Economic and environmental optimization for distributed energy resource systems coupled with district energy networks

This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a mixed-integer linear programming model with multiple objectives at a neighbourhood level containing residential and office buildings. The equipmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 109; S. 947 - 960
Hauptverfasser: Li, Longxi, Mu, Hailin, Li, Nan, Li, Miao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.08.2016
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a mixed-integer linear programming model with multiple objectives at a neighbourhood level containing residential and office buildings. The equipment and layout of the district energy (power, heating, and cooling) networks were selected from several potential energy devices and paths using a mathematical model. The objectives of the model were to minimize the total annual cost and CO2 (carbon dioxide) emission and achieve the optimal design and operation to meet the yearly energy demands. Moreover, the economic and environmental benefits under different weights of the objective function were evaluated by sensitivity analysis. The results show that at a neighbourhood level, the DER system has significant environmental and economic benefits. The system could spontaneously select the most appropriate operation strategy using the developed mathematical model. In multiobjective scenarios, with the increase in the weight of environmental factor, the emission decreases and the cost increases gradually. When considering a single objective, the minimization of cost or carbon emission leads to a poor cost performance. •The objective function introduces ratios of cost-saving and CO2 emission reduction.•The different criteria weights of the objective function has been studied.•The DER system could spontaneously select appropriate operation strategy.•Only considering cost or emission minimization can lead to a poor cost performance.
AbstractList This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a mixed-integer linear programming model with multiple objectives at a neighbourhood level containing residential and office buildings. The equipment and layout of the district energy (power, heating, and cooling) networks were selected from several potential energy devices and paths using a mathematical model. The objectives of the model were to minimize the total annual cost and CO2 (carbon dioxide) emission and achieve the optimal design and operation to meet the yearly energy demands. Moreover, the economic and environmental benefits under different weights of the objective function were evaluated by sensitivity analysis. The results show that at a neighbourhood level, the DER system has significant environmental and economic benefits. The system could spontaneously select the most appropriate operation strategy using the developed mathematical model. In multiobjective scenarios, with the increase in the weight of environmental factor, the emission decreases and the cost increases gradually. When considering a single objective, the minimization of cost or carbon emission leads to a poor cost performance. •The objective function introduces ratios of cost-saving and CO2 emission reduction.•The different criteria weights of the objective function has been studied.•The DER system could spontaneously select appropriate operation strategy.•Only considering cost or emission minimization can lead to a poor cost performance.
This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a mixed-integer linear programming model with multiple objectives at a neighbourhood level containing residential and office buildings. The equipment and layout of the district energy (power, heating, and cooling) networks were selected from several potential energy devices and paths using a mathematical model. The objectives of the model were to minimize the total annual cost and CO2 (carbon dioxide) emission and achieve the optimal design and operation to meet the yearly energy demands. Moreover, the economic and environmental benefits under different weights of the objective function were evaluated by sensitivity analysis. The results show that at a neighbourhood level, the DER system has significant environmental and economic benefits. The system could spontaneously select the most appropriate operation strategy using the developed mathematical model. In multiobjective scenarios, with the increase in the weight of environmental factor, the emission decreases and the cost increases gradually. When considering a single objective, the minimization of cost or carbon emission leads to a poor cost performance.
Author Li, Nan
Mu, Hailin
Li, Longxi
Li, Miao
Author_xml – sequence: 1
  givenname: Longxi
  surname: Li
  fullname: Li, Longxi
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Hailin
  surname: Mu
  fullname: Mu, Hailin
  email: mhldut@126.com
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Nan
  surname: Li
  fullname: Li, Nan
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
– sequence: 4
  givenname: Miao
  surname: Li
  fullname: Li, Miao
  organization: School of Mechanical Engineering, Dalian Polytechnic University, Dalian 116034, China
BookMark eNqFkD1PwzAQhj0UibbwDxgysjRcnDhNGJBQVT6kSiwwW45zBpfEDrbTqvx6UloWBphOp3ufO90zISNjDRJykUCcQJJfrWM06F53MR26GFgMNB-RMaQ5zFiW0VMy8X4NAKwoyzHpl9Ia22oZCVNHaDbaWdOiCaKJbBd0qz9F0NZEyrqo1j44XfUB99H9lciht72TGPmdD9j6SNq-a4b5Voe3IyDDT9pg2Fr37s_IiRKNx_NjnZKXu-Xz4mG2erp_XNyuZjItaZhhLhmCUAJUCTJBBSqfVzXUos5QJKJSWCDMK0qVYKxIWFakkuZSpFWGqDCdksvD3s7Zjx594K32EptGGLS95xQyVtCsmCdDNDtEpbPeO1S8c7oVbscT4HuzfM0PX_C9WQ6MD2YH7PoXJnX4Nhac0M1_8M0BxsHBRqPjXmo0EmvtUAZeW_33gi9wuqEw
CitedBy_id crossref_primary_10_1016_j_eneco_2022_105828
crossref_primary_10_3390_su14031356
crossref_primary_10_1016_j_energy_2017_07_139
crossref_primary_10_1088_1757_899X_657_1_012034
crossref_primary_10_1016_j_apenergy_2017_06_038
crossref_primary_10_1088_2516_1083_acef9e
crossref_primary_10_3390_en17061420
crossref_primary_10_1016_j_cherd_2017_07_030
crossref_primary_10_1016_j_energy_2021_121452
crossref_primary_10_1016_j_energy_2020_117243
crossref_primary_10_1016_j_scs_2019_101726
crossref_primary_10_3390_en11051066
crossref_primary_10_3390_electronics11182816
crossref_primary_10_1016_j_epsr_2025_111643
crossref_primary_10_3390_su16177255
crossref_primary_10_1016_j_applthermaleng_2022_119672
crossref_primary_10_3390_app11020774
crossref_primary_10_3390_en16104018
crossref_primary_10_1007_s41660_020_00125_8
crossref_primary_10_1016_j_rser_2020_110400
crossref_primary_10_1016_j_enconman_2019_112081
crossref_primary_10_1016_j_energy_2020_119311
crossref_primary_10_1016_j_ijepes_2021_107450
crossref_primary_10_1016_j_energy_2019_04_153
crossref_primary_10_1016_j_egypro_2017_12_400
crossref_primary_10_1016_j_enbuild_2024_115261
crossref_primary_10_1088_1742_6596_2491_1_012023
crossref_primary_10_1177_01445987251323622
crossref_primary_10_1016_j_enconman_2020_112963
crossref_primary_10_1016_j_enconman_2021_114788
crossref_primary_10_1016_j_jclepro_2020_125420
crossref_primary_10_1016_j_jclepro_2019_117990
crossref_primary_10_2298_TSCI220804167S
crossref_primary_10_3390_en12101844
crossref_primary_10_1016_j_apenergy_2024_123457
crossref_primary_10_1016_j_epsr_2017_03_020
crossref_primary_10_1016_j_cie_2022_108180
crossref_primary_10_1016_j_energy_2022_123816
crossref_primary_10_1016_j_apenergy_2019_113982
crossref_primary_10_1016_j_enbuild_2017_01_062
crossref_primary_10_1016_j_rser_2021_112050
crossref_primary_10_1016_j_energy_2025_135855
crossref_primary_10_1016_j_isci_2024_111595
crossref_primary_10_3390_en14102879
crossref_primary_10_1016_j_scs_2017_07_017
crossref_primary_10_1016_j_apenergy_2018_12_037
crossref_primary_10_1016_j_renene_2018_07_052
crossref_primary_10_1016_j_jclepro_2023_136946
crossref_primary_10_1088_1755_1315_701_1_012029
crossref_primary_10_3390_ijerph182412992
crossref_primary_10_1016_j_energy_2020_117078
crossref_primary_10_1016_j_enconman_2018_10_102
crossref_primary_10_1016_j_scs_2020_102230
crossref_primary_10_1016_j_apenergy_2021_117822
crossref_primary_10_1088_1742_6596_1176_4_042061
crossref_primary_10_1016_j_renene_2022_07_102
crossref_primary_10_3389_fbuil_2016_00022
crossref_primary_10_3389_frsc_2021_663256
crossref_primary_10_1016_j_enconman_2020_112596
crossref_primary_10_1016_j_scs_2021_102917
crossref_primary_10_1016_j_scs_2025_106310
crossref_primary_10_1007_s00202_023_01800_y
crossref_primary_10_1002_er_4600
crossref_primary_10_1016_j_jclepro_2019_06_047
crossref_primary_10_1109_ACCESS_2021_3112817
crossref_primary_10_1016_j_energy_2021_122626
crossref_primary_10_1093_ce_zkac017
crossref_primary_10_1016_j_scs_2023_104666
crossref_primary_10_1016_j_omega_2020_102326
crossref_primary_10_1016_j_rser_2021_111382
crossref_primary_10_3390_en13123202
crossref_primary_10_1080_15567036_2019_1675812
crossref_primary_10_1016_j_egyr_2021_08_151
crossref_primary_10_1016_j_est_2024_110746
crossref_primary_10_1016_j_energy_2021_121120
crossref_primary_10_1016_j_energy_2020_117451
crossref_primary_10_1016_j_apenergy_2021_118415
crossref_primary_10_1016_j_energy_2020_118989
crossref_primary_10_1111_coin_12238
crossref_primary_10_1016_j_scs_2020_102492
crossref_primary_10_1016_j_enconman_2023_117265
crossref_primary_10_1016_j_rser_2022_112440
crossref_primary_10_1177_0958305X18768818
crossref_primary_10_1016_j_energy_2021_120460
crossref_primary_10_1016_j_energy_2023_126888
crossref_primary_10_1088_1755_1315_146_1_012053
crossref_primary_10_1016_j_energy_2018_05_114
crossref_primary_10_1016_j_apenergy_2021_117283
crossref_primary_10_1016_j_energy_2018_08_083
crossref_primary_10_1016_j_apenergy_2022_119500
crossref_primary_10_1016_j_proeng_2017_10_327
crossref_primary_10_1016_j_est_2022_104710
crossref_primary_10_1016_j_apenergy_2020_115066
crossref_primary_10_1016_j_energy_2017_04_130
crossref_primary_10_1016_j_apenergy_2020_115115
crossref_primary_10_1016_j_energy_2021_119987
crossref_primary_10_1016_j_scs_2021_103076
crossref_primary_10_1016_j_enbuild_2020_110314
crossref_primary_10_1016_j_apenergy_2018_09_029
crossref_primary_10_3389_fenrg_2022_971912
crossref_primary_10_1016_j_scs_2021_103075
crossref_primary_10_1007_s40430_024_05250_w
crossref_primary_10_1002_er_7244
crossref_primary_10_1016_j_rser_2020_110619
crossref_primary_10_1016_j_energy_2022_123626
Cites_doi 10.1016/j.apenergy.2013.10.063
10.1016/j.renene.2014.06.016
10.1021/ie800646q
10.1016/j.scs.2013.11.005
10.1115/GT2010-23416
10.1016/j.enconman.2012.02.008
10.1016/j.cor.2007.11.008
10.1016/j.enpol.2013.05.009
10.1016/j.apenergy.2015.09.020
10.1016/j.applthermaleng.2007.05.001
10.1023/A:1023334615090
10.1016/S0360-5442(97)00052-2
10.1016/j.apenergy.2013.12.040
10.1016/j.applthermaleng.2005.05.034
10.1016/j.apenergy.2009.09.023
10.1016/j.apenergy.2010.06.021
10.1016/j.apenergy.2014.09.020
10.1016/j.applthermaleng.2005.09.005
10.1016/j.enbuild.2010.07.019
10.1016/j.enbuild.2015.04.030
10.1016/j.energy.2006.10.023
10.1016/j.applthermaleng.2007.01.002
10.1016/j.buildenv.2008.07.006
10.1016/j.energy.2010.11.014
10.1016/j.apenergy.2014.01.047
10.1016/j.apenergy.2014.02.062
10.1016/j.energy.2015.03.051
10.1016/j.apenergy.2009.04.012
10.1016/j.apenergy.2009.08.005
10.1016/j.enconman.2015.07.009
10.1016/j.energy.2015.03.101
10.1016/j.energy.2013.04.004
10.1016/j.apenergy.2015.05.085
10.1016/j.renene.2012.09.009
10.1016/j.energy.2012.02.009
10.1016/j.energy.2013.09.018
10.1016/j.apenergy.2013.11.065
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2016.05.026
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 960
ExternalDocumentID 10_1016_j_energy_2016_05_026
S0360544216305783
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c392t-e6c5e0afa0f90c1ef0f67bd0dad4ea1abfe8e07b22fa55815483c26ca3b4eefe3
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382591000082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 01:28:24 EDT 2025
Tue Nov 18 22:43:11 EST 2025
Sat Nov 29 07:52:37 EST 2025
Fri Feb 23 02:32:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed energy resource system
District energy networks
Environmental optimization
Economic optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-e6c5e0afa0f90c1ef0f67bd0dad4ea1abfe8e07b22fa55815483c26ca3b4eefe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2045824871
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2045824871
crossref_primary_10_1016_j_energy_2016_05_026
crossref_citationtrail_10_1016_j_energy_2016_05_026
elsevier_sciencedirect_doi_10_1016_j_energy_2016_05_026
PublicationCentury 2000
PublicationDate 2016-08-15
PublicationDateYYYYMMDD 2016-08-15
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-15
  day: 15
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Di Somma, Yan, Bianco, Graditi, Luh, Mongibello (bib20) 2015; 103
Ooka, Komamura (bib34) 2009; 44
Johnson controls. Absorption chillers.
Aringhieri, Malucelli (bib22) 2003; 120
Savola, Tveit, Fogelholm (bib31) 2007; 27
Mehleri, Sarimveis, Markatos, Papageorgiou (bib14) 2012; 44
DeForest, Mendes, Stadler, Feng, Lai, Marnay (bib8) 2014; 119
Wang, Fu, Yang, Zhang, Shi G-h (bib12) 2013; 61
Weber, Shah (bib26) 2011; 36
Cho, Luck, Chamra (bib38) 2008
Li (bib7) 2013
Hu, Cho (bib39) 2014; 116
Li, Mu, Gao, Li (bib35) 2014; 136
Economidou, Atanasiu, Despret, Maio, Nolte, Rapf (bib1) 2011
Smith, Luck, Mago (bib40) 2010; 42
l'énergie Aid (bib2) 2012
[accessed 14.10.15].
Braslavsky, Wall, Reedman (bib19) 2015; 155
Cho, Mago, Luck, Chamra (bib23) 2009; 86
Da, Xiaona, Fangting (bib44) 2004; 7
[accessed 12.10.15].
Henning (bib21) 1997; 22
Caterpillar company. Solar Turbines (SATURN 20).
Wang, Xu, Jin, Shi, Fu, Yang (bib11) 2014; 71
Omu, Choudhary, Boies (bib25) 2013; 61
Öncan, Altınel, Laporte (bib36) 2009; 36
Li, Mu, Li, Li (bib48) 2015; 99
He, Yang, Ye (bib3) 2014; 11
Söderman, Pettersson (bib27) 2006; 26
Ren, Gao, Ruan (bib30) 2008; 28
Yang, Zhang, Xiao (bib9) 2015; 85
Mehleri, Sarimveis, Markatos, Papageorgiou (bib15) 2013; 51
Wang, Yin, Abdollahi, Lahdelma, Jiao (bib4) 2015; 159
Buoro, Pinamonti, Reini (bib16) 2014; 124
Liu, Pinto, Papageorgiou (bib37) 2008; 47
Li, Nalim, Haldi (bib29) 2006; 26
Optimization G. Inc (bib43) 2014
Ren, Gao (bib5) 2010; 87
Bracco, Dentici, Siri (bib18) 2013; 55
Cho, Luck, Mago, Chamra (bib41) 2009
Wouters, Fraga, James (bib17) 2015; 85
Solar Energy Industries Association (bib46) 2014
Smith, Mago (bib42) 2014; 115
Jayasekara, Halgamuge, Attalage, Rajarathne (bib32) 2014; 118
Sanner, Angelino, de Gregorio, Fevier, Haslinger, Kujbus (bib10) 2013
Buoro, Casisi, Pinamonti, Reini (bib24) 2012; 60
Buoro D, Casisi M, Pinamonti P, Reini M. Optimal lay-out and operation of district heating and cooling distributed trigeneration systems. Conference Optimal lay-out and operation of district heating and cooling distributed trigeneration systems, American Society of Mechanical Engineers, p. 157–166.
Arcuri, Florio, Fragiacomo (bib28) 2007; 32
Wang, Jing, Zhang (bib33) 2010; 87
Wang, Zhai, Jing, Zhang (bib6) 2010; 87
Wang (10.1016/j.energy.2016.05.026_bib11) 2014; 71
Cho (10.1016/j.energy.2016.05.026_bib23) 2009; 86
Cho (10.1016/j.energy.2016.05.026_bib41) 2009
Li (10.1016/j.energy.2016.05.026_bib48) 2015; 99
Li (10.1016/j.energy.2016.05.026_bib35) 2014; 136
Cho (10.1016/j.energy.2016.05.026_bib38) 2008
Braslavsky (10.1016/j.energy.2016.05.026_bib19) 2015; 155
Wang (10.1016/j.energy.2016.05.026_bib12) 2013; 61
Da (10.1016/j.energy.2016.05.026_bib44) 2004; 7
Smith (10.1016/j.energy.2016.05.026_bib42) 2014; 115
10.1016/j.energy.2016.05.026_bib13
Arcuri (10.1016/j.energy.2016.05.026_bib28) 2007; 32
Sanner (10.1016/j.energy.2016.05.026_bib10) 2013
Buoro (10.1016/j.energy.2016.05.026_bib16) 2014; 124
Solar Energy Industries Association (10.1016/j.energy.2016.05.026_bib46) 2014
Hu (10.1016/j.energy.2016.05.026_bib39) 2014; 116
Buoro (10.1016/j.energy.2016.05.026_bib24) 2012; 60
Optimization G. Inc (10.1016/j.energy.2016.05.026_bib43) 2014
Jayasekara (10.1016/j.energy.2016.05.026_bib32) 2014; 118
DeForest (10.1016/j.energy.2016.05.026_bib8) 2014; 119
Mehleri (10.1016/j.energy.2016.05.026_bib14) 2012; 44
Savola (10.1016/j.energy.2016.05.026_bib31) 2007; 27
Ooka (10.1016/j.energy.2016.05.026_bib34) 2009; 44
Liu (10.1016/j.energy.2016.05.026_bib37) 2008; 47
Li (10.1016/j.energy.2016.05.026_bib7) 2013
Economidou (10.1016/j.energy.2016.05.026_bib1) 2011
Ren (10.1016/j.energy.2016.05.026_bib5) 2010; 87
10.1016/j.energy.2016.05.026_bib45
Wang (10.1016/j.energy.2016.05.026_bib33) 2010; 87
Wouters (10.1016/j.energy.2016.05.026_bib17) 2015; 85
Bracco (10.1016/j.energy.2016.05.026_bib18) 2013; 55
10.1016/j.energy.2016.05.026_bib47
He (10.1016/j.energy.2016.05.026_bib3) 2014; 11
Smith (10.1016/j.energy.2016.05.026_bib40) 2010; 42
Mehleri (10.1016/j.energy.2016.05.026_bib15) 2013; 51
Henning (10.1016/j.energy.2016.05.026_bib21) 1997; 22
Weber (10.1016/j.energy.2016.05.026_bib26) 2011; 36
Wang (10.1016/j.energy.2016.05.026_bib6) 2010; 87
Aringhieri (10.1016/j.energy.2016.05.026_bib22) 2003; 120
Yang (10.1016/j.energy.2016.05.026_bib9) 2015; 85
Di Somma (10.1016/j.energy.2016.05.026_bib20) 2015; 103
Omu (10.1016/j.energy.2016.05.026_bib25) 2013; 61
Li (10.1016/j.energy.2016.05.026_bib29) 2006; 26
Öncan (10.1016/j.energy.2016.05.026_bib36) 2009; 36
l'énergie Aid (10.1016/j.energy.2016.05.026_bib2) 2012
Ren (10.1016/j.energy.2016.05.026_bib30) 2008; 28
Wang (10.1016/j.energy.2016.05.026_bib4) 2015; 159
Söderman (10.1016/j.energy.2016.05.026_bib27) 2006; 26
References_xml – volume: 60
  start-page: 96
  year: 2012
  end-page: 105
  ident: bib24
  article-title: Optimal synthesis and operation of advanced energy supply systems for standard and domotic home
  publication-title: Energy Convers Manag
– reference: [accessed 12.10.15].
– volume: 61
  start-page: 249
  year: 2013
  end-page: 266
  ident: bib25
  article-title: Distributed energy resource system optimisation using mixed integer linear programming
  publication-title: Energy Policy
– volume: 22
  start-page: 1135
  year: 1997
  end-page: 1150
  ident: bib21
  article-title: MODEST—An energy-system optimisation model applicable to local utilities and countries
  publication-title: Energy
– volume: 118
  start-page: 124
  year: 2014
  end-page: 134
  ident: bib32
  article-title: Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers
  publication-title: Appl Energy
– start-page: 81
  year: 2009
  end-page: 96
  ident: bib41
  article-title: Assessment of CHP system performance with commercial building benchmark models in different U.S. climate zones
  publication-title: ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences
– volume: 136
  start-page: 206
  year: 2014
  end-page: 216
  ident: bib35
  article-title: Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings
  publication-title: Appl Energy
– volume: 115
  start-page: 337
  year: 2014
  end-page: 351
  ident: bib42
  article-title: Effects of load-following operational methods on combined heat and power system efficiency
  publication-title: Appl Energy
– year: 2014
  ident: bib46
  article-title: Solar market insight report
– year: 2012
  ident: bib2
  article-title: Energy technology perspectives 2012: pathways to a clean energy system
– volume: 116
  start-page: 230
  year: 2014
  end-page: 242
  ident: bib39
  article-title: A probability constrained multi-objective optimization model for CCHP system operation decision support
  publication-title: Appl Energy
– year: 2013
  ident: bib10
  article-title: Strategic research and innovation agenda for renewable heating & cooling
– reference: [accessed 14.10.15].
– volume: 103
  start-page: 739
  year: 2015
  end-page: 751
  ident: bib20
  article-title: Operation optimization of a distributed energy system considering energy costs and exergy efficiency
  publication-title: Energy Convers Manag
– volume: 26
  start-page: 709
  year: 2006
  end-page: 719
  ident: bib29
  article-title: Thermal-economic optimization of a distributed multi-generation energy system—a case study of Beijing
  publication-title: Appl Therm Eng
– volume: 87
  start-page: 1325
  year: 2010
  end-page: 1335
  ident: bib33
  article-title: Optimization of capacity and operation for CCHP system by genetic algorithm
  publication-title: Appl Energy
– volume: 87
  start-page: 3668
  year: 2010
  end-page: 3679
  ident: bib6
  article-title: Particle swarm optimization for redundant building cooling heating and power system
  publication-title: Appl Energy
– volume: 11
  start-page: 7
  year: 2014
  end-page: 15
  ident: bib3
  article-title: Building energy efficiency in China rural areas: situation, drawbacks, challenges, corresponding measures and policies
  publication-title: Sustain Cities Soc
– volume: 44
  start-page: 1538
  year: 2009
  end-page: 1544
  ident: bib34
  article-title: Optimal design method for building energy systems using genetic algorithms
  publication-title: Build Environ
– volume: 36
  start-page: 1292
  year: 2011
  end-page: 1308
  ident: bib26
  article-title: Optimisation based design of a district energy system for an eco-town in the United Kingdom
  publication-title: Energy
– volume: 124
  start-page: 298
  year: 2014
  end-page: 308
  ident: bib16
  article-title: Optimization of a distributed cogeneration system with solar district heating
  publication-title: Appl Energy
– volume: 32
  start-page: 1430
  year: 2007
  end-page: 1447
  ident: bib28
  article-title: A mixed integer programming model for optimal design of trigeneration in a hospital complex
  publication-title: Energy
– volume: 51
  start-page: 331
  year: 2013
  end-page: 342
  ident: bib15
  article-title: Optimal design and operation of distributed energy systems: application to Greek residential sector
  publication-title: Renew Energy
– reference: Buoro D, Casisi M, Pinamonti P, Reini M. Optimal lay-out and operation of district heating and cooling distributed trigeneration systems. Conference Optimal lay-out and operation of district heating and cooling distributed trigeneration systems, American Society of Mechanical Engineers, p. 157–166.
– volume: 99
  start-page: 231
  year: 2015
  end-page: 242
  ident: bib48
  article-title: Analysis of the integrated performance and redundant energy of CCHP systems under different operation strategies
  publication-title: Energy Build
– volume: 119
  start-page: 488
  year: 2014
  end-page: 496
  ident: bib8
  article-title: Optimal deployment of thermal energy storage under diverse economic and climate conditions
  publication-title: Appl Energy
– volume: 27
  start-page: 1857
  year: 2007
  end-page: 1867
  ident: bib31
  article-title: A MINLP model including the pressure levels and multiperiods for CHP process optimisation
  publication-title: Appl Therm Eng
– year: 2008
  ident: bib38
  article-title: Operation of micro-CHP system using an optimal energy dispatch algorithm
  publication-title: ASME proceedings of energy sustainability
– volume: 7
  start-page: 010
  year: 2004
  ident: bib44
  article-title: Building environment design simulation software DeST (1): an overview of developments and information of building simulation and DeST
  publication-title: Hv Ac
– year: 2011
  ident: bib1
  article-title: Europe's buildings under the microscope. A country-by-country review of the energy performance of buildings
– volume: 71
  start-page: 572
  year: 2014
  end-page: 583
  ident: bib11
  article-title: Design optimization and analysis of a biomass gasification based BCHP system: a case study in Harbin, China
  publication-title: Renew Energy
– volume: 47
  start-page: 7733
  year: 2008
  end-page: 7743
  ident: bib37
  article-title: A TSP-based MILP model for medium-term planning of single-stage continuous multiproduct plants
  publication-title: Industrial Eng Chem Res
– volume: 61
  start-page: 531
  year: 2013
  end-page: 540
  ident: bib12
  article-title: Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system
  publication-title: Energy
– volume: 155
  start-page: 120
  year: 2015
  end-page: 130
  ident: bib19
  article-title: Optimal distributed energy resources and the cost of reduced greenhouse gas emissions in a large retail shopping centre
  publication-title: Appl Energy
– volume: 28
  start-page: 514
  year: 2008
  end-page: 523
  ident: bib30
  article-title: Optimal sizing for residential CHP system
  publication-title: Appl Therm Eng
– volume: 86
  start-page: 2540
  year: 2009
  end-page: 2549
  ident: bib23
  article-title: Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme
  publication-title: Appl Energy
– volume: 85
  start-page: 433
  year: 2015
  end-page: 448
  ident: bib9
  article-title: Optimal design of distributed energy resource systems coupled with energy distribution networks
  publication-title: Energy
– reference: Caterpillar company. Solar Turbines (SATURN 20).
– volume: 85
  start-page: 30
  year: 2015
  end-page: 44
  ident: bib17
  article-title: An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – a South Australian case-study
  publication-title: Energy
– reference: Johnson controls. Absorption chillers.
– volume: 159
  start-page: 401
  year: 2015
  end-page: 421
  ident: bib4
  article-title: Modelling and optimization of CHP based district heating system with renewable energy production and energy storage
  publication-title: Appl Energy
– volume: 87
  start-page: 1001
  year: 2010
  end-page: 1014
  ident: bib5
  article-title: A MILP model for integrated plan and evaluation of distributed energy systems
  publication-title: Appl Energy
– volume: 26
  start-page: 1400
  year: 2006
  end-page: 1408
  ident: bib27
  article-title: Structural and operational optimisation of distributed energy systems
  publication-title: Appl Therm Eng
– volume: 42
  start-page: 2231
  year: 2010
  end-page: 2240
  ident: bib40
  article-title: Analysis of a combined cooling, heating, and power system model under different operating strategies with input and model data uncertainty
  publication-title: Energy Build
– year: 2014
  ident: bib43
  article-title: Gurobi optimizer reference manual, 2012
– year: 2013
  ident: bib7
  article-title: Review of thermal energy storage technologies and experimental investigation of adsorption thermal energy storage for residential application
– volume: 36
  start-page: 637
  year: 2009
  end-page: 654
  ident: bib36
  article-title: A comparative analysis of several asymmetric traveling salesman problem formulations
  publication-title: Comput Operations Res
– volume: 120
  start-page: 173
  year: 2003
  end-page: 199
  ident: bib22
  article-title: Optimal operations management and network planning of a district heating system with a combined heat and power plant
  publication-title: Ann Operations Res
– volume: 55
  start-page: 1014
  year: 2013
  end-page: 1024
  ident: bib18
  article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area
  publication-title: Energy
– volume: 44
  start-page: 96
  year: 2012
  end-page: 104
  ident: bib14
  article-title: A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level
  publication-title: Energy
– start-page: 81
  year: 2009
  ident: 10.1016/j.energy.2016.05.026_bib41
  article-title: Assessment of CHP system performance with commercial building benchmark models in different U.S. climate zones
– volume: 115
  start-page: 337
  year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib42
  article-title: Effects of load-following operational methods on combined heat and power system efficiency
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.10.063
– volume: 71
  start-page: 572
  year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib11
  article-title: Design optimization and analysis of a biomass gasification based BCHP system: a case study in Harbin, China
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.06.016
– volume: 47
  start-page: 7733
  issue: 20
  year: 2008
  ident: 10.1016/j.energy.2016.05.026_bib37
  article-title: A TSP-based MILP model for medium-term planning of single-stage continuous multiproduct plants
  publication-title: Industrial Eng Chem Res
  doi: 10.1021/ie800646q
– volume: 11
  start-page: 7
  year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib3
  article-title: Building energy efficiency in China rural areas: situation, drawbacks, challenges, corresponding measures and policies
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2013.11.005
– ident: 10.1016/j.energy.2016.05.026_bib13
  doi: 10.1115/GT2010-23416
– volume: 60
  start-page: 96
  year: 2012
  ident: 10.1016/j.energy.2016.05.026_bib24
  article-title: Optimal synthesis and operation of advanced energy supply systems for standard and domotic home
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2012.02.008
– volume: 36
  start-page: 637
  issue: 3
  year: 2009
  ident: 10.1016/j.energy.2016.05.026_bib36
  article-title: A comparative analysis of several asymmetric traveling salesman problem formulations
  publication-title: Comput Operations Res
  doi: 10.1016/j.cor.2007.11.008
– volume: 61
  start-page: 249
  year: 2013
  ident: 10.1016/j.energy.2016.05.026_bib25
  article-title: Distributed energy resource system optimisation using mixed integer linear programming
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.05.009
– volume: 159
  start-page: 401
  year: 2015
  ident: 10.1016/j.energy.2016.05.026_bib4
  article-title: Modelling and optimization of CHP based district heating system with renewable energy production and energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.09.020
– volume: 28
  start-page: 514
  issue: 5–6
  year: 2008
  ident: 10.1016/j.energy.2016.05.026_bib30
  article-title: Optimal sizing for residential CHP system
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.05.001
– year: 2008
  ident: 10.1016/j.energy.2016.05.026_bib38
  article-title: Operation of micro-CHP system using an optimal energy dispatch algorithm
– volume: 120
  start-page: 173
  issue: 1–4
  year: 2003
  ident: 10.1016/j.energy.2016.05.026_bib22
  article-title: Optimal operations management and network planning of a district heating system with a combined heat and power plant
  publication-title: Ann Operations Res
  doi: 10.1023/A:1023334615090
– year: 2013
  ident: 10.1016/j.energy.2016.05.026_bib7
– volume: 22
  start-page: 1135
  issue: 12
  year: 1997
  ident: 10.1016/j.energy.2016.05.026_bib21
  article-title: MODEST—An energy-system optimisation model applicable to local utilities and countries
  publication-title: Energy
  doi: 10.1016/S0360-5442(97)00052-2
– volume: 118
  start-page: 124
  year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib32
  article-title: Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.12.040
– volume: 26
  start-page: 1400
  issue: 13
  year: 2006
  ident: 10.1016/j.energy.2016.05.026_bib27
  article-title: Structural and operational optimisation of distributed energy systems
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2005.05.034
– volume: 7
  start-page: 010
  year: 2004
  ident: 10.1016/j.energy.2016.05.026_bib44
  article-title: Building environment design simulation software DeST (1): an overview of developments and information of building simulation and DeST
  publication-title: Hv Ac
– volume: 87
  start-page: 1001
  issue: 3
  year: 2010
  ident: 10.1016/j.energy.2016.05.026_bib5
  article-title: A MILP model for integrated plan and evaluation of distributed energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.09.023
– volume: 87
  start-page: 3668
  issue: 12
  year: 2010
  ident: 10.1016/j.energy.2016.05.026_bib6
  article-title: Particle swarm optimization for redundant building cooling heating and power system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.06.021
– volume: 136
  start-page: 206
  year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib35
  article-title: Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.09.020
– year: 2013
  ident: 10.1016/j.energy.2016.05.026_bib10
– volume: 26
  start-page: 709
  issue: 7
  year: 2006
  ident: 10.1016/j.energy.2016.05.026_bib29
  article-title: Thermal-economic optimization of a distributed multi-generation energy system—a case study of Beijing
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2005.09.005
– ident: 10.1016/j.energy.2016.05.026_bib47
– ident: 10.1016/j.energy.2016.05.026_bib45
– volume: 42
  start-page: 2231
  issue: 11
  year: 2010
  ident: 10.1016/j.energy.2016.05.026_bib40
  article-title: Analysis of a combined cooling, heating, and power system model under different operating strategies with input and model data uncertainty
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.07.019
– volume: 99
  start-page: 231
  year: 2015
  ident: 10.1016/j.energy.2016.05.026_bib48
  article-title: Analysis of the integrated performance and redundant energy of CCHP systems under different operation strategies
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.04.030
– volume: 32
  start-page: 1430
  issue: 8
  year: 2007
  ident: 10.1016/j.energy.2016.05.026_bib28
  article-title: A mixed integer programming model for optimal design of trigeneration in a hospital complex
  publication-title: Energy
  doi: 10.1016/j.energy.2006.10.023
– year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib43
– volume: 27
  start-page: 1857
  issue: 11–12
  year: 2007
  ident: 10.1016/j.energy.2016.05.026_bib31
  article-title: A MINLP model including the pressure levels and multiperiods for CHP process optimisation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.01.002
– volume: 44
  start-page: 1538
  issue: 7
  year: 2009
  ident: 10.1016/j.energy.2016.05.026_bib34
  article-title: Optimal design method for building energy systems using genetic algorithms
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2008.07.006
– volume: 36
  start-page: 1292
  issue: 2
  year: 2011
  ident: 10.1016/j.energy.2016.05.026_bib26
  article-title: Optimisation based design of a district energy system for an eco-town in the United Kingdom
  publication-title: Energy
  doi: 10.1016/j.energy.2010.11.014
– volume: 119
  start-page: 488
  year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib8
  article-title: Optimal deployment of thermal energy storage under diverse economic and climate conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.01.047
– volume: 124
  start-page: 298
  year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib16
  article-title: Optimization of a distributed cogeneration system with solar district heating
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.02.062
– volume: 85
  start-page: 30
  year: 2015
  ident: 10.1016/j.energy.2016.05.026_bib17
  article-title: An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – a South Australian case-study
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.051
– volume: 86
  start-page: 2540
  issue: 12
  year: 2009
  ident: 10.1016/j.energy.2016.05.026_bib23
  article-title: Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.04.012
– year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib46
– year: 2012
  ident: 10.1016/j.energy.2016.05.026_bib2
– volume: 87
  start-page: 1325
  issue: 4
  year: 2010
  ident: 10.1016/j.energy.2016.05.026_bib33
  article-title: Optimization of capacity and operation for CCHP system by genetic algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.08.005
– volume: 103
  start-page: 739
  year: 2015
  ident: 10.1016/j.energy.2016.05.026_bib20
  article-title: Operation optimization of a distributed energy system considering energy costs and exergy efficiency
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.07.009
– volume: 85
  start-page: 433
  year: 2015
  ident: 10.1016/j.energy.2016.05.026_bib9
  article-title: Optimal design of distributed energy resource systems coupled with energy distribution networks
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.101
– volume: 55
  start-page: 1014
  year: 2013
  ident: 10.1016/j.energy.2016.05.026_bib18
  article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.004
– volume: 155
  start-page: 120
  year: 2015
  ident: 10.1016/j.energy.2016.05.026_bib19
  article-title: Optimal distributed energy resources and the cost of reduced greenhouse gas emissions in a large retail shopping centre
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.085
– volume: 51
  start-page: 331
  year: 2013
  ident: 10.1016/j.energy.2016.05.026_bib15
  article-title: Optimal design and operation of distributed energy systems: application to Greek residential sector
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.09.009
– volume: 44
  start-page: 96
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2016.05.026_bib14
  article-title: A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level
  publication-title: Energy
  doi: 10.1016/j.energy.2012.02.009
– volume: 61
  start-page: 531
  year: 2013
  ident: 10.1016/j.energy.2016.05.026_bib12
  article-title: Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system
  publication-title: Energy
  doi: 10.1016/j.energy.2013.09.018
– year: 2011
  ident: 10.1016/j.energy.2016.05.026_bib1
– volume: 116
  start-page: 230
  year: 2014
  ident: 10.1016/j.energy.2016.05.026_bib39
  article-title: A probability constrained multi-objective optimization model for CCHP system operation decision support
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.11.065
SSID ssj0005899
Score 2.5097053
Snippet This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 947
SubjectTerms buildings
carbon
carbon dioxide
Distributed energy resource system
District energy networks
Economic optimization
ecosystem services
energy
environmental factors
Environmental optimization
financial economics
linear programming
mathematical models
Title Economic and environmental optimization for distributed energy resource systems coupled with district energy networks
URI https://dx.doi.org/10.1016/j.energy.2016.05.026
https://www.proquest.com/docview/2045824871
Volume 109
WOSCitedRecordID wos000382591000082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQvCAYT4yYj8YaCEteOk8cJFQGCioch9c2yHRtl6pKqaaf-Bn41vqZpB4w98BJFjm05_b4eH5-cCwBvlBSaKGykX4Vkgok5oIiUandXcpQTrLArNkFns2I-L7-NRj9jLMzVgjZNsd2Wy_8KtWkzYNvQ2VvA3U9qGsy9Ad1cDezm-k_Ax1Bj91lgEMdmtU4jHy5D4KXzL6xs2lxb8UrZri4KcBXs-SHHc_dWtpvlIjqp-wFyHXs33ou82zPw-0c2j-nWu873xoYvPha7bX5s6x3Ubvvj9aJu9vvN-EHD15q3QzNFllu7qw_U7MOz0oRgvC9603IgPEufezPsw6WvM3BNxHtrw8U7_57WOS93uVfRbzJqH-x0vf9hdG27YH4WZmdhKWFmljvgCFFSFmNwdPZpOv-8cxgqXDXS_kViIKbzFry-mj8pOgdbvtNjzh-CB-EAAs88cR6BkWqOwb1Imu4YnEyHnIFB-HePwSZ2goZZcI9ZcMgsaECHA2ZBv2oYmQUDs2BgFrTMgpFZsXdk1hPw_cP0_P3HJFTtSKTRtdeJyiVRKdc81WUqM6VTnVNRpRWvsOIZF1oVKqUCIc0JKeyReSJRLvlEYKW0mpyAcdM26imAmUA410IimZuDrMZCUKdhU8JpVRF0CibxJ2YypLS3lVUW7G8An4KkH7X0KV1u6E8jeiyopV7dZIaSN4x8HcFmRmrbT3G8Ue2mY7YIRIFwQbNnt1zNc3B_9_d6Acbr1Ua9BHfl1bruVq8CZ38BTkrEQw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Economic+and+environmental+optimization+for+distributed+energy+resource+systems+coupled+with+district+energy+networks&rft.jtitle=Energy+%28Oxford%29&rft.au=Li%2C+Longxi&rft.au=Mu%2C+Hailin&rft.au=Li%2C+Nan&rft.au=Li%2C+Miao&rft.date=2016-08-15&rft.issn=0360-5442&rft.volume=109&rft.spage=947&rft.epage=960&rft_id=info:doi/10.1016%2Fj.energy.2016.05.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2016_05_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon