Economic and environmental optimization for distributed energy resource systems coupled with district energy networks
This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a mixed-integer linear programming model with multiple objectives at a neighbourhood level containing residential and office buildings. The equipmen...
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 109; S. 947 - 960 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.08.2016
|
| Schlagworte: | |
| ISSN: | 0360-5442 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a mixed-integer linear programming model with multiple objectives at a neighbourhood level containing residential and office buildings. The equipment and layout of the district energy (power, heating, and cooling) networks were selected from several potential energy devices and paths using a mathematical model. The objectives of the model were to minimize the total annual cost and CO2 (carbon dioxide) emission and achieve the optimal design and operation to meet the yearly energy demands. Moreover, the economic and environmental benefits under different weights of the objective function were evaluated by sensitivity analysis. The results show that at a neighbourhood level, the DER system has significant environmental and economic benefits. The system could spontaneously select the most appropriate operation strategy using the developed mathematical model. In multiobjective scenarios, with the increase in the weight of environmental factor, the emission decreases and the cost increases gradually. When considering a single objective, the minimization of cost or carbon emission leads to a poor cost performance.
•The objective function introduces ratios of cost-saving and CO2 emission reduction.•The different criteria weights of the objective function has been studied.•The DER system could spontaneously select appropriate operation strategy.•Only considering cost or emission minimization can lead to a poor cost performance. |
|---|---|
| AbstractList | This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a mixed-integer linear programming model with multiple objectives at a neighbourhood level containing residential and office buildings. The equipment and layout of the district energy (power, heating, and cooling) networks were selected from several potential energy devices and paths using a mathematical model. The objectives of the model were to minimize the total annual cost and CO2 (carbon dioxide) emission and achieve the optimal design and operation to meet the yearly energy demands. Moreover, the economic and environmental benefits under different weights of the objective function were evaluated by sensitivity analysis. The results show that at a neighbourhood level, the DER system has significant environmental and economic benefits. The system could spontaneously select the most appropriate operation strategy using the developed mathematical model. In multiobjective scenarios, with the increase in the weight of environmental factor, the emission decreases and the cost increases gradually. When considering a single objective, the minimization of cost or carbon emission leads to a poor cost performance.
•The objective function introduces ratios of cost-saving and CO2 emission reduction.•The different criteria weights of the objective function has been studied.•The DER system could spontaneously select appropriate operation strategy.•Only considering cost or emission minimization can lead to a poor cost performance. This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a mixed-integer linear programming model with multiple objectives at a neighbourhood level containing residential and office buildings. The equipment and layout of the district energy (power, heating, and cooling) networks were selected from several potential energy devices and paths using a mathematical model. The objectives of the model were to minimize the total annual cost and CO2 (carbon dioxide) emission and achieve the optimal design and operation to meet the yearly energy demands. Moreover, the economic and environmental benefits under different weights of the objective function were evaluated by sensitivity analysis. The results show that at a neighbourhood level, the DER system has significant environmental and economic benefits. The system could spontaneously select the most appropriate operation strategy using the developed mathematical model. In multiobjective scenarios, with the increase in the weight of environmental factor, the emission decreases and the cost increases gradually. When considering a single objective, the minimization of cost or carbon emission leads to a poor cost performance. |
| Author | Li, Nan Mu, Hailin Li, Longxi Li, Miao |
| Author_xml | – sequence: 1 givenname: Longxi surname: Li fullname: Li, Longxi organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China – sequence: 2 givenname: Hailin surname: Mu fullname: Mu, Hailin email: mhldut@126.com organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Nan surname: Li fullname: Li, Nan organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China – sequence: 4 givenname: Miao surname: Li fullname: Li, Miao organization: School of Mechanical Engineering, Dalian Polytechnic University, Dalian 116034, China |
| BookMark | eNqFkD1PwzAQhj0UibbwDxgysjRcnDhNGJBQVT6kSiwwW45zBpfEDrbTqvx6UloWBphOp3ufO90zISNjDRJykUCcQJJfrWM06F53MR26GFgMNB-RMaQ5zFiW0VMy8X4NAKwoyzHpl9Ia22oZCVNHaDbaWdOiCaKJbBd0qz9F0NZEyrqo1j44XfUB99H9lciht72TGPmdD9j6SNq-a4b5Voe3IyDDT9pg2Fr37s_IiRKNx_NjnZKXu-Xz4mG2erp_XNyuZjItaZhhLhmCUAJUCTJBBSqfVzXUos5QJKJSWCDMK0qVYKxIWFakkuZSpFWGqDCdksvD3s7Zjx594K32EptGGLS95xQyVtCsmCdDNDtEpbPeO1S8c7oVbscT4HuzfM0PX_C9WQ6MD2YH7PoXJnX4Nhac0M1_8M0BxsHBRqPjXmo0EmvtUAZeW_33gi9wuqEw |
| CitedBy_id | crossref_primary_10_1016_j_eneco_2022_105828 crossref_primary_10_3390_su14031356 crossref_primary_10_1016_j_energy_2017_07_139 crossref_primary_10_1088_1757_899X_657_1_012034 crossref_primary_10_1016_j_apenergy_2017_06_038 crossref_primary_10_1088_2516_1083_acef9e crossref_primary_10_3390_en17061420 crossref_primary_10_1016_j_cherd_2017_07_030 crossref_primary_10_1016_j_energy_2021_121452 crossref_primary_10_1016_j_energy_2020_117243 crossref_primary_10_1016_j_scs_2019_101726 crossref_primary_10_3390_en11051066 crossref_primary_10_3390_electronics11182816 crossref_primary_10_1016_j_epsr_2025_111643 crossref_primary_10_3390_su16177255 crossref_primary_10_1016_j_applthermaleng_2022_119672 crossref_primary_10_3390_app11020774 crossref_primary_10_3390_en16104018 crossref_primary_10_1007_s41660_020_00125_8 crossref_primary_10_1016_j_rser_2020_110400 crossref_primary_10_1016_j_enconman_2019_112081 crossref_primary_10_1016_j_energy_2020_119311 crossref_primary_10_1016_j_ijepes_2021_107450 crossref_primary_10_1016_j_energy_2019_04_153 crossref_primary_10_1016_j_egypro_2017_12_400 crossref_primary_10_1016_j_enbuild_2024_115261 crossref_primary_10_1088_1742_6596_2491_1_012023 crossref_primary_10_1177_01445987251323622 crossref_primary_10_1016_j_enconman_2020_112963 crossref_primary_10_1016_j_enconman_2021_114788 crossref_primary_10_1016_j_jclepro_2020_125420 crossref_primary_10_1016_j_jclepro_2019_117990 crossref_primary_10_2298_TSCI220804167S crossref_primary_10_3390_en12101844 crossref_primary_10_1016_j_apenergy_2024_123457 crossref_primary_10_1016_j_epsr_2017_03_020 crossref_primary_10_1016_j_cie_2022_108180 crossref_primary_10_1016_j_energy_2022_123816 crossref_primary_10_1016_j_apenergy_2019_113982 crossref_primary_10_1016_j_enbuild_2017_01_062 crossref_primary_10_1016_j_rser_2021_112050 crossref_primary_10_1016_j_energy_2025_135855 crossref_primary_10_1016_j_isci_2024_111595 crossref_primary_10_3390_en14102879 crossref_primary_10_1016_j_scs_2017_07_017 crossref_primary_10_1016_j_apenergy_2018_12_037 crossref_primary_10_1016_j_renene_2018_07_052 crossref_primary_10_1016_j_jclepro_2023_136946 crossref_primary_10_1088_1755_1315_701_1_012029 crossref_primary_10_3390_ijerph182412992 crossref_primary_10_1016_j_energy_2020_117078 crossref_primary_10_1016_j_enconman_2018_10_102 crossref_primary_10_1016_j_scs_2020_102230 crossref_primary_10_1016_j_apenergy_2021_117822 crossref_primary_10_1088_1742_6596_1176_4_042061 crossref_primary_10_1016_j_renene_2022_07_102 crossref_primary_10_3389_fbuil_2016_00022 crossref_primary_10_3389_frsc_2021_663256 crossref_primary_10_1016_j_enconman_2020_112596 crossref_primary_10_1016_j_scs_2021_102917 crossref_primary_10_1016_j_scs_2025_106310 crossref_primary_10_1007_s00202_023_01800_y crossref_primary_10_1002_er_4600 crossref_primary_10_1016_j_jclepro_2019_06_047 crossref_primary_10_1109_ACCESS_2021_3112817 crossref_primary_10_1016_j_energy_2021_122626 crossref_primary_10_1093_ce_zkac017 crossref_primary_10_1016_j_scs_2023_104666 crossref_primary_10_1016_j_omega_2020_102326 crossref_primary_10_1016_j_rser_2021_111382 crossref_primary_10_3390_en13123202 crossref_primary_10_1080_15567036_2019_1675812 crossref_primary_10_1016_j_egyr_2021_08_151 crossref_primary_10_1016_j_est_2024_110746 crossref_primary_10_1016_j_energy_2021_121120 crossref_primary_10_1016_j_energy_2020_117451 crossref_primary_10_1016_j_apenergy_2021_118415 crossref_primary_10_1016_j_energy_2020_118989 crossref_primary_10_1111_coin_12238 crossref_primary_10_1016_j_scs_2020_102492 crossref_primary_10_1016_j_enconman_2023_117265 crossref_primary_10_1016_j_rser_2022_112440 crossref_primary_10_1177_0958305X18768818 crossref_primary_10_1016_j_energy_2021_120460 crossref_primary_10_1016_j_energy_2023_126888 crossref_primary_10_1088_1755_1315_146_1_012053 crossref_primary_10_1016_j_energy_2018_05_114 crossref_primary_10_1016_j_apenergy_2021_117283 crossref_primary_10_1016_j_energy_2018_08_083 crossref_primary_10_1016_j_apenergy_2022_119500 crossref_primary_10_1016_j_proeng_2017_10_327 crossref_primary_10_1016_j_est_2022_104710 crossref_primary_10_1016_j_apenergy_2020_115066 crossref_primary_10_1016_j_energy_2017_04_130 crossref_primary_10_1016_j_apenergy_2020_115115 crossref_primary_10_1016_j_energy_2021_119987 crossref_primary_10_1016_j_scs_2021_103076 crossref_primary_10_1016_j_enbuild_2020_110314 crossref_primary_10_1016_j_apenergy_2018_09_029 crossref_primary_10_3389_fenrg_2022_971912 crossref_primary_10_1016_j_scs_2021_103075 crossref_primary_10_1007_s40430_024_05250_w crossref_primary_10_1002_er_7244 crossref_primary_10_1016_j_rser_2020_110619 crossref_primary_10_1016_j_energy_2022_123626 |
| Cites_doi | 10.1016/j.apenergy.2013.10.063 10.1016/j.renene.2014.06.016 10.1021/ie800646q 10.1016/j.scs.2013.11.005 10.1115/GT2010-23416 10.1016/j.enconman.2012.02.008 10.1016/j.cor.2007.11.008 10.1016/j.enpol.2013.05.009 10.1016/j.apenergy.2015.09.020 10.1016/j.applthermaleng.2007.05.001 10.1023/A:1023334615090 10.1016/S0360-5442(97)00052-2 10.1016/j.apenergy.2013.12.040 10.1016/j.applthermaleng.2005.05.034 10.1016/j.apenergy.2009.09.023 10.1016/j.apenergy.2010.06.021 10.1016/j.apenergy.2014.09.020 10.1016/j.applthermaleng.2005.09.005 10.1016/j.enbuild.2010.07.019 10.1016/j.enbuild.2015.04.030 10.1016/j.energy.2006.10.023 10.1016/j.applthermaleng.2007.01.002 10.1016/j.buildenv.2008.07.006 10.1016/j.energy.2010.11.014 10.1016/j.apenergy.2014.01.047 10.1016/j.apenergy.2014.02.062 10.1016/j.energy.2015.03.051 10.1016/j.apenergy.2009.04.012 10.1016/j.apenergy.2009.08.005 10.1016/j.enconman.2015.07.009 10.1016/j.energy.2015.03.101 10.1016/j.energy.2013.04.004 10.1016/j.apenergy.2015.05.085 10.1016/j.renene.2012.09.009 10.1016/j.energy.2012.02.009 10.1016/j.energy.2013.09.018 10.1016/j.apenergy.2013.11.065 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2016.05.026 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EndPage | 960 |
| ExternalDocumentID | 10_1016_j_energy_2016_05_026 S0360544216305783 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c392t-e6c5e0afa0f90c1ef0f67bd0dad4ea1abfe8e07b22fa55815483c26ca3b4eefe3 |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382591000082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 01:28:24 EDT 2025 Tue Nov 18 22:43:11 EST 2025 Sat Nov 29 07:52:37 EST 2025 Fri Feb 23 02:32:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Distributed energy resource system District energy networks Environmental optimization Economic optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c392t-e6c5e0afa0f90c1ef0f67bd0dad4ea1abfe8e07b22fa55815483c26ca3b4eefe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2045824871 |
| PQPubID | 24069 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2045824871 crossref_primary_10_1016_j_energy_2016_05_026 crossref_citationtrail_10_1016_j_energy_2016_05_026 elsevier_sciencedirect_doi_10_1016_j_energy_2016_05_026 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-15 |
| PublicationDateYYYYMMDD | 2016-08-15 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Di Somma, Yan, Bianco, Graditi, Luh, Mongibello (bib20) 2015; 103 Ooka, Komamura (bib34) 2009; 44 Johnson controls. Absorption chillers. Aringhieri, Malucelli (bib22) 2003; 120 Savola, Tveit, Fogelholm (bib31) 2007; 27 Mehleri, Sarimveis, Markatos, Papageorgiou (bib14) 2012; 44 DeForest, Mendes, Stadler, Feng, Lai, Marnay (bib8) 2014; 119 Wang, Fu, Yang, Zhang, Shi G-h (bib12) 2013; 61 Weber, Shah (bib26) 2011; 36 Cho, Luck, Chamra (bib38) 2008 Li (bib7) 2013 Hu, Cho (bib39) 2014; 116 Li, Mu, Gao, Li (bib35) 2014; 136 Economidou, Atanasiu, Despret, Maio, Nolte, Rapf (bib1) 2011 Smith, Luck, Mago (bib40) 2010; 42 l'énergie Aid (bib2) 2012 [accessed 14.10.15]. Braslavsky, Wall, Reedman (bib19) 2015; 155 Cho, Mago, Luck, Chamra (bib23) 2009; 86 Da, Xiaona, Fangting (bib44) 2004; 7 [accessed 12.10.15]. Henning (bib21) 1997; 22 Caterpillar company. Solar Turbines (SATURN 20). Wang, Xu, Jin, Shi, Fu, Yang (bib11) 2014; 71 Omu, Choudhary, Boies (bib25) 2013; 61 Öncan, Altınel, Laporte (bib36) 2009; 36 Li, Mu, Li, Li (bib48) 2015; 99 He, Yang, Ye (bib3) 2014; 11 Söderman, Pettersson (bib27) 2006; 26 Ren, Gao, Ruan (bib30) 2008; 28 Yang, Zhang, Xiao (bib9) 2015; 85 Mehleri, Sarimveis, Markatos, Papageorgiou (bib15) 2013; 51 Wang, Yin, Abdollahi, Lahdelma, Jiao (bib4) 2015; 159 Buoro, Pinamonti, Reini (bib16) 2014; 124 Liu, Pinto, Papageorgiou (bib37) 2008; 47 Li, Nalim, Haldi (bib29) 2006; 26 Optimization G. Inc (bib43) 2014 Ren, Gao (bib5) 2010; 87 Bracco, Dentici, Siri (bib18) 2013; 55 Cho, Luck, Mago, Chamra (bib41) 2009 Wouters, Fraga, James (bib17) 2015; 85 Solar Energy Industries Association (bib46) 2014 Smith, Mago (bib42) 2014; 115 Jayasekara, Halgamuge, Attalage, Rajarathne (bib32) 2014; 118 Sanner, Angelino, de Gregorio, Fevier, Haslinger, Kujbus (bib10) 2013 Buoro, Casisi, Pinamonti, Reini (bib24) 2012; 60 Buoro D, Casisi M, Pinamonti P, Reini M. Optimal lay-out and operation of district heating and cooling distributed trigeneration systems. Conference Optimal lay-out and operation of district heating and cooling distributed trigeneration systems, American Society of Mechanical Engineers, p. 157–166. Arcuri, Florio, Fragiacomo (bib28) 2007; 32 Wang, Jing, Zhang (bib33) 2010; 87 Wang, Zhai, Jing, Zhang (bib6) 2010; 87 Wang (10.1016/j.energy.2016.05.026_bib11) 2014; 71 Cho (10.1016/j.energy.2016.05.026_bib23) 2009; 86 Cho (10.1016/j.energy.2016.05.026_bib41) 2009 Li (10.1016/j.energy.2016.05.026_bib48) 2015; 99 Li (10.1016/j.energy.2016.05.026_bib35) 2014; 136 Cho (10.1016/j.energy.2016.05.026_bib38) 2008 Braslavsky (10.1016/j.energy.2016.05.026_bib19) 2015; 155 Wang (10.1016/j.energy.2016.05.026_bib12) 2013; 61 Da (10.1016/j.energy.2016.05.026_bib44) 2004; 7 Smith (10.1016/j.energy.2016.05.026_bib42) 2014; 115 10.1016/j.energy.2016.05.026_bib13 Arcuri (10.1016/j.energy.2016.05.026_bib28) 2007; 32 Sanner (10.1016/j.energy.2016.05.026_bib10) 2013 Buoro (10.1016/j.energy.2016.05.026_bib16) 2014; 124 Solar Energy Industries Association (10.1016/j.energy.2016.05.026_bib46) 2014 Hu (10.1016/j.energy.2016.05.026_bib39) 2014; 116 Buoro (10.1016/j.energy.2016.05.026_bib24) 2012; 60 Optimization G. Inc (10.1016/j.energy.2016.05.026_bib43) 2014 Jayasekara (10.1016/j.energy.2016.05.026_bib32) 2014; 118 DeForest (10.1016/j.energy.2016.05.026_bib8) 2014; 119 Mehleri (10.1016/j.energy.2016.05.026_bib14) 2012; 44 Savola (10.1016/j.energy.2016.05.026_bib31) 2007; 27 Ooka (10.1016/j.energy.2016.05.026_bib34) 2009; 44 Liu (10.1016/j.energy.2016.05.026_bib37) 2008; 47 Li (10.1016/j.energy.2016.05.026_bib7) 2013 Economidou (10.1016/j.energy.2016.05.026_bib1) 2011 Ren (10.1016/j.energy.2016.05.026_bib5) 2010; 87 10.1016/j.energy.2016.05.026_bib45 Wang (10.1016/j.energy.2016.05.026_bib33) 2010; 87 Wouters (10.1016/j.energy.2016.05.026_bib17) 2015; 85 Bracco (10.1016/j.energy.2016.05.026_bib18) 2013; 55 10.1016/j.energy.2016.05.026_bib47 He (10.1016/j.energy.2016.05.026_bib3) 2014; 11 Smith (10.1016/j.energy.2016.05.026_bib40) 2010; 42 Mehleri (10.1016/j.energy.2016.05.026_bib15) 2013; 51 Henning (10.1016/j.energy.2016.05.026_bib21) 1997; 22 Weber (10.1016/j.energy.2016.05.026_bib26) 2011; 36 Wang (10.1016/j.energy.2016.05.026_bib6) 2010; 87 Aringhieri (10.1016/j.energy.2016.05.026_bib22) 2003; 120 Yang (10.1016/j.energy.2016.05.026_bib9) 2015; 85 Di Somma (10.1016/j.energy.2016.05.026_bib20) 2015; 103 Omu (10.1016/j.energy.2016.05.026_bib25) 2013; 61 Li (10.1016/j.energy.2016.05.026_bib29) 2006; 26 Öncan (10.1016/j.energy.2016.05.026_bib36) 2009; 36 l'énergie Aid (10.1016/j.energy.2016.05.026_bib2) 2012 Ren (10.1016/j.energy.2016.05.026_bib30) 2008; 28 Wang (10.1016/j.energy.2016.05.026_bib4) 2015; 159 Söderman (10.1016/j.energy.2016.05.026_bib27) 2006; 26 |
| References_xml | – volume: 60 start-page: 96 year: 2012 end-page: 105 ident: bib24 article-title: Optimal synthesis and operation of advanced energy supply systems for standard and domotic home publication-title: Energy Convers Manag – reference: [accessed 12.10.15]. – volume: 61 start-page: 249 year: 2013 end-page: 266 ident: bib25 article-title: Distributed energy resource system optimisation using mixed integer linear programming publication-title: Energy Policy – volume: 22 start-page: 1135 year: 1997 end-page: 1150 ident: bib21 article-title: MODEST—An energy-system optimisation model applicable to local utilities and countries publication-title: Energy – volume: 118 start-page: 124 year: 2014 end-page: 134 ident: bib32 article-title: Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers publication-title: Appl Energy – start-page: 81 year: 2009 end-page: 96 ident: bib41 article-title: Assessment of CHP system performance with commercial building benchmark models in different U.S. climate zones publication-title: ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences – volume: 136 start-page: 206 year: 2014 end-page: 216 ident: bib35 article-title: Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings publication-title: Appl Energy – volume: 115 start-page: 337 year: 2014 end-page: 351 ident: bib42 article-title: Effects of load-following operational methods on combined heat and power system efficiency publication-title: Appl Energy – year: 2014 ident: bib46 article-title: Solar market insight report – year: 2012 ident: bib2 article-title: Energy technology perspectives 2012: pathways to a clean energy system – volume: 116 start-page: 230 year: 2014 end-page: 242 ident: bib39 article-title: A probability constrained multi-objective optimization model for CCHP system operation decision support publication-title: Appl Energy – year: 2013 ident: bib10 article-title: Strategic research and innovation agenda for renewable heating & cooling – reference: [accessed 14.10.15]. – volume: 103 start-page: 739 year: 2015 end-page: 751 ident: bib20 article-title: Operation optimization of a distributed energy system considering energy costs and exergy efficiency publication-title: Energy Convers Manag – volume: 26 start-page: 709 year: 2006 end-page: 719 ident: bib29 article-title: Thermal-economic optimization of a distributed multi-generation energy system—a case study of Beijing publication-title: Appl Therm Eng – volume: 87 start-page: 1325 year: 2010 end-page: 1335 ident: bib33 article-title: Optimization of capacity and operation for CCHP system by genetic algorithm publication-title: Appl Energy – volume: 87 start-page: 3668 year: 2010 end-page: 3679 ident: bib6 article-title: Particle swarm optimization for redundant building cooling heating and power system publication-title: Appl Energy – volume: 11 start-page: 7 year: 2014 end-page: 15 ident: bib3 article-title: Building energy efficiency in China rural areas: situation, drawbacks, challenges, corresponding measures and policies publication-title: Sustain Cities Soc – volume: 44 start-page: 1538 year: 2009 end-page: 1544 ident: bib34 article-title: Optimal design method for building energy systems using genetic algorithms publication-title: Build Environ – volume: 36 start-page: 1292 year: 2011 end-page: 1308 ident: bib26 article-title: Optimisation based design of a district energy system for an eco-town in the United Kingdom publication-title: Energy – volume: 124 start-page: 298 year: 2014 end-page: 308 ident: bib16 article-title: Optimization of a distributed cogeneration system with solar district heating publication-title: Appl Energy – volume: 32 start-page: 1430 year: 2007 end-page: 1447 ident: bib28 article-title: A mixed integer programming model for optimal design of trigeneration in a hospital complex publication-title: Energy – volume: 51 start-page: 331 year: 2013 end-page: 342 ident: bib15 article-title: Optimal design and operation of distributed energy systems: application to Greek residential sector publication-title: Renew Energy – reference: Buoro D, Casisi M, Pinamonti P, Reini M. Optimal lay-out and operation of district heating and cooling distributed trigeneration systems. Conference Optimal lay-out and operation of district heating and cooling distributed trigeneration systems, American Society of Mechanical Engineers, p. 157–166. – volume: 99 start-page: 231 year: 2015 end-page: 242 ident: bib48 article-title: Analysis of the integrated performance and redundant energy of CCHP systems under different operation strategies publication-title: Energy Build – volume: 119 start-page: 488 year: 2014 end-page: 496 ident: bib8 article-title: Optimal deployment of thermal energy storage under diverse economic and climate conditions publication-title: Appl Energy – volume: 27 start-page: 1857 year: 2007 end-page: 1867 ident: bib31 article-title: A MINLP model including the pressure levels and multiperiods for CHP process optimisation publication-title: Appl Therm Eng – year: 2008 ident: bib38 article-title: Operation of micro-CHP system using an optimal energy dispatch algorithm publication-title: ASME proceedings of energy sustainability – volume: 7 start-page: 010 year: 2004 ident: bib44 article-title: Building environment design simulation software DeST (1): an overview of developments and information of building simulation and DeST publication-title: Hv Ac – year: 2011 ident: bib1 article-title: Europe's buildings under the microscope. A country-by-country review of the energy performance of buildings – volume: 71 start-page: 572 year: 2014 end-page: 583 ident: bib11 article-title: Design optimization and analysis of a biomass gasification based BCHP system: a case study in Harbin, China publication-title: Renew Energy – volume: 47 start-page: 7733 year: 2008 end-page: 7743 ident: bib37 article-title: A TSP-based MILP model for medium-term planning of single-stage continuous multiproduct plants publication-title: Industrial Eng Chem Res – volume: 61 start-page: 531 year: 2013 end-page: 540 ident: bib12 article-title: Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system publication-title: Energy – volume: 155 start-page: 120 year: 2015 end-page: 130 ident: bib19 article-title: Optimal distributed energy resources and the cost of reduced greenhouse gas emissions in a large retail shopping centre publication-title: Appl Energy – volume: 28 start-page: 514 year: 2008 end-page: 523 ident: bib30 article-title: Optimal sizing for residential CHP system publication-title: Appl Therm Eng – volume: 86 start-page: 2540 year: 2009 end-page: 2549 ident: bib23 article-title: Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme publication-title: Appl Energy – volume: 85 start-page: 433 year: 2015 end-page: 448 ident: bib9 article-title: Optimal design of distributed energy resource systems coupled with energy distribution networks publication-title: Energy – reference: Caterpillar company. Solar Turbines (SATURN 20). – volume: 85 start-page: 30 year: 2015 end-page: 44 ident: bib17 article-title: An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – a South Australian case-study publication-title: Energy – reference: Johnson controls. Absorption chillers. – volume: 159 start-page: 401 year: 2015 end-page: 421 ident: bib4 article-title: Modelling and optimization of CHP based district heating system with renewable energy production and energy storage publication-title: Appl Energy – volume: 87 start-page: 1001 year: 2010 end-page: 1014 ident: bib5 article-title: A MILP model for integrated plan and evaluation of distributed energy systems publication-title: Appl Energy – volume: 26 start-page: 1400 year: 2006 end-page: 1408 ident: bib27 article-title: Structural and operational optimisation of distributed energy systems publication-title: Appl Therm Eng – volume: 42 start-page: 2231 year: 2010 end-page: 2240 ident: bib40 article-title: Analysis of a combined cooling, heating, and power system model under different operating strategies with input and model data uncertainty publication-title: Energy Build – year: 2014 ident: bib43 article-title: Gurobi optimizer reference manual, 2012 – year: 2013 ident: bib7 article-title: Review of thermal energy storage technologies and experimental investigation of adsorption thermal energy storage for residential application – volume: 36 start-page: 637 year: 2009 end-page: 654 ident: bib36 article-title: A comparative analysis of several asymmetric traveling salesman problem formulations publication-title: Comput Operations Res – volume: 120 start-page: 173 year: 2003 end-page: 199 ident: bib22 article-title: Optimal operations management and network planning of a district heating system with a combined heat and power plant publication-title: Ann Operations Res – volume: 55 start-page: 1014 year: 2013 end-page: 1024 ident: bib18 article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area publication-title: Energy – volume: 44 start-page: 96 year: 2012 end-page: 104 ident: bib14 article-title: A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level publication-title: Energy – start-page: 81 year: 2009 ident: 10.1016/j.energy.2016.05.026_bib41 article-title: Assessment of CHP system performance with commercial building benchmark models in different U.S. climate zones – volume: 115 start-page: 337 year: 2014 ident: 10.1016/j.energy.2016.05.026_bib42 article-title: Effects of load-following operational methods on combined heat and power system efficiency publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.10.063 – volume: 71 start-page: 572 year: 2014 ident: 10.1016/j.energy.2016.05.026_bib11 article-title: Design optimization and analysis of a biomass gasification based BCHP system: a case study in Harbin, China publication-title: Renew Energy doi: 10.1016/j.renene.2014.06.016 – volume: 47 start-page: 7733 issue: 20 year: 2008 ident: 10.1016/j.energy.2016.05.026_bib37 article-title: A TSP-based MILP model for medium-term planning of single-stage continuous multiproduct plants publication-title: Industrial Eng Chem Res doi: 10.1021/ie800646q – volume: 11 start-page: 7 year: 2014 ident: 10.1016/j.energy.2016.05.026_bib3 article-title: Building energy efficiency in China rural areas: situation, drawbacks, challenges, corresponding measures and policies publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2013.11.005 – ident: 10.1016/j.energy.2016.05.026_bib13 doi: 10.1115/GT2010-23416 – volume: 60 start-page: 96 year: 2012 ident: 10.1016/j.energy.2016.05.026_bib24 article-title: Optimal synthesis and operation of advanced energy supply systems for standard and domotic home publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2012.02.008 – volume: 36 start-page: 637 issue: 3 year: 2009 ident: 10.1016/j.energy.2016.05.026_bib36 article-title: A comparative analysis of several asymmetric traveling salesman problem formulations publication-title: Comput Operations Res doi: 10.1016/j.cor.2007.11.008 – volume: 61 start-page: 249 year: 2013 ident: 10.1016/j.energy.2016.05.026_bib25 article-title: Distributed energy resource system optimisation using mixed integer linear programming publication-title: Energy Policy doi: 10.1016/j.enpol.2013.05.009 – volume: 159 start-page: 401 year: 2015 ident: 10.1016/j.energy.2016.05.026_bib4 article-title: Modelling and optimization of CHP based district heating system with renewable energy production and energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.09.020 – volume: 28 start-page: 514 issue: 5–6 year: 2008 ident: 10.1016/j.energy.2016.05.026_bib30 article-title: Optimal sizing for residential CHP system publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.05.001 – year: 2008 ident: 10.1016/j.energy.2016.05.026_bib38 article-title: Operation of micro-CHP system using an optimal energy dispatch algorithm – volume: 120 start-page: 173 issue: 1–4 year: 2003 ident: 10.1016/j.energy.2016.05.026_bib22 article-title: Optimal operations management and network planning of a district heating system with a combined heat and power plant publication-title: Ann Operations Res doi: 10.1023/A:1023334615090 – year: 2013 ident: 10.1016/j.energy.2016.05.026_bib7 – volume: 22 start-page: 1135 issue: 12 year: 1997 ident: 10.1016/j.energy.2016.05.026_bib21 article-title: MODEST—An energy-system optimisation model applicable to local utilities and countries publication-title: Energy doi: 10.1016/S0360-5442(97)00052-2 – volume: 118 start-page: 124 year: 2014 ident: 10.1016/j.energy.2016.05.026_bib32 article-title: Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.12.040 – volume: 26 start-page: 1400 issue: 13 year: 2006 ident: 10.1016/j.energy.2016.05.026_bib27 article-title: Structural and operational optimisation of distributed energy systems publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2005.05.034 – volume: 7 start-page: 010 year: 2004 ident: 10.1016/j.energy.2016.05.026_bib44 article-title: Building environment design simulation software DeST (1): an overview of developments and information of building simulation and DeST publication-title: Hv Ac – volume: 87 start-page: 1001 issue: 3 year: 2010 ident: 10.1016/j.energy.2016.05.026_bib5 article-title: A MILP model for integrated plan and evaluation of distributed energy systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.09.023 – volume: 87 start-page: 3668 issue: 12 year: 2010 ident: 10.1016/j.energy.2016.05.026_bib6 article-title: Particle swarm optimization for redundant building cooling heating and power system publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.06.021 – volume: 136 start-page: 206 year: 2014 ident: 10.1016/j.energy.2016.05.026_bib35 article-title: Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.09.020 – year: 2013 ident: 10.1016/j.energy.2016.05.026_bib10 – volume: 26 start-page: 709 issue: 7 year: 2006 ident: 10.1016/j.energy.2016.05.026_bib29 article-title: Thermal-economic optimization of a distributed multi-generation energy system—a case study of Beijing publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2005.09.005 – ident: 10.1016/j.energy.2016.05.026_bib47 – ident: 10.1016/j.energy.2016.05.026_bib45 – volume: 42 start-page: 2231 issue: 11 year: 2010 ident: 10.1016/j.energy.2016.05.026_bib40 article-title: Analysis of a combined cooling, heating, and power system model under different operating strategies with input and model data uncertainty publication-title: Energy Build doi: 10.1016/j.enbuild.2010.07.019 – volume: 99 start-page: 231 year: 2015 ident: 10.1016/j.energy.2016.05.026_bib48 article-title: Analysis of the integrated performance and redundant energy of CCHP systems under different operation strategies publication-title: Energy Build doi: 10.1016/j.enbuild.2015.04.030 – volume: 32 start-page: 1430 issue: 8 year: 2007 ident: 10.1016/j.energy.2016.05.026_bib28 article-title: A mixed integer programming model for optimal design of trigeneration in a hospital complex publication-title: Energy doi: 10.1016/j.energy.2006.10.023 – year: 2014 ident: 10.1016/j.energy.2016.05.026_bib43 – volume: 27 start-page: 1857 issue: 11–12 year: 2007 ident: 10.1016/j.energy.2016.05.026_bib31 article-title: A MINLP model including the pressure levels and multiperiods for CHP process optimisation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.01.002 – volume: 44 start-page: 1538 issue: 7 year: 2009 ident: 10.1016/j.energy.2016.05.026_bib34 article-title: Optimal design method for building energy systems using genetic algorithms publication-title: Build Environ doi: 10.1016/j.buildenv.2008.07.006 – volume: 36 start-page: 1292 issue: 2 year: 2011 ident: 10.1016/j.energy.2016.05.026_bib26 article-title: Optimisation based design of a district energy system for an eco-town in the United Kingdom publication-title: Energy doi: 10.1016/j.energy.2010.11.014 – volume: 119 start-page: 488 year: 2014 ident: 10.1016/j.energy.2016.05.026_bib8 article-title: Optimal deployment of thermal energy storage under diverse economic and climate conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.01.047 – volume: 124 start-page: 298 year: 2014 ident: 10.1016/j.energy.2016.05.026_bib16 article-title: Optimization of a distributed cogeneration system with solar district heating publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.062 – volume: 85 start-page: 30 year: 2015 ident: 10.1016/j.energy.2016.05.026_bib17 article-title: An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – a South Australian case-study publication-title: Energy doi: 10.1016/j.energy.2015.03.051 – volume: 86 start-page: 2540 issue: 12 year: 2009 ident: 10.1016/j.energy.2016.05.026_bib23 article-title: Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.04.012 – year: 2014 ident: 10.1016/j.energy.2016.05.026_bib46 – year: 2012 ident: 10.1016/j.energy.2016.05.026_bib2 – volume: 87 start-page: 1325 issue: 4 year: 2010 ident: 10.1016/j.energy.2016.05.026_bib33 article-title: Optimization of capacity and operation for CCHP system by genetic algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.08.005 – volume: 103 start-page: 739 year: 2015 ident: 10.1016/j.energy.2016.05.026_bib20 article-title: Operation optimization of a distributed energy system considering energy costs and exergy efficiency publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.07.009 – volume: 85 start-page: 433 year: 2015 ident: 10.1016/j.energy.2016.05.026_bib9 article-title: Optimal design of distributed energy resource systems coupled with energy distribution networks publication-title: Energy doi: 10.1016/j.energy.2015.03.101 – volume: 55 start-page: 1014 year: 2013 ident: 10.1016/j.energy.2016.05.026_bib18 article-title: Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area publication-title: Energy doi: 10.1016/j.energy.2013.04.004 – volume: 155 start-page: 120 year: 2015 ident: 10.1016/j.energy.2016.05.026_bib19 article-title: Optimal distributed energy resources and the cost of reduced greenhouse gas emissions in a large retail shopping centre publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.085 – volume: 51 start-page: 331 year: 2013 ident: 10.1016/j.energy.2016.05.026_bib15 article-title: Optimal design and operation of distributed energy systems: application to Greek residential sector publication-title: Renew Energy doi: 10.1016/j.renene.2012.09.009 – volume: 44 start-page: 96 issue: 1 year: 2012 ident: 10.1016/j.energy.2016.05.026_bib14 article-title: A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level publication-title: Energy doi: 10.1016/j.energy.2012.02.009 – volume: 61 start-page: 531 year: 2013 ident: 10.1016/j.energy.2016.05.026_bib12 article-title: Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system publication-title: Energy doi: 10.1016/j.energy.2013.09.018 – year: 2011 ident: 10.1016/j.energy.2016.05.026_bib1 – volume: 116 start-page: 230 year: 2014 ident: 10.1016/j.energy.2016.05.026_bib39 article-title: A probability constrained multi-objective optimization model for CCHP system operation decision support publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.11.065 |
| SSID | ssj0005899 |
| Score | 2.5097053 |
| Snippet | This study aims to optimize DER (distributed energy resource) system with respect to economic and environmental objectives. In particular, we developed a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 947 |
| SubjectTerms | buildings carbon carbon dioxide Distributed energy resource system District energy networks Economic optimization ecosystem services energy environmental factors Environmental optimization financial economics linear programming mathematical models |
| Title | Economic and environmental optimization for distributed energy resource systems coupled with district energy networks |
| URI | https://dx.doi.org/10.1016/j.energy.2016.05.026 https://www.proquest.com/docview/2045824871 |
| Volume | 109 |
| WOSCitedRecordID | wos000382591000082&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhwQvCAYT4yYj8YaCEteOk8cJFQGCioch9c2yHRtl6pKqaaf-Bn41vqZpB4w98BJFjm05_b4eH5-cCwBvlBSaKGykX4Vkgok5oIiUandXcpQTrLArNkFns2I-L7-NRj9jLMzVgjZNsd2Wy_8KtWkzYNvQ2VvA3U9qGsy9Ad1cDezm-k_Ax1Bj91lgEMdmtU4jHy5D4KXzL6xs2lxb8UrZri4KcBXs-SHHc_dWtpvlIjqp-wFyHXs33ou82zPw-0c2j-nWu873xoYvPha7bX5s6x3Ubvvj9aJu9vvN-EHD15q3QzNFllu7qw_U7MOz0oRgvC9603IgPEufezPsw6WvM3BNxHtrw8U7_57WOS93uVfRbzJqH-x0vf9hdG27YH4WZmdhKWFmljvgCFFSFmNwdPZpOv-8cxgqXDXS_kViIKbzFry-mj8pOgdbvtNjzh-CB-EAAs88cR6BkWqOwb1Imu4YnEyHnIFB-HePwSZ2goZZcI9ZcMgsaECHA2ZBv2oYmQUDs2BgFrTMgpFZsXdk1hPw_cP0_P3HJFTtSKTRtdeJyiVRKdc81WUqM6VTnVNRpRWvsOIZF1oVKqUCIc0JKeyReSJRLvlEYKW0mpyAcdM26imAmUA410IimZuDrMZCUKdhU8JpVRF0CibxJ2YypLS3lVUW7G8An4KkH7X0KV1u6E8jeiyopV7dZIaSN4x8HcFmRmrbT3G8Ue2mY7YIRIFwQbNnt1zNc3B_9_d6Acbr1Ua9BHfl1bruVq8CZ38BTkrEQw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Economic+and+environmental+optimization+for+distributed+energy+resource+systems+coupled+with+district+energy+networks&rft.jtitle=Energy+%28Oxford%29&rft.au=Li%2C+Longxi&rft.au=Mu%2C+Hailin&rft.au=Li%2C+Nan&rft.au=Li%2C+Miao&rft.date=2016-08-15&rft.issn=0360-5442&rft.volume=109&rft.spage=947&rft.epage=960&rft_id=info:doi/10.1016%2Fj.energy.2016.05.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2016_05_026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |