: 807
  year: 2005
  ident: 10.1016/j.ygeno.2021.07.014_bb0085
  article-title: Control of sodium transport in durum wheat
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.057307
– volume: 5
  start-page: 175
  issue: 2
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bb0535
  article-title: Genetic mapping of quantitative trait loci in crops
  publication-title: Crop J.
  doi: 10.1016/j.cj.2016.06.003
– volume: 27
  start-page: 341
  issue: 1
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bib549
  article-title: Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/Frontana recombinant inbred lines (RILs) population of wheat (Triticum aestivum) under salt stress condition
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2019.10.003
– volume: 2
  start-page: 370
  issue: 5
  year: 2001
  ident: 10.1016/j.ygeno.2021.07.014_bb0295
  article-title: Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/35072085
– volume: 12
  start-page: 13
  year: 1990
  ident: 10.1016/j.ygeno.2021.07.014_bb0100
  article-title: Isolation of plant DNA from fresh tissue
  publication-title: Focus
– volume: 9
  start-page: 3156
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0440
  article-title: Molecular markers associated with agro-physiological traits under terminal drought conditions in bread wheat
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21093156
– volume: 12
  start-page: 88
  issue: 1
  year: 2019
  ident: 10.1016/j.ygeno.2021.07.014_bb0280
  article-title: Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study
  publication-title: Rice
  doi: 10.1186/s12284-019-0349-z
– volume: 132
  start-page: 4107
  issue: 18
  year: 2005
  ident: 10.1016/j.ygeno.2021.07.014_bb0340
  article-title: Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation
  publication-title: Development
  doi: 10.1242/dev.01955
– volume: 44
  start-page: 404
  year: 2016
  ident: 10.1016/j.ygeno.2021.07.014_bb0405
  article-title: Expression of genes related to Na+ exclusion and proline accumulation in tolerant and susceptible wheat genotypes under salt stress
  publication-title: Cereal Res. Commun.
  doi: 10.1556/0806.44.2016.009
– volume: 4
  start-page: 2669
  year: 2011
  ident: 10.1016/j.ygeno.2021.07.014_bb0520
  article-title: The global technical and economic potential of bioenergy from salt-affected soils
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE01029H
– year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0425
– volume: 202
  start-page: 472
  year: 2016
  ident: 10.1016/j.ygeno.2021.07.014_bb0350
  article-title: Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.12178
– volume: 91
  start-page: 503
  year: 2003
  ident: 10.1016/j.ygeno.2021.07.014_bb0470
  article-title: Na+ tolerance and Na+ transport in higher plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcg058
– volume: 63
  start-page: 2541
  issue: 7
  year: 2012
  ident: 10.1016/j.ygeno.2021.07.014_bb0525
  article-title: A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err431
– year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0445
  article-title: Genomics technologies for improving salt tolerance in wheat
– volume: 42
  start-page: 147
  year: 1995
  ident: 10.1016/j.ygeno.2021.07.014_bb0200
  article-title: Field evaluation to salinity stress in Iranian hexaploid wheat landrace accessions
  publication-title: Genet. Resour. Crop. Evol.
  doi: 10.1007/BF02539518
– volume: 57
  start-page: 1025
  issue: 5
  year: 2006
  ident: 10.1016/j.ygeno.2021.07.014_bb0315
  article-title: Approaches to increasing the salt tolerance of wheat and other cereals
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj100
– volume: 144
  start-page: 619
  year: 2021
  ident: 10.1016/j.ygeno.2021.07.014_bib546
  article-title: Morpho-physiological and gene expression responses of wheat by Aegilops cylindrica amphidiploids to salt stress
  publication-title: Plant Cell Tiss. Organ. Cult.
– volume: 51
  start-page: 1530
  issue: 10
  year: 2019
  ident: 10.1016/j.ygeno.2021.07.014_bb0215
  article-title: Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0496-6
– volume: 13
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bb0465
  article-title: Iterative sure independence screening EM-Bayesian LASSO algorithm for multilocus genome-wide association studies
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005357
– volume: 33
  start-page: 331
  year: 2014
  ident: 10.1016/j.ygeno.2021.07.014_bb0120
  article-title: Drought stress in wheat during flowering and grain-filling periods
  publication-title: CRC Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2014.875291
– volume: 22
  start-page: 119
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0015
  article-title: GWAS: fast-forwarding gene identification and characterization in temperate cereals: lessons from barley–a review
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2019.10.013
– volume: 10
  start-page: 14034
  year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0050
  article-title: Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69442-9
– volume: 18
  start-page: 333
  issue: 5
  year: 2015
  ident: 10.1016/j.ygeno.2021.07.014_bb0190
  article-title: Evaluation of wheat genotypes for salt tolerance based on some physiological traits
  publication-title: J. Crop. Sci. Biotechnol.
  doi: 10.1007/s12892-015-0064-2
– volume: 181
  start-page: 371
  year: 2011
  ident: 10.1016/j.ygeno.2021.07.014_bb0095
  article-title: Quantitative trait loci associated with salinity tolerance in field grown bread wheat
  publication-title: Euphytica
  doi: 10.1007/s10681-011-0463-5
– volume: 14
  issue: 3
  year: 2019
  ident: 10.1016/j.ygeno.2021.07.014_bb0390
  article-title: Genome-wide association analyses for yield and yield-related traits in bread wheat (Triticum aestivum L.) under pre-anthesis combined heat and drought stress in field conditions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0213407
– year: 2020
  ident: 10.1016/j.ygeno.2021.07.014_bb0045
  article-title: Genome-wide association study for spot blotch resistance in afghan wheat germplasm
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13191
– volume: 42
  start-page: 351
  year: 2002
  ident: 10.1016/j.ygeno.2021.07.014_bb0420
  article-title: Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview
  publication-title: Aust. J. Exp. Agr.
  doi: 10.1071/EA01111
– volume: 19
  start-page: 168
  year: 2019
  ident: 10.1016/j.ygeno.2021.07.014_bb0275
  article-title: Genetic architecture of grain yield in bread wheat based on genome-wide association studies
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-1781-3
– start-page: 29
  year: 1975
  ident: 10.1016/j.ygeno.2021.07.014_bb0125
  article-title: On augmented designs
  publication-title: Biometrics
  doi: 10.2307/2529707
– volume: 25
  start-page: 1
  year: 2008
  ident: 10.1016/j.ygeno.2021.07.014_bb0260
  article-title: FactoMineR: a package for multivariate analysis
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v025.i01
– volume: 10
  start-page: 1280
  year: 2019
  ident: 10.1016/j.ygeno.2021.07.014_bb0160
  article-title: Bread wheat with high salinity and sodicity tolerance
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01280
– volume: 88
  start-page: 1624
  issue: 10
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0245
  article-title: Impact of water deficit (salt and drought) stress on physiological, biochemical and yield attributes on wheat (Triticum aestivum) varieties
  publication-title: Indian J. Agric. Sci.
  doi: 10.56093/ijas.v88i10.84255
– volume: 11
  start-page: 34
  issue: 1
  year: 2011
  ident: 10.1016/j.ygeno.2021.07.014_bb0430
  article-title: Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-11-34
– volume: 14
  issue: 3
  year: 2019
  ident: 10.1016/j.ygeno.2021.07.014_bb0165
  article-title: Analysis of genetic control and QTL mapping of essential wheat grain quality traits in a recombinant inbred population
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0200669
– volume: 33
  start-page: 2030
  year: 2015
  ident: 10.1016/j.ygeno.2021.07.014_bb0335
  article-title: Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (Triticum aestivum L.) under normal and salt-stress conditions. Plant Mol
  publication-title: Biol. Reprod.
– ident: 10.1016/j.ygeno.2021.07.014_bb0230
– volume: 104
  start-page: 75
  year: 2019
  ident: 10.1016/j.ygeno.2021.07.014_bb0175
  article-title: Association mapping in plants in the post-GWAS genomics era
  publication-title: Adv. Genet.
  doi: 10.1016/bs.adgen.2018.12.001
– volume: 491
  start-page: 642
  issue: 3
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bb0530
  article-title: The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.07.150
– volume: 20
  start-page: 618
  issue: 1
  year: 2019
  ident: 10.1016/j.ygeno.2021.07.014_bb0225
  article-title: Estimation of a significance threshold for genome-wide association studies
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-5992-7
– volume: 12
  issue: 8
  year: 2017
  ident: 10.1016/j.ygeno.2021.07.014_bb0140
  article-title: QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0182857
– volume: 6
  start-page: 181
  issue: 2
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0180
  article-title: Function of the auxin-responsive gene TaSAUR75 under salt and drought stress
  publication-title: Crop J.
  doi: 10.1016/j.cj.2017.08.005
– start-page: 341784
  year: 2018
  ident: 10.1016/j.ygeno.2021.07.014_bb0545
  article-title: A fast mrMLM algorithm for multi-locus genome-wide association studies
  publication-title: bioRxiv
– volume: 4
  start-page: 136
  year: 2012
  ident: 10.1016/j.ygeno.2021.07.014_bb0435
  article-title: Improving the nutritional quality and health benefits of wheat
  publication-title: Qual. Assur. Saf. Crop. Foods
  doi: 10.1111/j.1757-837X.2012.00138.x
SSID ssj0009382
Score 2.4709496
Snippet A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3198
SubjectTerms Association mapping
biomass
Bread wheat
Genome-Wide Association Study
Genomics
grain yield
leaves
Multi-locus GWAS
nucleotides
Phenotype
plant height
Polymorphism, Single Nucleotide
Quantitative Trait Loci
quantitative traits
Salinity
Salt Stress
salt tolerance
single nucleotide polymorphism arrays
Triticum - genetics
Triticum aestivum
wheat
Title Genome-wide association mapping reveals key genomic regions for physiological and yield-related traits under salinity stress in wheat (Triticum aestivum L.)
URI https://dx.doi.org/10.1016/j.ygeno.2021.07.014
https://www.ncbi.nlm.nih.gov/pubmed/34293475
https://www.proquest.com/docview/2555111280
https://www.proquest.com/docview/2636515936
Volume 113
WOSCitedRecordID wos000688447400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: AIEXJ
  dateStart: 20200901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF714CgPCMJVjmqReAAZR47P9WNUyqWqQmqQ8mbtOuvGoXGiJL3-C3-Kf8TMHo4LJIIHXizLXp_zeXZmPN8MIa8k88GoKApXiCh3QxGnoAfBS-F-4vtCBjFjiih8mBwdsX4__bKx8cNyYc5Pk6pil5fp9L-KGraBsJE6-w_irk8KG2AdhA5LEDss_0rwH2Q1GUv3ohxIhy9fvjPmU8WNwppNWDMZvl7sn4ysZAfbM2DODOYcqlhHrRIxrn6FWW6uYr2AeYpNJRZz1T935sw5MivBkDeck7JyLlC9o-HaU10UMPkZK3mcw8ph2wYeRo17xTrRMPwYNM27Up7o2C1SxtqNMMX-kJ_NkPGpwrXD8tt8WE8ox_BYKjrUHZcLRyWNL_9QmQzyLqjEalAfMalOOHKeVVjChH9N7MPv1MldMHVpfe0xAFdsophWoWt2q0Fu1FDPoG_YH-cNHcIYta_wvbfxUqqkq-a3NkAzHSvUBDCLB6Fu-fJLuW67a5Ns-0mUsi2y3f100P-8rAQdMN-Wv1KJhr9dc4fcsmdZZS2t8oaUVdS7R-4ad4Z2NQzvkw1ZtchN3eD0qkVu79t-gi1yp1H68gH53oApbcCUGphSA1MKMKUGptTAlAJM6TWYUoApvQZTqmFKFUyphSnVMKVlRRVM6WsLUmpBSg_bbx6Sr-8PevsfXdMpxM3Bvl-4kmGdvwEPmIDpOuVemhQdDDUEMhHgU4iIiSTkg7zguRBodHupCCUvBmkH9BEPHpGtalLJJ4QWXlj4Ps-9gjOshSnSKPRFmBTCk2kho13iW4lkuSmjj090mtl8yVGmJJqhRDMvyUCiu-RtfdBUV5FZPzy2os6MIawN3Azwuv7AlxYYGUgX__3xSk7O5pkfgWsEvhXz1oyJgxjdmyDeJY81quq7tYB8unLPM7Kz_ESfk63F7Ey-IDfy80U5n-2RzaTP9sy38BMLXfVA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+association+mapping+reveals+key+genomic+regions+for+physiological+and+yield-related+traits+under+salinity+stress+in+wheat+%28Triticum+aestivum+L.%29&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Chaurasia%2C+Shiksha&rft.au=Singh%2C+Amit+Kumar&rft.au=Kumar%2C+Arvind&rft.au=Songachan%2C+L+S&rft.date=2021-09-01&rft.eissn=1089-8646&rft.volume=113&rft.issue=5&rft.spage=3198&rft_id=info:doi/10.1016%2Fj.ygeno.2021.07.014&rft_id=info%3Apmid%2F34293475&rft.externalDocID=34293475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon