Unsupervised electric motor fault detection by using deep autoencoders
Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully...
Saved in:
| Published in: | IEEE/CAA journal of automatica sinica Vol. 6; no. 2; pp. 441 - 451 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
Chinese Association of Automation (CAA)
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2329-9266, 2329-9274 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors ʼ knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract Log-Mel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multi-layer perceptron ( MLP ) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory ( LSTM ) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine ( OC-SVM ) algorithm. The performance has been evaluated in terms area under curve ( AUC ) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OC-SVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 %. |
|---|---|
| AbstractList | Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors ʼ knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract Log-Mel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multi-layer perceptron ( MLP ) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory ( LSTM ) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine ( OC-SVM ) algorithm. The performance has been evaluated in terms area under curve ( AUC ) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OC-SVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 %. Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors ʼ knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract Log-Mel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multi-layer perceptron ( MLP ) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory ( LSTM ) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine ( OC-SVM ) algorithm. The performance has been evaluated in terms area under curve ( AUC ) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OC-SVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 %. |
| Author | Principi, Emanuele Squartini, Stefano Piazza, Francesco Rossetti, Damiano |
| Author_xml | – sequence: 1 givenname: Emanuele surname: Principi fullname: Principi, Emanuele email: E.principi@univpm.it organization: Department of Information Engineering, Universita Politecnica delle Marche, Ancona 60121, Italy – sequence: 2 givenname: Damiano surname: Rossetti fullname: Rossetti, Damiano organization: Loccioni Group, Angeli di Rosora, Ancona 60121, Italy – sequence: 3 givenname: Stefano surname: Squartini fullname: Squartini, Stefano email: s.squartini@univpm.it organization: Department of Information Engineering, Universita Politecnica delle Marche, Ancona 60121, Italy – sequence: 4 givenname: Francesco surname: Piazza fullname: Piazza, Francesco email: f.piazza@univpm.it organization: Department of Information Engineering, Universita Politecnica delle Marche, Ancona 60121, Italy |
| BookMark | eNp9kEtLAzEUhYNUsNbuBTcDrqfmMZOZLEuxVSm40K5DmtyRlGkyJhmh_94pLV24cHUvh3Pu47tFI-cdIHRP8IwQLJ7e5h8ziomYEUEIE-wKjSmjIhe0KkaXnvMbNI1xhzEmtKy4KMZouXGx7yD82AgmgxZ0ClZne598yBrVtykzkAbVepdtD1kfrfsaJOgy1ScPTnsDId6h60a1EabnOkGb5fPn4iVfv69eF_N1rpmgKTcGG9owg7nSmlNd1I1RuKCKEcVNVQkBZUkFK7QyFDfbslKk0SWltVCcmZpN0ONpbhf8dw8xyZ3vgxtWSkrqSvCSkGJw4ZNLBx9jgEZ2we5VOEiC5RGYHIDJIzB5BjZE-J-Itkkdv05B2fa_4MMpaAHgsqceDqlFxX4Bh-p6JA |
| CODEN | IJASJC |
| CitedBy_id | crossref_primary_10_1007_s40815_022_01292_1 crossref_primary_10_1016_j_iswa_2022_200167 crossref_primary_10_1109_JAS_2022_105515 crossref_primary_10_1016_j_ress_2024_110121 crossref_primary_10_1109_ACCESS_2020_3002184 crossref_primary_10_1109_TCDS_2021_3116228 crossref_primary_10_1016_j_compind_2021_103548 crossref_primary_10_1109_TIM_2023_3300435 crossref_primary_10_3390_s21227587 crossref_primary_10_1016_j_aei_2025_103859 crossref_primary_10_1080_00207543_2022_2113928 crossref_primary_10_1109_ACCESS_2024_3400913 crossref_primary_10_1109_TEC_2023_3340337 crossref_primary_10_1109_JAS_2021_1004168 crossref_primary_10_1109_JSEN_2021_3110878 crossref_primary_10_1109_TITS_2021_3106779 crossref_primary_10_1007_s00521_025_11464_3 crossref_primary_10_3390_electronics13091722 crossref_primary_10_32604_cmes_2024_054257 crossref_primary_10_3390_s20205846 crossref_primary_10_1016_j_apacoust_2024_110253 crossref_primary_10_1016_j_eswa_2020_113378 crossref_primary_10_3390_pr13030815 crossref_primary_10_1109_TIM_2022_3228007 crossref_primary_10_1109_TIE_2022_3189085 crossref_primary_10_1016_j_sigpro_2025_110266 crossref_primary_10_3390_electronics12183971 crossref_primary_10_1177_14727978251314564 crossref_primary_10_1186_s10033_021_00569_0 crossref_primary_10_3390_e23060774 crossref_primary_10_1007_s12206_024_1033_9 crossref_primary_10_1007_s43069_024_00337_5 crossref_primary_10_1016_j_pnucene_2024_105114 crossref_primary_10_1080_00295639_2024_2372515 crossref_primary_10_3390_s21103382 crossref_primary_10_3390_en17215440 crossref_primary_10_1016_j_ins_2021_12_106 crossref_primary_10_1109_ACCESS_2021_3076571 crossref_primary_10_1109_TCDS_2019_2963476 crossref_primary_10_1080_10589759_2025_2491731 crossref_primary_10_1109_TNNLS_2023_3282047 crossref_primary_10_1016_j_ress_2021_107805 crossref_primary_10_1016_j_eswa_2023_121807 crossref_primary_10_1016_j_neucom_2024_128440 crossref_primary_10_1109_TIA_2025_3544169 crossref_primary_10_1109_JAS_2024_124689 crossref_primary_10_1109_TNNLS_2023_3290974 crossref_primary_10_1016_j_robot_2022_104067 crossref_primary_10_1109_TMECH_2024_3452429 crossref_primary_10_3390_machines13060457 crossref_primary_10_1016_j_measurement_2024_116216 crossref_primary_10_4271_14_12_03_0023 crossref_primary_10_1109_ACCESS_2020_3046607 crossref_primary_10_3390_app15147698 crossref_primary_10_1016_j_asoc_2021_107382 crossref_primary_10_1109_ACCESS_2023_3240306 crossref_primary_10_1109_ACCESS_2023_3344676 crossref_primary_10_1109_ACCESS_2020_2994290 crossref_primary_10_1016_j_cie_2020_106773 crossref_primary_10_1016_j_ymssp_2024_111420 crossref_primary_10_1109_TBDATA_2020_3012656 crossref_primary_10_1007_s00521_022_07101_y crossref_primary_10_1016_j_neucom_2024_128211 crossref_primary_10_1109_ACCESS_2020_3016653 crossref_primary_10_1109_TITS_2022_3170874 crossref_primary_10_3390_jsan9020020 crossref_primary_10_3390_s22103933 crossref_primary_10_1109_TITS_2020_2983475 crossref_primary_10_1007_s12530_025_09710_z crossref_primary_10_1016_j_aei_2024_102837 crossref_primary_10_1016_j_compind_2022_103743 crossref_primary_10_3390_en15197008 crossref_primary_10_1016_j_future_2021_06_026 crossref_primary_10_1109_ACCESS_2020_3034939 crossref_primary_10_3390_s23135970 crossref_primary_10_1109_JAS_2024_124908 crossref_primary_10_3390_electronics13193946 crossref_primary_10_1016_j_compind_2025_104273 crossref_primary_10_1016_j_jai_2025_05_002 crossref_primary_10_1109_ACCESS_2025_3551772 crossref_primary_10_1109_TIM_2024_3370756 crossref_primary_10_1109_TITS_2021_3103068 crossref_primary_10_1016_j_ifacol_2022_09_550 crossref_primary_10_12677_mos_2025_141001 crossref_primary_10_3390_s20216265 crossref_primary_10_1109_ACCESS_2025_3591279 crossref_primary_10_3390_app14219897 crossref_primary_10_1007_s00500_022_07226_1 crossref_primary_10_1109_TSMC_2020_3048950 crossref_primary_10_1016_j_compind_2023_103879 crossref_primary_10_1109_TITS_2020_3029946 crossref_primary_10_1016_j_compind_2023_103878 crossref_primary_10_1007_s00500_023_08733_5 crossref_primary_10_3390_electronics12194099 crossref_primary_10_1002_qre_2614 crossref_primary_10_1109_TITS_2020_2997472 crossref_primary_10_3390_app10175827 crossref_primary_10_1007_s12206_025_0702_7 crossref_primary_10_1109_TASE_2022_3215258 crossref_primary_10_1109_TPEL_2024_3410958 crossref_primary_10_1002_ente_202201510 crossref_primary_10_1007_s00521_021_06534_1 crossref_primary_10_1016_j_measurement_2021_109215 crossref_primary_10_1088_1742_6596_2179_1_012042 crossref_primary_10_1016_j_neucom_2024_129288 crossref_primary_10_3390_s21175830 crossref_primary_10_1109_TII_2020_3019788 crossref_primary_10_1016_j_ijinfomgt_2020_102282 crossref_primary_10_1007_s13198_022_01843_7 crossref_primary_10_1016_j_knosys_2021_107866 crossref_primary_10_3390_en17163956 crossref_primary_10_3390_s23063260 crossref_primary_10_1109_JAS_2020_1003390 crossref_primary_10_3390_app10051657 crossref_primary_10_3390_s21155026 crossref_primary_10_1108_IDD_12_2020_0160 crossref_primary_10_1007_s00170_024_13709_2 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1109_ACCESS_2020_3004624 crossref_primary_10_1007_s12559_020_09747_z crossref_primary_10_1016_j_neunet_2020_10_013 crossref_primary_10_1177_0309524X231187152 crossref_primary_10_3390_en13061475 crossref_primary_10_1109_TITS_2020_3008266 crossref_primary_10_1109_TITS_2023_3286867 crossref_primary_10_1016_j_compchemeng_2024_108717 crossref_primary_10_1007_s11042_023_15996_5 crossref_primary_10_1007_s00422_022_00937_6 crossref_primary_10_1177_10775463241250367 crossref_primary_10_3390_app14188107 crossref_primary_10_1016_j_chemolab_2024_105119 crossref_primary_10_1016_j_neucom_2021_08_110 crossref_primary_10_1016_j_engappai_2023_106037 crossref_primary_10_1109_JIOT_2024_3481213 crossref_primary_10_1109_ACCESS_2023_3308698 crossref_primary_10_1109_TIE_2021_3101001 crossref_primary_10_1016_j_compositesb_2025_113038 crossref_primary_10_3390_en14217182 crossref_primary_10_1109_TMECH_2023_3278710 crossref_primary_10_1109_TR_2021_3090310 crossref_primary_10_1038_s41598_025_89695_6 crossref_primary_10_1007_s42243_023_01104_2 crossref_primary_10_1016_j_engappai_2025_110855 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/JAS.2019.1911393 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2329-9274 |
| EndPage | 451 |
| ExternalDocumentID | 10_1109_JAS_2019_1911393 8651897 |
| Genre | orig-research |
| GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c392t-dd0d2f3d06acc62c48fda042a31a6d7799e552934cad20fb57a1fc52289a63d83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460415700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2329-9266 |
| IngestDate | Fri Jul 25 04:39:18 EDT 2025 Sat Nov 29 03:31:04 EST 2025 Tue Nov 18 22:23:50 EST 2025 Wed Aug 27 02:17:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-dd0d2f3d06acc62c48fda042a31a6d7799e552934cad20fb57a1fc52289a63d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2187965114 |
| PQPubID | 2040495 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_8651897 crossref_primary_10_1109_JAS_2019_1911393 proquest_journals_2187965114 crossref_citationtrail_10_1109_JAS_2019_1911393 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE/CAA journal of automatica sinica |
| PublicationTitleAbbrev | JAS |
| PublicationYear | 2019 |
| Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| SSID | ssj0001257694 |
| Score | 2.5147104 |
| Snippet | Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 441 |
| SubjectTerms | Accelerometers Algorithms Artificial neural networks Electric motors Fault detection Fault diagnosis Feature extraction Human performance Induction motors Multilayers Neural networks Signal processing Support vector machines Vibrations |
| Title | Unsupervised electric motor fault detection by using deep autoencoders |
| URI | https://ieeexplore.ieee.org/document/8651897 https://www.proquest.com/docview/2187965114 |
| Volume | 6 |
| WOSCitedRecordID | wos000460415700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2329-9274 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257694 issn: 2329-9266 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGLYN1um-dRxEU8iKCCt5LmIYJ0l91W8N87SbvLiiJ4K22mlJkm8yX5Mh_AGWIQZkxKE09Tm9Bc8kSnliaZ45n2NktLVkaxCXF_L19e1MMSXMzPwjjnIvnMXYbLuJdvR6YJS2V9ydlAKrEMy0Lw9qzWwnoKIueoe4gYQSUKE89sVzJV_burx0DjUpc4PUHMk3_LQlFW5cdYHBPMcPN_n7YFGx2QJFdt5LdhyVU7sL5QXnAXhs_VtBmHwWDqLGkFb94MweCMJsTr5r0m1tWRi1WR8pMEDvwr3nJjopt6FEpcBprzHjwPb56ub5NONyExiHbqxNrUZj63KdfG8MxQ6a3GzqnzgeZWCKUcY5jmqdEYDF8yoQfeIBCTSvPcynwfVqpR5Q6AZHmJcx6O1sJj5jJSU8E9ZZYxmVtBe9Cf-bEwXVHxoG3xXsTJRaoK9HwRPF90nu_B-dxi3BbU-KPtbvD0vF3n5B4cz0JVdD1uWmRBNh2fD-jh71ZHsBbe3fLHjmGlnjTuBFbNR_02nZzGn-kL4eTGTA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB48Fc578Le4p3fmwZeDq5ttkzR5lOMW9XQRVPCtpPkhC9JddlvB__4maXfxuEO4t9JmaJlpMl-SL_MBnCIG4cZQlnhGbcIyKRJNLUtSJ1LtbUpLXkaxiXw0ko-P6nYFvi_PwjjnIvnMnYXLuJdvJ6YJS2V9KfhAqvwDrHHGUtqe1nqzooLYOSofIkpQicLUs9iXpKp_dX4XiFzqDCcoiHqyP_JQFFb5azSOKWa49X8ftw2bHZQk523sd2DFVbvw6U2BwT0YPlTzZhqGg7mzpJW8GRuC4ZnMiNfNc02sqyMbqyLlKwks-Ce85aZEN_UkFLkMROd9eBj-vP9xkXTKCYlBvFMn1lKb-sxSoY0RqWHSW43dU2cDLWyeK-U4x0TPjMZw-JLneuANQjGptMiszA5gtZpU7hBImpU46xFonXvMXUZqlgvPuOVcZjZnPegv_FiYrqx4ULd4LuL0gqoCPV8Ezxed53vwbWkxbUtqvNN2L3h62a5zcg-OF6Equj43L9IgnI7PB-zzv61O4OPF_c11cX05-nUEG-E9LZvsGFbrWeO-wLp5qcfz2df4Y_0GXhTJkw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+electric+motor+fault+detection+by+using+deep+autoencoders&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Principi%2C+Emanuele&rft.au=Rossetti%2C+Damiano&rft.au=Squartini%2C+Stefano&rft.au=Piazza%2C+Francesco&rft.date=2019-03-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=6&rft.issue=2&rft.spage=441&rft.epage=451&rft_id=info:doi/10.1109%2FJAS.2019.1911393&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2019_1911393 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9266&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9266&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9266&client=summon |