Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose Estimation

In this work, we introduce Deep Bingham Networks (DBN) , a generic framework that can naturally handle pose-related uncertainties and ambiguities arising in almost all real life applications concerning 3D data. While existing works strive to find a single solution to the pose estimation problem, we...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision Vol. 130; no. 7; pp. 1627 - 1654
Main Authors: Deng, Haowen, Bui, Mai, Navab, Nassir, Guibas, Leonidas, Ilic, Slobodan, Birdal, Tolga
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2022
Springer
Springer Nature B.V
Subjects:
ISSN:0920-5691, 1573-1405
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, we introduce Deep Bingham Networks (DBN) , a generic framework that can naturally handle pose-related uncertainties and ambiguities arising in almost all real life applications concerning 3D data. While existing works strive to find a single solution to the pose estimation problem, we make peace with the ambiguities causing high uncertainty around which solutions to identify as the best. Instead, we report a family of poses which capture the nature of the solution space. DBN extends the state of the art direct pose regression networks by (i) a multi-hypotheses prediction head which can yield different distribution modes; and (ii) novel loss functions that benefit from Bingham distributions on rotations. This way, DBN can work both in unambiguous cases providing uncertainty information, and in ambiguous scenes where an uncertainty per mode is desired. On a technical front, our network regresses continuous Bingham mixture models and is applicable to both 2D data such as images and to 3D data such as point clouds. We proposed new training strategies so as to avoid mode or posterior collapse during training and to improve numerical stability. Our methods are thoroughly tested on two different applications exploiting two different modalities: (i) 6D camera relocalization from images; and (ii) object pose estimation from 3D point clouds, demonstrating decent advantages over the state of the art. For the former we contributed our own dataset composed of five indoor scenes where it is unavoidable to capture images corresponding to views that are hard to uniquely identify. For the latter we achieve the top results especially for symmetric objects of ModelNet dataset (Wu et al., in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015). The code and dataset accompanying this paper is provided under https://multimodal3dvision.github.io .
AbstractList In this work, we introduce Deep Bingham Networks (DBN), a generic framework that can naturally handle pose-related uncertainties and ambiguities arising in almost all real life applications concerning 3D data. While existing works strive to find a single solution to the pose estimation problem, we make peace with the ambiguities causing high uncertainty around which solutions to identify as the best. Instead, we report a family of poses which capture the nature of the solution space. DBN extends the state of the art direct pose regression networks by (i) a multi-hypotheses prediction head which can yield different distribution modes; and (ii) novel loss functions that benefit from Bingham distributions on rotations. This way, DBN can work both in unambiguous cases providing uncertainty information, and in ambiguous scenes where an uncertainty per mode is desired. On a technical front, our network regresses continuous Bingham mixture models and is applicable to both 2D data such as images and to 3D data such as point clouds. We proposed new training strategies so as to avoid mode or posterior collapse during training and to improve numerical stability. Our methods are thoroughly tested on two different applications exploiting two different modalities: (i) 6D camera relocalization from images; and (ii) object pose estimation from 3D point clouds, demonstrating decent advantages over the state of the art. For the former we contributed our own dataset composed of five indoor scenes where it is unavoidable to capture images corresponding to views that are hard to uniquely identify. For the latter we achieve the top results especially for symmetric objects of ModelNet dataset (Wu et al., in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912-1920, 2015). The code and dataset accompanying this paper is provided under
In this work, we introduce Deep Bingham Networks (DBN), a generic framework that can naturally handle pose-related uncertainties and ambiguities arising in almost all real life applications concerning 3D data. While existing works strive to find a single solution to the pose estimation problem, we make peace with the ambiguities causing high uncertainty around which solutions to identify as the best. Instead, we report a family of poses which capture the nature of the solution space. DBN extends the state of the art direct pose regression networks by (i) a multi-hypotheses prediction head which can yield different distribution modes; and (ii) novel loss functions that benefit from Bingham distributions on rotations. This way, DBN can work both in unambiguous cases providing uncertainty information, and in ambiguous scenes where an uncertainty per mode is desired. On a technical front, our network regresses continuous Bingham mixture models and is applicable to both 2D data such as images and to 3D data such as point clouds. We proposed new training strategies so as to avoid mode or posterior collapse during training and to improve numerical stability. Our methods are thoroughly tested on two different applications exploiting two different modalities: (i) 6D camera relocalization from images; and (ii) object pose estimation from 3D point clouds, demonstrating decent advantages over the state of the art. For the former we contributed our own dataset composed of five indoor scenes where it is unavoidable to capture images corresponding to views that are hard to uniquely identify. For the latter we achieve the top results especially for symmetric objects of ModelNet dataset (Wu et al., in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015). The code and dataset accompanying this paper is provided under https://multimodal3dvision.github.io.
In this work, we introduce Deep Bingham Networks (DBN) , a generic framework that can naturally handle pose-related uncertainties and ambiguities arising in almost all real life applications concerning 3D data. While existing works strive to find a single solution to the pose estimation problem, we make peace with the ambiguities causing high uncertainty around which solutions to identify as the best. Instead, we report a family of poses which capture the nature of the solution space. DBN extends the state of the art direct pose regression networks by (i) a multi-hypotheses prediction head which can yield different distribution modes; and (ii) novel loss functions that benefit from Bingham distributions on rotations. This way, DBN can work both in unambiguous cases providing uncertainty information, and in ambiguous scenes where an uncertainty per mode is desired. On a technical front, our network regresses continuous Bingham mixture models and is applicable to both 2D data such as images and to 3D data such as point clouds. We proposed new training strategies so as to avoid mode or posterior collapse during training and to improve numerical stability. Our methods are thoroughly tested on two different applications exploiting two different modalities: (i) 6D camera relocalization from images; and (ii) object pose estimation from 3D point clouds, demonstrating decent advantages over the state of the art. For the former we contributed our own dataset composed of five indoor scenes where it is unavoidable to capture images corresponding to views that are hard to uniquely identify. For the latter we achieve the top results especially for symmetric objects of ModelNet dataset (Wu et al., in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1912–1920, 2015). The code and dataset accompanying this paper is provided under https://multimodal3dvision.github.io .
Audience Academic
Author Birdal, Tolga
Navab, Nassir
Ilic, Slobodan
Bui, Mai
Deng, Haowen
Guibas, Leonidas
Author_xml – sequence: 1
  givenname: Haowen
  surname: Deng
  fullname: Deng, Haowen
  organization: Informatics at Technische Universität München, Corporate Technology Siemens AG
– sequence: 2
  givenname: Mai
  surname: Bui
  fullname: Bui, Mai
  organization: Informatics at Technische Universität München
– sequence: 3
  givenname: Nassir
  surname: Navab
  fullname: Navab, Nassir
  organization: Informatics at Technische Universität München
– sequence: 4
  givenname: Leonidas
  surname: Guibas
  fullname: Guibas, Leonidas
  organization: Computer Science Department, Stanford University
– sequence: 5
  givenname: Slobodan
  surname: Ilic
  fullname: Ilic, Slobodan
  organization: Corporate Technology Siemens AG
– sequence: 6
  givenname: Tolga
  orcidid: 0000-0001-7915-7964
  surname: Birdal
  fullname: Birdal, Tolga
  email: t.birdal@stanford.edu
  organization: Computer Science Department, Stanford University
BookMark eNp9kU9PGzEQxS1EJQLtF-BkqacelvrPrtfbWwqUIkUtgnK2Jt7ZjdPEm9qOUr49JouE4IDmYHn0fp7xe8fk0A8eCTnl7IwzVn-NnAslCyZEwbjiotgdkAmvalnwklWHZMIawYpKNfyIHMe4ZIwJLeSE3Fwgbuh35_sFrOkvTLsh_I3f6AXCKjfpzqUFvfcWQwLn0wMF39Lpeu76rcs35-nNEJFexuTWkNzgP5IPHawifno-T8j9j8s_5z-L2e-r6_PprLCyEalo876gEDsJqq1sW-ZS8xZtbUFXHBqwDZ-XooJaViU0Ws5V3TZWdx0gKC5PyOfx3U0Y_m0xJrMctsHnkUYozYWWWj-pzkZVDys0zndDCmBztbh2NnvYudyf1kyXWqiyycCXV0DWJPyfetjGaK7vbl9r9ai1YYgxYGesS3sT8hC3MpyZp3DMGI7J4Zh9OGaXUfEG3YRsYHh4H5IjFLPY9xhevvwO9QgDb6PW
CitedBy_id crossref_primary_10_1109_TAES_2023_3325801
crossref_primary_10_1016_j_inffus_2025_103001
crossref_primary_10_1109_LRA_2022_3222998
crossref_primary_10_1109_TPAMI_2025_3532450
crossref_primary_10_1109_TIT_2024_3468212
crossref_primary_10_1016_j_ins_2024_120231
crossref_primary_10_1016_j_neucom_2024_129033
crossref_primary_10_1103_PhysRevResearch_6_023245
crossref_primary_10_1109_TIP_2024_3372457
crossref_primary_10_1007_s00138_024_01657_6
crossref_primary_10_1088_2632_2153_ad5f13
Cites_doi 10.1007/978-3-642-37331-2_42
10.1109/CVPR.2019.00999
10.1002/rob.21831
10.1109/CVPR.2017.29
10.1109/ICCV.2017.169
10.1109/CVPR.2019.00336
10.1109/CVPR.2019.00733
10.1109/TRO.2014.2298059
10.1109/ICCV.2015.337
10.1109/CVPR42600.2020.00164
10.1109/CVPR.2017.267
10.1023/A:1010933404324
10.1109/CVPR.2018.00684
10.1109/ICCV.2019.00694
10.1109/TRO.2021.3056043
10.1109/3DV.2019.00073
10.1109/ICCV.2019.00013
10.1109/CVPR.2016.445
10.1109/CVPR42600.2020.01393
10.1109/CVPR.2013.377
10.1109/ICCVW.2017.287
10.1109/CVPR.2015.7299069
10.1109/ICCV.2015.336
10.1109/CVPR52688.2022.00653
10.1109/ICCVW.2019.00470
10.15607/RSS.2011.VII.015
10.1109/ICRA.2017.7989598
10.1109/CVPR.2019.01136
10.1109/ICCV.2019.00937
10.1109/IROS.2017.8202207
10.1109/ICCV.2015.310
10.1214/aos/1176342874
10.1109/CVPR.2016.366
10.1109/CVPR.2017.694
10.1109/IROS45743.2020.9340860
10.1007/978-3-030-01240-3_33
10.1145/358669.358692
10.1109/CVPR.2018.00472
10.1109/3DV.2015.65
10.1007/978-3-030-01264-9_46
10.1088/1751-8113/41/6/065004
10.1109/ICCV.2015.243
10.1109/WACV.2016.7477630
10.2307/2289892
10.1109/CVPR.2019.00731
10.15607/RSS.2020.XVI.007
10.1109/CVPR.2019.00589
10.1109/ICCV.2019.00203
10.1109/CVPR.2013.178
10.1109/ICCVW.2017.254
10.1109/ICRA.2016.7487679
10.1080/10867651.1998.10487493
10.1109/CVPR.2018.00489
10.1103/PhysRev.106.620
10.15607/RSS.2018.XIV.019
10.1109/3DV.2018.00051
10.1109/IROS.2018.8594282
10.1109/CVPR.2016.308
10.1109/CVPR.2016.90
10.1109/CVPR.2018.00526
10.1007/978-3-030-58452-8_1
10.1109/CVPR.2018.00277
10.1109/ICRA.2014.6907460
10.1177/0278364918778353
10.1109/ICCV.2017.388
10.1109/CVPR.2019.00342
10.1093/biomet/92.2.465
10.1007/978-3-030-01231-1_43
10.1109/CVPR.2017.284
10.1109/ICCV.2019.00362
10.1109/CVPR.2018.00028
10.1007/s11263-008-0195-8
10.1080/01418619608243708
10.1007/978-3-030-58523-5_9
10.1016/0734-189X(89)90052-2
10.1016/j.patcog.2017.09.013
10.1109/CVPR.2016.439
10.1023/A:1026543900054
10.1109/TRO.2016.2624754
10.1109/ICCV.2017.24
10.1109/ICCV.2017.77
10.1007/978-3-030-01228-1_37
10.1109/MRA.2006.1638022
10.2307/1969810
10.1109/CVPR46437.2021.00326
10.1109/CVPR.2009.5206848
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-022-01612-w
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 1654
ExternalDocumentID A708482649
10_1007_s11263_022_01612_w
GrantInformation_xml – fundername: Samsung GRO
– fundername: Stanford SAIL Toyota Research
– fundername: Directorate for Computer and Information Science and Engineering
  grantid: 1763268
  funderid: http://dx.doi.org/10.13039/100000083
– fundername: Vannevar Bush Faculty Fellowship
– fundername: Bacatec
– fundername: Stanford-Ford Alliance
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c392t-d126a6eef3a6d5cd4d4d6bdec7ca851a9ac91b425a7354a983b67d9c8ffaea613
IEDL.DBID K7-
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790633300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Tue Nov 04 23:13:51 EST 2025
Sat Nov 29 10:36:11 EST 2025
Mon Nov 24 14:35:43 EST 2025
Sat Nov 29 06:42:29 EST 2025
Tue Nov 18 21:42:58 EST 2025
Fri Feb 21 02:46:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Camera pose
Bingham distribution
Uncertainty
Point clouds
3D computer vision
Uncertainty estimation
Camera relocalization
Object pose
Rotation
6D
Posterior distribution
Ambiguity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-d126a6eef3a6d5cd4d4d6bdec7ca851a9ac91b425a7354a983b67d9c8ffaea613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7915-7964
PQID 2681283881
PQPubID 1456341
PageCount 28
ParticipantIDs proquest_journals_2681283881
gale_infotracacademiconefile_A708482649
gale_incontextgauss_ISR_A708482649
crossref_citationtrail_10_1007_s11263_022_01612_w
crossref_primary_10_1007_s11263_022_01612_w
springer_journals_10_1007_s11263_022_01612_w
PublicationCentury 2000
PublicationDate 20220700
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 7
  year: 2022
  text: 20220700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References KumeAWoodATSaddlepoint approximations for the Bingham and fisher-Bingham normalising constantsBiometrika2005922465476220137110.1093/biomet/92.2.465
Zeisl, B., Sattler, T., & Pollefeys, M. (2015). Camera pose voting for large-scale image-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 2704–2712).
Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. (2019). On the continuity of rotation representations in neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5745–5753).
Besl, P. J., McKay, N. D. (1992). Method for registration of 3-d shapes. In Sensor fusion IV: Control paradigms and data structures (vol. 1611, pp. 586–606). International Society for Optics and Photonics.
Zhao, Y., Birdal, T., Lenssen, J.E., Menegatti, E., Guibas, L., & Tombari, F. (2020). Quaternion equivariant capsule networks for 3d point clouds. In European conference on computer vision (pp. 1–19). Springer.
Birdal, T., & Simsekli, U. (2019). Probabilistic permutation synchronization using the riemannian structure of the birkhoff polytope. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 11105–11116).
Kendall, A., Grimes, M., & Cipolla, R. (2015). Posenet: A convolutional network for real-time 6-dof camera relocalization. In Proceedings of the international conference on computer vision (ICCV).
Chen, J., Yin, Y., Birdal, T., Chen, B., Guibas, L., & Wang, H. (2022). Projective manifold gradient layer for deep rotation regression. In The IEEE conference on computer vision and pattern recognition (CVPR).
Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In International conference on machine learning (pp. 1050–1059).
BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
Horaud, R., Conio, B., Leboulleux, O., & Lacolle, B. (1989). An analytic solution for the perspective 4-point problem. In Proceedings CVPR’89: IEEE computer society conference on computer vision and pattern recognition (pp. 500–507). IEEE.
Guzman-Rivera, A., Batra, D., & Kohli, P. (2012). Multiple choice learning: Learning to produce multiple structured outputs. In Advances in neural information processing systems (pp. 1799–1807).
Peretroukhin, V., Giamou, M., Rosen, D. M., Greene, W. N., Roy, N., & Kelly, J. (2020). A smooth representation of SO(3) for deep rotation learning with uncertainty. In Proceedings of robotics: Science and systems (RSS’20).
Balntas, V., Li, S., & Prisacariu, V. (2018). Relocnet: Continuous metric learning relocalisation using neural nets. In Proceedings of the European conference on computer vision (ECCV) (pp. 751–767).
Peretroukhin, V., Wagstaff, B., Giamou, M., & Kelly, J. (2019). Probabilistic regression of rotations using quaternion averaging and a deep multi-headed network. arXiv preprint arXiv:1904.03182
Kendall, A., & Cipolla, R. (2016). Modelling uncertainty in deep learning for camera relocalization. In Proceedings of the international conference on robotics and automation (ICRA).
SubbaraoRMeerPNonlinear mean shift over Riemannian manifoldsInternational Journal of Computer Vision2009841110.1007/s11263-008-0195-8
Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer.
Sattler, T., Havlena, M., Radenovic, F., Schindler, K., & Pollefeys, M. (2015). Hyperpoints and fine vocabularies for large-scale location recognition. In Proceedings of the IEEE international conference on computer vision (pp. 2102–2110).
Liao, S., Gavves, E., & Snoek, C. G. (2019). Spherical regression: Learning viewpoints, surface normals and 3d rotations on n-spheres. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9759–9767).
Falorsi, L., de Haan, P., Davidson, T. R., Forré, P.: Reparameterizing distributions on lie groups. arXiv preprint arXiv:1903.02958 (2019)
Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017a) Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652–660).
Yuan, W., Held, D., Mertz, C., & Hebert, M. (2018). Iterative transformer network for 3d point cloud. arXiv preprint arXiv:1811.11209
Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., & Fitzgibbon, A. (2013). Scene coordinate regression forests for camera relocalization in RGB-D images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2930–2937).
Liu, W., Luo, W., Lian, D., & Gao, S. (2018). Future frame prediction for anomaly detection—A new baseline. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6536–6545).
Sundermeyer, M., Marton, Z. C., Durner, M., Brucker, M., & Triebel, R. (2018) Implicit 3d orientation learning for 6d object detection from RGB images. In Proceedings of the European conference on computer vision (ECCV) (pp. 699–715).
Kurz, G., Gilitschenski, I., Julier, S., & Hanebeck, U. D. (2013). Recursive estimation of orientation based on the Bingham distribution. In 2013 16th International conference on information fusion (FUSION) (pp. 1487–1494). IEEE.
Kehl, W., Manhardt, F., Tombari, F., Ilic, S., & Navab, N. (2017). Ssd-6d: Making RGB-based 3d detection and 6d pose estimation great again. In Proceedings of the IEEE international conference on computer vision (pp. 1521–1529).
Xiang, Y., Schmidt, T., Narayanan, V., & Fox, D. (2018). Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. In Robotics: Science and systems (RSS).
Rupprecht, C., Laina, I., DiPietro, R., Baust, M., Tombari, F., Navab, N., & Hager, G. D. (2017). Learning in an uncertain world: Representing ambiguity through multiple hypotheses. In Proceedings of the IEEE international conference on computer vision (pp. 3591–3600).
Massiceti, D., Krull, A., Brachmann, E., Rother, C., Torr, P. H. (2017). Random forests versus neural networks—What’s best for camera localization? In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 5118–5125). IEEE.
Glover, J., Bradski, G., & Rusu, R. B. (2012). Monte Carlo pose estimation with quaternion kernels and the Bingham distribution. In Robotics: Science and systems (vol. 7, p. 97).
Kendall, A., & Cipolla, R. (2016). Modelling uncertainty in deep learning for camera relocalization. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 4762–4769). IEEE.
Bishop, C. M.: Mixture density networks (1994) https://research.aston.ac.uk/en/publications/mixture-density-networks
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).
McLachlan, G. J., & Basford, K. E. (1988). Mixture models: Inference and applications to clustering (vol. 84). M. Dekker.
Brahmbhatt, S., Gu, J., Kim, K., Hays, J., & Kautz, J. (2018). Geometry-aware learning of maps for camera localization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2616–2625).
Pitteri, G., Ramamonjisoa, M., Ilic, S., & Lepetit, V. (2019). On object symmetries and 6d pose estimation from images. In 2019 International conference on 3D vision (3DV) (pp. 614–622). IEEE.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 770–778.
Mahendran, S., Ali, H., & Vidal, R. (2017). 3d pose regression using convolutional neural networks. In Proceedings of the IEEE international conference on computer vision (pp. 2174–2182).
Clark, R., Wang, S., Markham, A., Trigoni, N., & Wen, H. (2017). Vidloc: A deep spatio-temporal model for 6-dof video-clip relocalization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6856–6864).
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556.
Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., & Funkhouser, T. (2017). 3Dmatch: Learning local geometric descriptors from RGB-D reconstructions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1802–1811).
Haarbach, A., Birdal, T., & Ilic, S. (2018). Survey of higher order rigid body motion interpolation methods for keyframe animation and continuous-time trajectory estimation. In 2018 Sixth international conference on 3D vision (3DV) (pp. 381–389). IEEE. https://doi.org/10.1109/3DV.2018.00051
Valentin, J., Nießner, M., Shotton, J., Fitzgibbon, A., Izadi, S., & Torr, P. H. (2015). Exploiting uncertainty in regression forests for accurate camera relocalization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4400–4408).
Kurz, G., Gilitschenski, I., Pfaff, F., Drude, L., Hanebeck, U. D., Haeb-Umbach, R., & Siegwart, R. Y. (2017). Directional statistics and filtering using libdirectional. arXiv preprint arXiv:1712.09718
Okorn, B., Xu, M., Hebert, M., & Held, D. (2020). Learning orientation distributions for object pose estimation. In 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 10580–10587). IEEE.
Zakharov, S., Kehl, W., Planche, B., Hutter, A., & Ilic, S. (2017). 3d object instance recognition and pose estimation using triplet loss with dynamic margin. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp 552–559). IEEE.
Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4490–4499).
Birdal, T., Simsekli, U., Eken, M. O., & Ilic, S. (2018). Bayesian pose graph optimi
A Kume (1612_CR60) 2005; 92
1612_CR90
1612_CR86
1612_CR87
1612_CR84
1612_CR82
1612_CR83
1612_CR80
1612_CR81
1612_CR88
1612_CR89
CS Herz (1612_CR47) 1955; 61
1612_CR102
1612_CR101
1612_CR104
1612_CR103
1612_CR106
1612_CR105
1612_CR97
1612_CR108
1612_CR10
1612_CR107
1612_CR95
1612_CR96
S Ullman (1612_CR98) 1979; 203
1612_CR109
1612_CR93
1612_CR91
1612_CR92
1612_CR17
1612_CR18
1612_CR15
1612_CR16
1612_CR13
1612_CR14
1612_CR11
1612_CR99
1612_CR12
X Deng (1612_CR32) 2021; 37
C Bingham (1612_CR7) 1974; 2
1612_CR111
1612_CR110
1612_CR113
1612_CR112
1612_CR114
1612_CR64
1612_CR65
1612_CR62
1612_CR61
1612_CR68
1612_CR69
1612_CR66
1612_CR67
N Piasco (1612_CR79) 2018; 74
1612_CR75
1612_CR76
1612_CR74
1612_CR71
1612_CR72
1612_CR70
1612_CR77
1612_CR78
MA Fischler (1612_CR37) 1981; 24
1612_CR43
1612_CR40
1612_CR41
QA Wang (1612_CR100) 2008; 41
L Breiman (1612_CR19) 2001; 45
H Durrant-Whyte (1612_CR34) 2006; 13
1612_CR48
1612_CR49
R Subbarao (1612_CR94) 2009; 84
1612_CR46
1612_CR44
1612_CR45
ET Jaynes (1612_CR50) 1957; 106
1612_CR53
1612_CR54
1612_CR51
1612_CR52
FS Grassia (1612_CR42) 1998; 3
Y Rubner (1612_CR85) 2000; 40
1612_CR59
1612_CR57
1612_CR58
1612_CR55
1612_CR56
1612_CR8
1612_CR9
C Cadena (1612_CR24) 2016; 32
1612_CR20
1612_CR21
A Morawiec (1612_CR73) 1996; 73
M Labbé (1612_CR63) 2019; 36
1612_CR28
1612_CR5
1612_CR29
1612_CR6
1612_CR26
R Arun Srivatsan (1612_CR2) 2018; 37
1612_CR27
1612_CR1
1612_CR25
1612_CR22
1612_CR3
1612_CR23
TD Barfoot (1612_CR4) 2014; 30
1612_CR31
1612_CR30
1612_CR39
1612_CR38
1612_CR35
1612_CR36
1612_CR33
References_xml – reference: Falorsi, L., de Haan, P., Davidson, T. R., Forré, P.: Reparameterizing distributions on lie groups. arXiv preprint arXiv:1903.02958 (2019)
– reference: Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H., & Davison, A. J. (2013). Slam++: Simultaneous localisation and mapping at the level of objects. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1352–1359).
– reference: Guzman-Rivera, A., Batra, D., & Kohli, P. (2012). Multiple choice learning: Learning to produce multiple structured outputs. In Advances in neural information processing systems (pp. 1799–1807).
– reference: Clark, R., Wang, S., Markham, A., Trigoni, N., & Wen, H. (2017). Vidloc: A deep spatio-temporal model for 6-dof video-clip relocalization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6856–6864).
– reference: Mahendran, S., Ali, H., & Vidal, R. (2017). 3d pose regression using convolutional neural networks. In Proceedings of the IEEE international conference on computer vision (pp. 2174–2182).
– reference: Birdal, T., & Ilic, S. (2015). Point pair features based object detection and pose estimation revisited. In 2015 International conference on 3D vision (pp. 527–535). IEEE.
– reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556.
– reference: Sundermeyer, M., Durner, M., Puang, E. Y., Marton, Z. C., Vaskevicius, N., Arras, K. O., & Triebel, R. (2020). Multi-path learning for object pose estimation across domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13916–13925).
– reference: Deng, H., Birdal, T., & Ilic, S. (2018). Ppfnet: Global context aware local features for robust 3d point matching. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 195–205).
– reference: HerzCSBessel functions of matrix argumentAnnals of Mathematics19556134745236996010.2307/1969810
– reference: Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1912–1920).
– reference: Corona, E., Kundu, K., & Fidler, S. (2018). Pose estimation for objects with rotational symmetry. In 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 7215–7222). IEEE.
– reference: Qi, C. R., Litany, O., He, K., & Guibas, L. J. (2019). Deep hough voting for 3d object detection in point clouds. In Proceedings of the IEEE international conference on computer vision (pp. 9277–9286).
– reference: FischlerMABollesRCRandom sample consensus: A paradigm for model fitting with applications to image analysis and automated cartographyCommunications of the ACM198124638139561815810.1145/358669.358692
– reference: Xiang, Y., Schmidt, T., Narayanan, V., & Fox, D. (2018). Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. In Robotics: Science and systems (RSS).
– reference: Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114
– reference: Horaud, R., Conio, B., Leboulleux, O., & Lacolle, B. (1989). An analytic solution for the perspective 4-point problem. In Proceedings CVPR’89: IEEE computer society conference on computer vision and pattern recognition (pp. 500–507). IEEE.
– reference: Kendall, A., Grimes, M., & Cipolla, R. (2015). Posenet: A convolutional network for real-time 6-dof camera relocalization. In Proceedings of the international conference on computer vision (ICCV).
– reference: Peretroukhin, V., Wagstaff, B., Giamou, M., & Kelly, J. (2019). Probabilistic regression of rotations using quaternion averaging and a deep multi-headed network. arXiv preprint arXiv:1904.03182
– reference: Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017a) Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652–660).
– reference: Birdal, T., Arbel, M., Şimşekli, U., & Guibas, L. (2020). Synchronizing probability measures on rotations via optimal transport. In Proceedings of the IEEE conference on computer vision and pattern recognition.
– reference: Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
– reference: Bui, M., Albarqouni, S., Ilic, S., & Navab, N. (2018). Scene coordinate and correspondence learning for image-based localization. In British machine vision conference (BMVC).
– reference: Bui, M., Baur, C., Navab, N., Ilic, S., & Albarqouni, S. (2019). Adversarial networks for camera pose regression and refinement. In International conference on computer vision workshops (ICCVW).
– reference: Rupprecht, C., Laina, I., DiPietro, R., Baust, M., Tombari, F., Navab, N., & Hager, G. D. (2017). Learning in an uncertain world: Representing ambiguity through multiple hypotheses. In Proceedings of the IEEE international conference on computer vision (pp. 3591–3600).
– reference: Manhardt, F., Arroyo, D. M., Rupprecht, C., Busam, B., Birdal, T., Navab, N., & Tombari, F. (2019). Explaining the ambiguity of object detection and 6d pose from visual data. In International conference of computer vision (ICCV). IEEE/CVF.
– reference: Sundermeyer, M., Marton, Z. C., Durner, M., Brucker, M., & Triebel, R. (2018) Implicit 3d orientation learning for 6d object detection from RGB images. In Proceedings of the European conference on computer vision (ECCV) (pp. 699–715).
– reference: Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248–255). IEEE.
– reference: DengXMousavianAXiangYXiaFBretlTFoxDPoserbpf: A rao-blackwellized particle filter for 6-d object pose trackingIEEE Transactions on Robotics2021371328134210.1109/TRO.2021.3056043
– reference: Zakharov, S., Shugurov, I., & Ilic, S. (2019). Dpod: Dense 6d pose object detector in RGB images. In Proceedings of the IEEE international conference on computer vision.
– reference: Balntas, V., Li, S., & Prisacariu, V. (2018). Relocnet: Continuous metric learning relocalisation using neural nets. In Proceedings of the European conference on computer vision (ECCV) (pp. 751–767).
– reference: Kendall, A., & Cipolla, R. (2017). Geometric loss functions for camera pose regression with deep learning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5974–5983).
– reference: Schonberger, J. L., & Frahm, J. M. (2016). Structure-from-motion revisited. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4104–4113).
– reference: Massiceti, D., Krull, A., Brachmann, E., Rother, C., Torr, P. H. (2017). Random forests versus neural networks—What’s best for camera localization? In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 5118–5125). IEEE.
– reference: LabbéMMichaudFRtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operationJournal of Field Robotics201936241644610.1002/rob.21831
– reference: Glover, J., & Kaelbling, L. P.: Tracking the spin on a ping pong ball with the quaternion Bingham filter. In Glover 2014 IEEE international conference on robotics and automation (ICRA) (pp. 4133–4140).
– reference: Deng, H., Birdal, T., & Ilic, S. (2018). Ppf-foldnet: Unsupervised learning of rotation invariant 3d local descriptors. In Proceedings of the European conference on computer vision (ECCV) (pp. 602–618).
– reference: SubbaraoRMeerPNonlinear mean shift over Riemannian manifoldsInternational Journal of Computer Vision2009841110.1007/s11263-008-0195-8
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).
– reference: Birdal, T., & Simsekli, U. (2019). Probabilistic permutation synchronization using the riemannian structure of the birkhoff polytope. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 11105–11116).
– reference: Sattler, T., Zhou, Q., Pollefeys, M., & Leal-Taixe, L. (2019). Understanding the limitations of CNN-based absolute camera pose regression. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3302–3312).
– reference: WangQAProbability distribution and entropy as a measure of uncertaintyJournal of Physics A: Mathematical and Theoretical2008416065004243592510.1088/1751-8113/41/6/065004
– reference: JaynesETInformation theory and statistical mechanicsPhysical Review195710646208730510.1103/PhysRev.106.620
– reference: Zhao, Y., Birdal, T., Lenssen, J.E., Menegatti, E., Guibas, L., & Tombari, F. (2020). Quaternion equivariant capsule networks for 3d point clouds. In European conference on computer vision (pp. 1–19). Springer.
– reference: Liu, W., Luo, W., Lian, D., & Gao, S. (2018). Future frame prediction for anomaly detection—A new baseline. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6536–6545).
– reference: Haarbach, A., Birdal, T., & Ilic, S. (2018). Survey of higher order rigid body motion interpolation methods for keyframe animation and continuous-time trajectory estimation. In 2018 Sixth international conference on 3D vision (3DV) (pp. 381–389). IEEE. https://doi.org/10.1109/3DV.2018.00051
– reference: Glover, J., Bradski, G., & Rusu, R. B. (2012). Monte Carlo pose estimation with quaternion kernels and the Bingham distribution. In Robotics: Science and systems (vol. 7, p. 97).
– reference: BinghamCAn antipodally symmetric distribution on the sphereThe Annals of Statistics197421201122539798810.1214/aos/1176342874
– reference: Gilitschenski, I., Sahoo, R., Schwarting, W., Amini, A., Karaman, S., & Rus, D. (2020). Deep orientation uncertainty learning based on a Bingham loss. In International conference on learning representations. https://openreview.net/forum?id=ryloogSKDS
– reference: Zeisl, B., Sattler, T., & Pollefeys, M. (2015). Camera pose voting for large-scale image-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 2704–2712).
– reference: Arun SrivatsanRXuMZevallosNChosetHProbabilistic pose estimation using a Bingham distribution-based linear filterThe International Journal of Robotics Research20183713–141610163110.1177/0278364918778353
– reference: BarfootTDFurgalePTAssociating uncertainty with three-dimensional poses for use in estimation problemsIEEE Transactions on Robotics201430367969310.1109/TRO.2014.2298059
– reference: Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. (2019). On the continuity of rotation representations in neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5745–5753).
– reference: Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer.
– reference: Besl, P. J., McKay, N. D. (1992). Method for registration of 3-d shapes. In Sensor fusion IV: Control paradigms and data structures (vol. 1611, pp. 586–606). International Society for Optics and Photonics.
– reference: Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., & Rother, C. (2017). DSAC-differentiable RANSAC for camera localization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6684–6692).
– reference: Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., & Funkhouser, T. (2017). 3Dmatch: Learning local geometric descriptors from RGB-D reconstructions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1802–1811).
– reference: RubnerYTomasiCGuibasLJThe earth mover’s distance as a metric for image retrievalInternational Journal of Computer Vision20004029912110.1023/A:1026543900054
– reference: Bui, M., Birdal, T., Deng, H., Albarqouni, S., Guibas, L., Ilic, S., & Navab, N. (2020). 6d camera relocalization in ambiguous scenes via continuous multimodal inference. In European conference on computer vision (ECCV).
– reference: GrassiaFSPractical parameterization of rotations using the exponential mapJournal of Graphics Tools199833294810.1080/10867651.1998.10487493
– reference: Qi, C. R., Yi, L., Su, H., Guibas, L. J. (2017b) Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems (pp. 5099–5108).
– reference: Wang, Y., & Solomon, J. M. (2019b). Prnet: Self-supervised learning for partial-to-partial registration. In Advances in neural information processing systems.
– reference: Okorn, B., Xu, M., Hebert, M., & Held, D. (2020). Learning orientation distributions for object pose estimation. In 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 10580–10587). IEEE.
– reference: Brachmann, E., & Rother, C. (2018). Learning less is more-6d camera localization via 3d surface regression. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4654–4662).
– reference: Mardia, K. V., & Jupp, P. E. (2009). Directional statistics (vol. 494). Wiley.
– reference: Zolfaghari, M., Çiçek, Ö., Ali, S. M., Mahdisoltani, F., Zhang, C., & Brox, T. (2019). Learning representations for predicting future activities. arXiv preprint arXiv:1905.03578
– reference: KumeAWoodATSaddlepoint approximations for the Bingham and fisher-Bingham normalising constantsBiometrika2005922465476220137110.1093/biomet/92.2.465
– reference: Valentin, J., Nießner, M., Shotton, J., Fitzgibbon, A., Izadi, S., & Torr, P. H. (2015). Exploiting uncertainty in regression forests for accurate camera relocalization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4400–4408).
– reference: Bishop, C. M.: Mixture density networks (1994) https://research.aston.ac.uk/en/publications/mixture-density-networks
– reference: Deng, H., Birdal, T., & Ilic, S. (2019). 3d local features for direct pairwise registration. In The IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Durrant-WhyteHBaileyTSimultaneous localization and mapping: Part IIEEE Robotics & Automation Magazine20061329911010.1109/MRA.2006.1638022
– reference: CadenaCCarloneLCarrilloHLatifYScaramuzzaDNeiraJReidILeonardJJPast, present, and future of simultaneous localization and mapping: Toward the robust-perception ageIEEE Transactions on Robotics20163261309133210.1109/TRO.2016.2624754
– reference: Sattler, T., Havlena, M., Radenovic, F., Schindler, K., & Pollefeys, M. (2015). Hyperpoints and fine vocabularies for large-scale location recognition. In Proceedings of the IEEE international conference on computer vision (pp. 2102–2110).
– reference: Luc, P., Neverova, N., Couprie, C., Verbeek, J., & LeCun, Y. (2017). Predicting deeper into the future of semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 648–657).
– reference: Brachmann, E., Michel, F., Krull, A., Ying Yang, M., Gumhold, S., & Rother, C. (2016). Uncertainty-driven 6d pose estimation of objects and scenes from a single RGB image. In Proceedings of the IEEE conference on computer vision and pattern recognition.
– reference: Yuan, W., Held, D., Mertz, C., & Hebert, M. (2018). Iterative transformer network for 3d point cloud. arXiv preprint arXiv:1811.11209
– reference: Yang, L., Bai, Z., Tang, C., Li, H., Furukawa, Y., & Tan, P. (2019). Sanet: Scene agnostic network for camera localization. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 42–51).
– reference: Sarlin, P. E., Unagar, A., Larsson, M., Germain, H., Toft, C., Larsson, V., Pollefeys, M., Lepetit, V., Hammarstrand, L., Kahl, F., & Sattler, T. (2021.) Back to the feature: Learning robust camera localization from pixels to pose. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 3247–3257).
– reference: Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In International conference on machine learning (pp. 1050–1059).
– reference: Kehl, W., Manhardt, F., Tombari, F., Ilic, S., & Navab, N. (2017). Ssd-6d: Making RGB-based 3d detection and 6d pose estimation great again. In Proceedings of the IEEE international conference on computer vision (pp. 1521–1529).
– reference: McLachlan, G. J., & Basford, K. E. (1988). Mixture models: Inference and applications to clustering (vol. 84). M. Dekker.
– reference: UllmanSThe interpretation of structure from motionProceedings of the Royal Society of London. Series B. Biological Sciences19792031153405426
– reference: Birdal, T., Simsekli, U., Eken, M. O., & Ilic, S. (2018). Bayesian pose graph optimization via Bingham distributions and tempered geodesic MCMC. In Advances in neural information processing systems (pp. 308–319).
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 770–778.
– reference: Peretroukhin, V., Giamou, M., Rosen, D. M., Greene, W. N., Roy, N., & Kelly, J. (2020). A smooth representation of SO(3) for deep rotation learning with uncertainty. In Proceedings of robotics: Science and systems (RSS’20).
– reference: Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., & Navab, N. (2012). Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In Asian conference on computer vision (pp. 548–562). Springer.
– reference: Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop.
– reference: Zakharov, S., Kehl, W., Planche, B., Hutter, A., & Ilic, S. (2017). 3d object instance recognition and pose estimation using triplet loss with dynamic margin. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp 552–559). IEEE.
– reference: Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4490–4499).
– reference: PiascoNSidibéDDemonceauxCGouet-BrunetVA survey on visual-based localization: On the benefit of heterogeneous dataPattern Recognition2018749010910.1016/j.patcog.2017.09.013
– reference: Aoki, Y., Goforth, H., Srivatsan, R. A., & Lucey, S. (2019). Pointnetlk: Robust & efficient point cloud registration using pointnet. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7163–7172).
– reference: Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. In Proceedings of the 34th international conference on machine learning (Vol. 70, pp. 1321–1330). JMLR.org.
– reference: Makansi, O., Ilg, E., Cicek, O., & Brox, T. (2019). Overcoming limitations of mixture density networks: A sampling and fitting framework for multimodal future prediction. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7144–7153).
– reference: Liao, S., Gavves, E., & Snoek, C. G. (2019). Spherical regression: Learning viewpoints, surface normals and 3d rotations on n-spheres. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9759–9767).
– reference: Wang, Y., & Solomon, J. M. (2019a). Deep closest point: Learning representations for point cloud registration. arXiv preprint arXiv:1905.03304
– reference: Pitteri, G., Ramamonjisoa, M., Ilic, S., & Lepetit, V. (2019). On object symmetries and 6d pose estimation from images. In 2019 International conference on 3D vision (3DV) (pp. 614–622). IEEE.
– reference: MorawiecAFieldDRodrigues parameterization for orientation and misorientation distributionsPhilosophical Magazine A19967341113113010.1080/01418619608243708
– reference: Brahmbhatt, S., Gu, J., Kim, K., Hays, J., & Kautz, J. (2018). Geometry-aware learning of maps for camera localization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2616–2625).
– reference: Kendall, A., & Gal, Y. (2017). What uncertainties do we need in Bayesian deep learning for computer vision? In Advances in neural information processing systems (NIPS).
– reference: Kanezaki, A., Matsushita, Y., & Nishida, Y. (2018). Rotationnet: Joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5010–5019).
– reference: Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., & Fitzgibbon, A. (2013). Scene coordinate regression forests for camera relocalization in RGB-D images. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2930–2937).
– reference: Birdal, T., & Ilic, S. (2017). Cad priors for accurate and flexible instance reconstruction. In Proceedings of the IEEE international conference on computer vision (pp. 133–142).
– reference: BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324
– reference: Kendall, A., & Cipolla, R. (2016). Modelling uncertainty in deep learning for camera relocalization. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 4762–4769). IEEE.
– reference: Prokudin, S., Gehler, P., & Nowozin, S. (2018). Deep directional statistics: Pose estimation with uncertainty quantification. In Proceedings of the European conference on computer vision (ECCV) (pp. 534–551).
– reference: Kurz, G., Gilitschenski, I., Pfaff, F., Drude, L., Hanebeck, U. D., Haeb-Umbach, R., & Siegwart, R. Y. (2017). Directional statistics and filtering using libdirectional. arXiv preprint arXiv:1712.09718
– reference: Chen, J., Yin, Y., Birdal, T., Chen, B., Guibas, L., & Wang, H. (2022). Projective manifold gradient layer for deep rotation regression. In The IEEE conference on computer vision and pattern recognition (CVPR).
– reference: Murray, R. M. (1994). A mathematical introduction to robotic manipulation. CRC Press.
– reference: Busam, B., Birdal, T., & Navab, N. (2017). Camera pose filtering with local regression geodesics on the Riemannian manifold of dual quaternions. In Proceedings of the IEEE international conference on computer vision workshops (pp. 2436–2445).
– reference: Dey, D., Ramakrishna, V., Hebert, M., & Andrew Bagnell, J. (2015). Predicting multiple structured visual interpretations. In Proceedings of the IEEE international conference on computer vision (pp. 2947–2955).
– reference: Feng, W., Tian, F. P., Zhang, Q., & Sun, J. (2016). 6d dynamic camera relocalization from single reference image. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4049–4057).
– reference: Birdal, T., Bala, E., Eren, T., & Ilic, S. (2016). Online inspection of 3d parts via a locally overlapping camera network. In 2016 IEEE Winter conference on applications of computer vision (WACV) (pp. 1–10). IEEE.
– reference: Kendall, A., & Cipolla, R. (2016). Modelling uncertainty in deep learning for camera relocalization. In Proceedings of the international conference on robotics and automation (ICRA).
– reference: Kurz, G., Gilitschenski, I., Julier, S., & Hanebeck, U. D. (2013). Recursive estimation of orientation based on the Bingham distribution. In 2013 16th International conference on information fusion (FUSION) (pp. 1487–1494). IEEE.
– ident: 1612_CR48
  doi: 10.1007/978-3-642-37331-2_42
– ident: 1612_CR64
  doi: 10.1109/CVPR.2019.00999
– volume: 36
  start-page: 416
  issue: 2
  year: 2019
  ident: 1612_CR63
  publication-title: Journal of Field Robotics
  doi: 10.1002/rob.21831
– ident: 1612_CR110
  doi: 10.1109/CVPR.2017.29
– ident: 1612_CR52
  doi: 10.1109/ICCV.2017.169
– ident: 1612_CR30
  doi: 10.1109/CVPR.2019.00336
– ident: 1612_CR62
– ident: 1612_CR1
  doi: 10.1109/CVPR.2019.00733
– volume: 30
  start-page: 679
  issue: 3
  year: 2014
  ident: 1612_CR4
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2014.2298059
– ident: 1612_CR33
  doi: 10.1109/ICCV.2015.337
– ident: 1612_CR8
  doi: 10.1109/CVPR42600.2020.00164
– ident: 1612_CR56
– ident: 1612_CR15
  doi: 10.1109/CVPR.2017.267
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1612_CR19
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: 1612_CR65
  doi: 10.1109/CVPR.2018.00684
– ident: 1612_CR69
  doi: 10.1109/ICCV.2019.00694
– ident: 1612_CR106
– ident: 1612_CR103
– volume: 37
  start-page: 1328
  year: 2021
  ident: 1612_CR32
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2021.3056043
– ident: 1612_CR80
  doi: 10.1109/3DV.2019.00073
– ident: 1612_CR105
  doi: 10.1109/ICCV.2019.00013
– ident: 1612_CR74
– ident: 1612_CR91
  doi: 10.1109/CVPR.2016.445
– ident: 1612_CR95
  doi: 10.1109/CVPR42600.2020.01393
– ident: 1612_CR92
  doi: 10.1109/CVPR.2013.377
– ident: 1612_CR23
  doi: 10.1109/ICCVW.2017.287
– ident: 1612_CR99
  doi: 10.1109/CVPR.2015.7299069
– ident: 1612_CR57
  doi: 10.1109/ICCV.2015.336
– ident: 1612_CR83
– ident: 1612_CR25
  doi: 10.1109/CVPR52688.2022.00653
– ident: 1612_CR21
  doi: 10.1109/ICCVW.2019.00470
– ident: 1612_CR40
  doi: 10.15607/RSS.2011.VII.015
– ident: 1612_CR44
– ident: 1612_CR71
  doi: 10.1109/ICRA.2017.7989598
– ident: 1612_CR12
  doi: 10.1109/CVPR.2019.01136
– volume: 203
  start-page: 405
  issue: 1153
  year: 1979
  ident: 1612_CR98
  publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences
– ident: 1612_CR58
– ident: 1612_CR35
– ident: 1612_CR82
  doi: 10.1109/ICCV.2019.00937
– ident: 1612_CR107
  doi: 10.1109/IROS.2017.8202207
– ident: 1612_CR109
  doi: 10.1109/ICCV.2015.310
– volume: 2
  start-page: 1201
  year: 1974
  ident: 1612_CR7
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176342874
– ident: 1612_CR16
  doi: 10.1109/CVPR.2016.366
– ident: 1612_CR55
  doi: 10.1109/CVPR.2017.694
– ident: 1612_CR75
  doi: 10.1109/IROS45743.2020.9340860
– ident: 1612_CR61
– ident: 1612_CR81
  doi: 10.1007/978-3-030-01240-3_33
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 1612_CR37
  publication-title: Communications of the ACM
  doi: 10.1145/358669.358692
– ident: 1612_CR113
  doi: 10.1109/CVPR.2018.00472
– ident: 1612_CR13
– ident: 1612_CR10
  doi: 10.1109/3DV.2015.65
– ident: 1612_CR3
  doi: 10.1007/978-3-030-01264-9_46
– volume: 41
  start-page: 065004
  issue: 6
  year: 2008
  ident: 1612_CR100
  publication-title: Journal of Physics A: Mathematical and Theoretical
  doi: 10.1088/1751-8113/41/6/065004
– ident: 1612_CR89
  doi: 10.1109/ICCV.2015.243
– ident: 1612_CR38
– ident: 1612_CR9
  doi: 10.1109/WACV.2016.7477630
– ident: 1612_CR72
  doi: 10.2307/2289892
– ident: 1612_CR68
  doi: 10.1109/CVPR.2019.00731
– ident: 1612_CR77
  doi: 10.15607/RSS.2020.XVI.007
– ident: 1612_CR112
  doi: 10.1109/CVPR.2019.00589
– ident: 1612_CR108
  doi: 10.1109/ICCV.2019.00203
– ident: 1612_CR87
  doi: 10.1109/CVPR.2013.178
– ident: 1612_CR67
  doi: 10.1109/ICCVW.2017.254
– ident: 1612_CR14
– ident: 1612_CR53
  doi: 10.1109/ICRA.2016.7487679
– volume: 3
  start-page: 29
  issue: 3
  year: 1998
  ident: 1612_CR42
  publication-title: Journal of Graphics Tools
  doi: 10.1080/10867651.1998.10487493
– ident: 1612_CR17
  doi: 10.1109/CVPR.2018.00489
– ident: 1612_CR102
– volume: 106
  start-page: 620
  issue: 4
  year: 1957
  ident: 1612_CR50
  publication-title: Physical Review
  doi: 10.1103/PhysRev.106.620
– ident: 1612_CR104
  doi: 10.15607/RSS.2018.XIV.019
– ident: 1612_CR45
  doi: 10.1109/3DV.2018.00051
– ident: 1612_CR5
– ident: 1612_CR27
  doi: 10.1109/IROS.2018.8594282
– ident: 1612_CR78
– ident: 1612_CR114
– ident: 1612_CR97
  doi: 10.1109/CVPR.2016.308
– ident: 1612_CR46
  doi: 10.1109/CVPR.2016.90
– ident: 1612_CR51
  doi: 10.1109/CVPR.2018.00526
– ident: 1612_CR84
– ident: 1612_CR43
– ident: 1612_CR111
  doi: 10.1007/978-3-030-58452-8_1
– ident: 1612_CR18
  doi: 10.1109/CVPR.2018.00277
– ident: 1612_CR41
  doi: 10.1109/ICRA.2014.6907460
– volume: 37
  start-page: 1610
  issue: 13–14
  year: 2018
  ident: 1612_CR2
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364918778353
– ident: 1612_CR86
  doi: 10.1109/ICCV.2017.388
– ident: 1612_CR90
  doi: 10.1109/CVPR.2019.00342
– volume: 92
  start-page: 465
  issue: 2
  year: 2005
  ident: 1612_CR60
  publication-title: Biometrika
  doi: 10.1093/biomet/92.2.465
– ident: 1612_CR70
– ident: 1612_CR96
  doi: 10.1007/978-3-030-01231-1_43
– ident: 1612_CR26
  doi: 10.1109/CVPR.2017.284
– ident: 1612_CR101
  doi: 10.1109/ICCV.2019.00362
– ident: 1612_CR29
  doi: 10.1109/CVPR.2018.00028
– volume: 84
  start-page: 1
  issue: 1
  year: 2009
  ident: 1612_CR94
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-008-0195-8
– volume: 73
  start-page: 1113
  issue: 4
  year: 1996
  ident: 1612_CR73
  publication-title: Philosophical Magazine A
  doi: 10.1080/01418619608243708
– ident: 1612_CR39
– ident: 1612_CR22
  doi: 10.1007/978-3-030-58523-5_9
– ident: 1612_CR49
  doi: 10.1016/0734-189X(89)90052-2
– volume: 74
  start-page: 90
  year: 2018
  ident: 1612_CR79
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.09.013
– ident: 1612_CR36
  doi: 10.1109/CVPR.2016.439
– volume: 40
  start-page: 99
  issue: 2
  year: 2000
  ident: 1612_CR85
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1026543900054
– volume: 32
  start-page: 1309
  issue: 6
  year: 2016
  ident: 1612_CR24
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2016.2624754
– ident: 1612_CR11
  doi: 10.1109/ICCV.2017.24
– ident: 1612_CR76
– ident: 1612_CR66
  doi: 10.1109/ICCV.2017.77
– ident: 1612_CR20
– ident: 1612_CR54
  doi: 10.1109/ICRA.2016.7487679
– ident: 1612_CR28
  doi: 10.1007/978-3-030-01228-1_37
– volume: 13
  start-page: 99
  issue: 2
  year: 2006
  ident: 1612_CR34
  publication-title: IEEE Robotics & Automation Magazine
  doi: 10.1109/MRA.2006.1638022
– volume: 61
  start-page: 474
  issue: 3
  year: 1955
  ident: 1612_CR47
  publication-title: Annals of Mathematics
  doi: 10.2307/1969810
– ident: 1612_CR88
  doi: 10.1109/CVPR46437.2021.00326
– ident: 1612_CR59
– ident: 1612_CR93
– ident: 1612_CR6
– ident: 1612_CR31
  doi: 10.1109/CVPR.2009.5206848
SSID ssj0002823
Score 2.5929005
Snippet In this work, we introduce Deep Bingham Networks (DBN) , a generic framework that can naturally handle pose-related uncertainties and ambiguities arising in...
In this work, we introduce Deep Bingham Networks (DBN), a generic framework that can naturally handle pose-related uncertainties and ambiguities arising in...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1627
SubjectTerms Artificial Intelligence
Computer Imaging
Computer Science
Computer vision
Datasets
Human-computer interaction
Image Processing and Computer Vision
Machine vision
Networks
Numerical methods
Numerical stability
Pattern Recognition
Pattern Recognition and Graphics
Pose estimation
Solution space
Special Issue on 3D Computer Vision
Three dimensional models
Training
Uncertainty
Vision
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4cCFsoqyyUJIHCBS02w2t7JUcKkqCqg3y7GdUommiLQg_p5x4lCVTQLl5kxiZzwzfo5nAThkLg2DWPlO7InQ8ZWnHMoSz6lHMvA9TVksi2ITUbtNez3WsUFhWentXh5J5pZ6GuzmNvIzR-NKEJp6HPOwgMsdNep4073_sL-4iSgKyOPGKAiZa0Nlvn_HzHL02Sh_OR3NF51W9X_DXYFlCzJJs5CKVZjT6RpULeAkVp0zbCprOpRt69C50PqJnGFPD2JI2oWTeHZKLhBQYiMx_23JHZLmngTjNyJSRZrDeNCfIJ4ng5R0Rpkml2g5iqDIDbhrXd6eXzm26oIjESuNHYXjFqHWCU6eCqTy8QpjpWUkBcIzwYRkboyqLiIv8AWjXhxGikmaJEILRAebUElHqd4CEiX1RNUpCmsofa0EC3D3p10qZOBFcUBr4JbM59KmJDeVMR75NJmy4SJHLvKci_y1BscfzzwVCTl-pT4wc8pNpovUuNL0xSTL-HX3hjcjU0oA8SCrwZElSkbYvRQ2MgE_wiTHmqHcLWWDW13PeMOkcKMepW4NTkpZmN7-eXDbfyPfgaVGLk7GV3gXKuPnid6DRfkyHmTP-7kOvAMFLQB8
  priority: 102
  providerName: Springer Nature
Title Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose Estimation
URI https://link.springer.com/article/10.1007/s11263-022-01612-w
https://www.proquest.com/docview/2681283881
Volume 130
WOSCitedRecordID wos000790633300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQde2MaH6BiVhZB4gIg6iWObl6nbOoEQVdQxGLxYju2MSiztlha0_55z4qwaiL2gSH5wLomT-8jZvrsfwAtJRcYKm0ZForMotYmNhCyTaMANSxMnZGFasAk-HovTU5mHBbc6hFV2NrEx1HZm_Br5m9gXyhKJEHRvfhF51Ci_uxogNNZgg8Yx9XL-gUfXlhinEy2UPE6RWCZpSJppU-do3Oxg-sCEzKN73Pgx_Wme_9onbX4_R5v_O_AtuB8cTzJsJWUb7rjqAWwGJ5QEFa-xq8N56PoeQn7o3Jzs47i-63MybgPH67fkEJ1M7CR-LZecIGkTXbC4IrqyZHheTM-W6OOTaUXyWe3ICK1Jmyj5CE6ORp8O3kUBiSEy6D8tIosfS2fOlchQy4xN8cgK6ww3Gl02LbWRtED11zxhqZYiKTJupRFlqZ1Gj-ExrFezyj0BwstBaQcCBTgzqbNaMpwROiq0YQkvmOgB7digTChT7tEyfqhVgWXPOoWsUw3r1K8evLq-Zt4W6biV-rnnrvLVLyofXnOml3Wt3h9P1JB7eAH0EWUPXgaicoaPNzpkK-BL-IJZNyh3O76roP-1WjG9B687yVmd_vfgdm6_21O4Fzcy6-OFd2F9cbl0z-Cu-bmY1pd9WONfvvZhY380zif9Rhew_Tg4wDZn37CdHH_-DRyvD0A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMslGIhEAeI2LwcuxKqlm6rrlpWK2il3lzHdspKNLs0u1T9U_zGziROVwXRWw8oN8d52PlmPBPPzAfwRoaCp7lNgjzWPEhsbAMhizjoZiZNYidkbhqyiWw4FIeHcrQEv9tcGAqrbHVirajtxNA_8o8RFcoSsRDhxvRnQKxRtLvaUmg0sNh152foslWfBn38vm-jaHtrf3Mn8KwCgUFbYBbYMOKaO1fgy9nU2AQPnltnMqPR_NBSGxnmCGWdxWmipYhznllpRFFop3H1w_vegttJguJAoYLdzUvNj-5LQ12PLlnKZeiTdJpUPXws7ZhSIAQnNpErC-Gfy8Ff-7L1cre98r9N1AO47w1r1msk4SEsufIRrHgjm3kVVmFTy2PRtj2GUd-5KfuM8_Bdn7BhExhfrbM-GtHYyOhfNTvArnX0xOyc6dKy3kk-Pp6jD8PGJRtNKse2UFs2iaBP4OBGhvoUlstJ6Z4By4puYbsCBZSbxFktU_R4XSi0SeMsT0UHwvazK-PLsBMbyA-1KCBNUFEIFVVDRZ114P3lNdOmCMm1vV8TmhRV9ygpfOhYz6tKDb59Vb2M6BPQBpYdeOc7FRN8vNE-GwMHQQXBrvRcbXGmvH6r1AJkHfjQInVx-t8v9_z6u72Cuzv7X_bU3mC4-wLuRbW8UGz0KizPTufuJdwxv2bj6nStljwGRzeN4Auemmpk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAyFeNq6iMMBCIB7AWnOxY0-aUKGrqIqqCpi0N8-xnVGJpd3SMu2v8es4TpxVA7G3PaC8Oc79O7f4nPMBvJKR4Cy3Kc0TzWlqE0uFLBLazQxLEydkbhqyiWw8FgcHcrIGv9paGJ9W2erEWlHbmfH_yLdj3yhLJEJE20VIi5j0B-_nJ9QzSPmV1pZOo4HIyJ2fYfhW7Q77-K1fx_Fg79vHTzQwDFCDfsGC2ijmmjtX4I1aZmyKG8-tM5nR6IpoqY2McoS1zhKWaimSnGdWGlEU2mm0hHjeG3ATrTDzMjbK6IUVwFCmobHH8IxxGYWCnaZsDy_rV099UgT3zCKXjOKfpuGvNdra9A02_-eXdhc2gsNNeo2E3IM1V96HzeB8k6DaKhxq-S3asQcw6Ts3Jx_wnXzXx2TcJMxXO6SPzjUOEv8Pm-zj1DqrYnFOdGlJ7zifHi0xtiHTkkxmlSN7qEWbAtGHsH8tj_oI1stZ6R4DyYpuYbsCBZeb1FktGUbCLhLasCTLmehA1EJAmdCe3bOE_FCrxtIeNgpho2rYqLMOvL04Zt40J7ly9kuPLOW7fpQeCkd6WVVq-PWL6mWeVgF9Y9mBN2FSMcPLGx2qNPAhfKOwSzO3WsypoPcqtQJcB961qF3t_vfNPbn6bC_gNgJXfR6OR0_hTlyLjk-Z3oL1xenSPYNb5udiWp0-r4WQwOF1A_g34_VzCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Bingham+Networks%3A+Dealing+with+Uncertainty+and+Ambiguity+in+Pose+Estimation&rft.jtitle=International+journal+of+computer+vision&rft.au=Deng%2C+Haowen&rft.au=Bui%2C+Mai&rft.au=Navab%2C+Nassir&rft.au=Guibas%2C+Leonidas&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=7&rft.spage=1627&rft.epage=1654&rft_id=info:doi/10.1007%2Fs11263-022-01612-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon