Unsupervised electric motor fault detection by using deep autoencoders

Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica Jg. 6; H. 2; S. 441 - 451
Hauptverfasser: Principi, Emanuele, Rossetti, Damiano, Squartini, Stefano, Piazza, Francesco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway Chinese Association of Automation (CAA) 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2329-9266, 2329-9274
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors &#x02BC knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract Log-Mel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multi-layer perceptron &#x0028 MLP &#x0029 autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory &#x0028 LSTM &#x0029 units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine &#x0028 OC-SVM &#x0029 algorithm. The performance has been evaluated in terms area under curve &#x0028 AUC &#x0029 of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OC-SVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 &#x0025.
AbstractList Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors &#x02BC knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract Log-Mel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multi-layer perceptron &#x0028 MLP &#x0029 autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory &#x0028 LSTM &#x0029 units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine &#x0028 OC-SVM &#x0029 algorithm. The performance has been evaluated in terms area under curve &#x0028 AUC &#x0029 of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OC-SVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 &#x0025.
Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors ʼ knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract Log-Mel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multi-layer perceptron ( MLP ) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory ( LSTM ) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine ( OC-SVM ) algorithm. The performance has been evaluated in terms area under curve ( AUC ) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OC-SVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 %.
Author Principi, Emanuele
Squartini, Stefano
Piazza, Francesco
Rossetti, Damiano
Author_xml – sequence: 1
  givenname: Emanuele
  surname: Principi
  fullname: Principi, Emanuele
  email: E.principi@univpm.it
  organization: Department of Information Engineering, Universita Politecnica delle Marche, Ancona 60121, Italy
– sequence: 2
  givenname: Damiano
  surname: Rossetti
  fullname: Rossetti, Damiano
  organization: Loccioni Group, Angeli di Rosora, Ancona 60121, Italy
– sequence: 3
  givenname: Stefano
  surname: Squartini
  fullname: Squartini, Stefano
  email: s.squartini@univpm.it
  organization: Department of Information Engineering, Universita Politecnica delle Marche, Ancona 60121, Italy
– sequence: 4
  givenname: Francesco
  surname: Piazza
  fullname: Piazza, Francesco
  email: f.piazza@univpm.it
  organization: Department of Information Engineering, Universita Politecnica delle Marche, Ancona 60121, Italy
BookMark eNp9kEtLAzEUhYNUsNbuBTcDrqfmMZOZLEuxVSm40K5DmtyRlGkyJhmh_94pLV24cHUvh3Pu47tFI-cdIHRP8IwQLJ7e5h8ziomYEUEIE-wKjSmjIhe0KkaXnvMbNI1xhzEmtKy4KMZouXGx7yD82AgmgxZ0ClZne598yBrVtykzkAbVepdtD1kfrfsaJOgy1ScPTnsDId6h60a1EabnOkGb5fPn4iVfv69eF_N1rpmgKTcGG9owg7nSmlNd1I1RuKCKEcVNVQkBZUkFK7QyFDfbslKk0SWltVCcmZpN0ONpbhf8dw8xyZ3vgxtWSkrqSvCSkGJw4ZNLBx9jgEZ2we5VOEiC5RGYHIDJIzB5BjZE-J-Itkkdv05B2fa_4MMpaAHgsqceDqlFxX4Bh-p6JA
CODEN IJASJC
CitedBy_id crossref_primary_10_1007_s40815_022_01292_1
crossref_primary_10_1016_j_iswa_2022_200167
crossref_primary_10_1109_JAS_2022_105515
crossref_primary_10_1016_j_ress_2024_110121
crossref_primary_10_1109_ACCESS_2020_3002184
crossref_primary_10_1109_TCDS_2021_3116228
crossref_primary_10_1016_j_compind_2021_103548
crossref_primary_10_1109_TIM_2023_3300435
crossref_primary_10_3390_s21227587
crossref_primary_10_1016_j_aei_2025_103859
crossref_primary_10_1080_00207543_2022_2113928
crossref_primary_10_1109_ACCESS_2024_3400913
crossref_primary_10_1109_TEC_2023_3340337
crossref_primary_10_1109_JAS_2021_1004168
crossref_primary_10_1109_JSEN_2021_3110878
crossref_primary_10_1109_TITS_2021_3106779
crossref_primary_10_1007_s00521_025_11464_3
crossref_primary_10_3390_electronics13091722
crossref_primary_10_32604_cmes_2024_054257
crossref_primary_10_3390_s20205846
crossref_primary_10_1016_j_apacoust_2024_110253
crossref_primary_10_1016_j_eswa_2020_113378
crossref_primary_10_3390_pr13030815
crossref_primary_10_1109_TIM_2022_3228007
crossref_primary_10_1109_TIE_2022_3189085
crossref_primary_10_1016_j_sigpro_2025_110266
crossref_primary_10_3390_electronics12183971
crossref_primary_10_1177_14727978251314564
crossref_primary_10_1186_s10033_021_00569_0
crossref_primary_10_3390_e23060774
crossref_primary_10_1007_s12206_024_1033_9
crossref_primary_10_1007_s43069_024_00337_5
crossref_primary_10_1016_j_pnucene_2024_105114
crossref_primary_10_1080_00295639_2024_2372515
crossref_primary_10_3390_s21103382
crossref_primary_10_3390_en17215440
crossref_primary_10_1016_j_ins_2021_12_106
crossref_primary_10_1109_ACCESS_2021_3076571
crossref_primary_10_1109_TCDS_2019_2963476
crossref_primary_10_1080_10589759_2025_2491731
crossref_primary_10_1109_TNNLS_2023_3282047
crossref_primary_10_1016_j_ress_2021_107805
crossref_primary_10_1016_j_eswa_2023_121807
crossref_primary_10_1016_j_neucom_2024_128440
crossref_primary_10_1109_TIA_2025_3544169
crossref_primary_10_1109_JAS_2024_124689
crossref_primary_10_1109_TNNLS_2023_3290974
crossref_primary_10_1016_j_robot_2022_104067
crossref_primary_10_1109_TMECH_2024_3452429
crossref_primary_10_3390_machines13060457
crossref_primary_10_1016_j_measurement_2024_116216
crossref_primary_10_4271_14_12_03_0023
crossref_primary_10_1109_ACCESS_2020_3046607
crossref_primary_10_3390_app15147698
crossref_primary_10_1016_j_asoc_2021_107382
crossref_primary_10_1109_ACCESS_2023_3240306
crossref_primary_10_1109_ACCESS_2023_3344676
crossref_primary_10_1109_ACCESS_2020_2994290
crossref_primary_10_1016_j_cie_2020_106773
crossref_primary_10_1016_j_ymssp_2024_111420
crossref_primary_10_1109_TBDATA_2020_3012656
crossref_primary_10_1007_s00521_022_07101_y
crossref_primary_10_1016_j_neucom_2024_128211
crossref_primary_10_1109_ACCESS_2020_3016653
crossref_primary_10_1109_TITS_2022_3170874
crossref_primary_10_3390_jsan9020020
crossref_primary_10_3390_s22103933
crossref_primary_10_1109_TITS_2020_2983475
crossref_primary_10_1007_s12530_025_09710_z
crossref_primary_10_1016_j_aei_2024_102837
crossref_primary_10_1016_j_compind_2022_103743
crossref_primary_10_3390_en15197008
crossref_primary_10_1016_j_future_2021_06_026
crossref_primary_10_1109_ACCESS_2020_3034939
crossref_primary_10_3390_s23135970
crossref_primary_10_1109_JAS_2024_124908
crossref_primary_10_3390_electronics13193946
crossref_primary_10_1016_j_compind_2025_104273
crossref_primary_10_1016_j_jai_2025_05_002
crossref_primary_10_1109_ACCESS_2025_3551772
crossref_primary_10_1109_TIM_2024_3370756
crossref_primary_10_1109_TITS_2021_3103068
crossref_primary_10_1016_j_ifacol_2022_09_550
crossref_primary_10_12677_mos_2025_141001
crossref_primary_10_3390_s20216265
crossref_primary_10_1109_ACCESS_2025_3591279
crossref_primary_10_3390_app14219897
crossref_primary_10_1007_s00500_022_07226_1
crossref_primary_10_1109_TSMC_2020_3048950
crossref_primary_10_1016_j_compind_2023_103879
crossref_primary_10_1109_TITS_2020_3029946
crossref_primary_10_1016_j_compind_2023_103878
crossref_primary_10_1007_s00500_023_08733_5
crossref_primary_10_3390_electronics12194099
crossref_primary_10_1002_qre_2614
crossref_primary_10_1109_TITS_2020_2997472
crossref_primary_10_3390_app10175827
crossref_primary_10_1007_s12206_025_0702_7
crossref_primary_10_1109_TASE_2022_3215258
crossref_primary_10_1109_TPEL_2024_3410958
crossref_primary_10_1002_ente_202201510
crossref_primary_10_1007_s00521_021_06534_1
crossref_primary_10_1016_j_measurement_2021_109215
crossref_primary_10_1088_1742_6596_2179_1_012042
crossref_primary_10_1016_j_neucom_2024_129288
crossref_primary_10_3390_s21175830
crossref_primary_10_1109_TII_2020_3019788
crossref_primary_10_1016_j_ijinfomgt_2020_102282
crossref_primary_10_1007_s13198_022_01843_7
crossref_primary_10_1016_j_knosys_2021_107866
crossref_primary_10_3390_en17163956
crossref_primary_10_3390_s23063260
crossref_primary_10_1109_JAS_2020_1003390
crossref_primary_10_3390_app10051657
crossref_primary_10_3390_s21155026
crossref_primary_10_1108_IDD_12_2020_0160
crossref_primary_10_1007_s00170_024_13709_2
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_ACCESS_2020_3004624
crossref_primary_10_1007_s12559_020_09747_z
crossref_primary_10_1016_j_neunet_2020_10_013
crossref_primary_10_1177_0309524X231187152
crossref_primary_10_3390_en13061475
crossref_primary_10_1109_TITS_2020_3008266
crossref_primary_10_1109_TITS_2023_3286867
crossref_primary_10_1016_j_compchemeng_2024_108717
crossref_primary_10_1007_s11042_023_15996_5
crossref_primary_10_1007_s00422_022_00937_6
crossref_primary_10_1177_10775463241250367
crossref_primary_10_3390_app14188107
crossref_primary_10_1016_j_chemolab_2024_105119
crossref_primary_10_1016_j_neucom_2021_08_110
crossref_primary_10_1016_j_engappai_2023_106037
crossref_primary_10_1109_JIOT_2024_3481213
crossref_primary_10_1109_ACCESS_2023_3308698
crossref_primary_10_1109_TIE_2021_3101001
crossref_primary_10_1016_j_compositesb_2025_113038
crossref_primary_10_3390_en14217182
crossref_primary_10_1109_TMECH_2023_3278710
crossref_primary_10_1109_TR_2021_3090310
crossref_primary_10_1038_s41598_025_89695_6
crossref_primary_10_1007_s42243_023_01104_2
crossref_primary_10_1016_j_engappai_2025_110855
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/JAS.2019.1911393
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 451
ExternalDocumentID 10_1109_JAS_2019_1911393
8651897
Genre orig-research
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c392t-dd0d2f3d06acc62c48fda042a31a6d7799e552934cad20fb57a1fc52289a63d83
IEDL.DBID RIE
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460415700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9266
IngestDate Fri Jul 25 04:39:18 EDT 2025
Sat Nov 29 03:31:04 EST 2025
Tue Nov 18 22:23:50 EST 2025
Wed Aug 27 02:17:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-dd0d2f3d06acc62c48fda042a31a6d7799e552934cad20fb57a1fc52289a63d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2187965114
PQPubID 2040495
PageCount 11
ParticipantIDs ieee_primary_8651897
crossref_primary_10_1109_JAS_2019_1911393
proquest_journals_2187965114
crossref_citationtrail_10_1109_JAS_2019_1911393
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationYear 2019
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0001257694
Score 2.5146394
Snippet Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 441
SubjectTerms Accelerometers
Algorithms
Artificial neural networks
Electric motors
Fault detection
Fault diagnosis
Feature extraction
Human performance
Induction motors
Multilayers
Neural networks
Signal processing
Support vector machines
Vibrations
Title Unsupervised electric motor fault detection by using deep autoencoders
URI https://ieeexplore.ieee.org/document/8651897
https://www.proquest.com/docview/2187965114
Volume 6
WOSCitedRecordID wos000460415700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257694
  issn: 2329-9266
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--DXF6ZQ8-CLYrR9rkzwOcYjIEHSwt5ImqQykHWsr-N97SbsxUQTfSpO04XdJ7nfJ5Q7gGodExAULHO1p7aD9FTrCTZhDE9QGaUqpDu1F4Sc6nbL5nD-34HZzF0ZrbZ3P9MA82rN8lcvKbJUNWRR6jNM2tCmN6rtaW_spyJxt3kPkCNzh-Kv1qaTLh4_jF-PGxQdoniDnCb5pIZtW5cdabBXM5OB_XTuE_YZIknEt-SNo6ewY9rbCC3ZhMsuKamkWg0IrUie8WUiCwslXJBXVe0mULq0vVkaST2J84N_wlV4SUZW5CXFp3JxPYDa5f717cJq8CY5EtlM6SrnKTwPlRkLKyJcjliqBk1MEnogUpZzrMEQ1P5JC-W6ahFR4qUQixriIAsWCU-hkeabPgGCZ8pUQvqvRkE4UkgvKUpEgrYkCV7IeDNc4xrIJKm5yW7zH1rhweYzIxwb5uEG-BzebFss6oMYfdbsG6U29BuQe9NeiipsZV8S-SZuO5d7o_PdWF7Brvl37j_WhU64qfQk78qNcFKsrO5i-AI3Dxv4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv8Xp1Dz4IljXj7VJHoc4ps4h6MC3kiapDEY31lbwv_eSdUNRBN9KPki5S3K_Sy73A7jAKRFxwQJHe1o76H-FjnAT5tAErUGaUqpD-1C4TwcD9vrKn2pwtXwLo7W2wWf62nzau3w1kaU5KmuxKPQYpyuwapizqtdaX05UEDtb5kNECdzhONjiXtLlrfvOswnk4tfooCDqCb7ZIUus8mM3tiamu_2_n9uBrQpKks5c97tQ09kebH5JMLgP3WGWl1OzHeRakTnlzUgSVM9kRlJRjguidGGjsTKSfBATBf-GRXpKRFlMTJJLE-h8AMPu7ctNz6mYExyJeKdwlHKVnwbKjYSUkS_bLFUCl6cIPBEpSjnXYYiGvi2F8t00CanwUolQjHERBYoFh1DPJpk-AoJ1yldC-K5GVzpRCC8oS0WCwCYKXMka0FrIMZZVWnHDbjGOrXvh8hglHxvJx5XkG3C57DGdp9T4o-2-kfSyXSXkBjQXqoqrNZfHviFOx3qvffx7r3NY77089uP-3eDhBDbMOPNosibUi1mpT2FNvhejfHZmJ9YnFxbKRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+electric+motor+fault+detection+by+using+deep+autoencoders&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Principi%2C+Emanuele&rft.au=Rossetti%2C+Damiano&rft.au=Squartini%2C+Stefano&rft.au=Piazza%2C+Francesco&rft.date=2019-03-01&rft.pub=Chinese+Association+of+Automation+%28CAA%29&rft.issn=2329-9266&rft.volume=6&rft.issue=2&rft.spage=441&rft.epage=451&rft_id=info:doi/10.1109%2FJAS.2019.1911393&rft.externalDocID=8651897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9266&client=summon