Directional Hölder Metric Regularity

This paper sheds new light on regularity of multifunctions through various characterizations of directional Hölder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Hölder/Lipschitz metric regularity is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 171; no. 3; pp. 785 - 819
Main Authors: Van Ngai, Huynh, Tron, Nguyen Huu, Théra, Michel
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2016
Springer Nature B.V
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper sheds new light on regularity of multifunctions through various characterizations of directional Hölder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Hölder/Lipschitz metric regularity is stable, when the multifunction under consideration is perturbed suitably. Applications of directional Hölder/Lipschitz metric regularity to investigate the stability and the sensitivity analysis of parameterized optimization problems are also discussed.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-015-0797-6